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Abstract In recent papers, Kenyon et al. (Ergod Theory Dyn Syst 32:1567–1584 2012),
and Fan et al. (C R Math Acad Sci Paris 349:961–964 2011, Adv Math 295:271–333 2016)
introduced a form of non-linear thermodynamic formalism based on solutions to a non-
linear equation using matrices. In this note we consider the more general setting of Hölder
continuous functions.
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1 Introduction

We first recall a classical result for matrices dating back to work of Perron (1907) and
Frobenius (1912) (cf. [5], p. 53). A k × k matrix A is called non-negative if all the entries
are non-negative real numbers and aperiodic if there exists n > 0 such that all entries of the
nth power An are strictly positive.

Theorem 1.1 (Perron–Frobenius Theorem) Let A be a non-negative aperiodic k×k-matrix.
There exists a unique positive maximal eigenvalue λ > 0 and a unique positive eigenvector
v such that Av = λv.

We next recall a generalisation of the Perron–Frobenius Theorem to Banach spaces of
functions. Let σ : � → � be a one-sided mixing subshift of finite type with alphabet
F = {1, · · · , k} (i.e., there exists an aperiodic k × k matrix B with 0–1 entries such that
� = {x = (xn)∞n=0 ∈ ∏∞

n=0 F : xn ∈ F, B(xn, xn+1) = 1,∀n ≥ 0} and (σ x)n = xn+1.
Given 0 < θ < 1, let Fθ be the space of functions f : � → R for which the semi-norm
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‖ f ‖θ = sup
n≥0

varn( f )

θn
< +∞

is finite, where varn( f ) = sup{| f (x)− f (x ′)| : xi = x ′
i for i = 0, · · · , n− 1}. In particular,

Fθ is a Banach space with respect to the norm ‖ f ‖ = ‖ f ‖θ + ‖ f ‖∞.

Definition 1.2 Let φ ∈ Fθ . We can define a transfer operator Lφ : Fθ → Fθ by

Lφψ(x) =
∑

σ y=x

eφ(y)ψ(y),

where ψ ∈ Fθ and x ∈ �.

The following result of Ruelle is a cornerstone of the classical theory of thermodynamic
formalism (cf.[10]).

Theorem 1.3 (Ruelle–Perron–Frobenius Theorem) Let φ ∈ Fθ .

1. There exists λ = λφ > 0 and ϕ = ϕφ ∈ Fθ with ψ > 0 such that Lφϕ = λϕ;
2. any ψ ′ ∈ Fθ with Lφψ ′ = λψ ′ is necessarily a multiple of ψ; and
3. the dependences Fθ 	 φ 
→ λφ ∈ R

+ and Fθ 	 φ 
→ ϕφ ∈ Fθ are analytic.

It is also known that, aside from the maximal eigenvalue λ, the rest of the spectrum of
Lφ : Fθ → Fθ is contained in {z ∈ C : |z| < λφ}. In particular, part 3 of Theorem 1.3 then
follows from part 1 by standard perturbation theory.

The value P(φ) := log λφ is called the pressure of the function φ ∈ Fθ [10]. In the case
that φ(x) = φ(x0, x1) depends only on the first two terms in x = (xn)∞n=0 then Theorem
1.3 reduces to Theorem 1.1, by taking A(i, j) = expφ(i, j). In this case, ψ(x) = ψ(x0)
depends only on the first term and we can set v = (ψ(1), . . . , ψ(k)).

Recently, several authors introduced a particular non-linear version of Theorem 1.1 for
matrices which is useful in the study of the dimension of certain sets in the theory of non
standard ergodic averages (see section 2).

Theorem 1.4 (Kenyon–Peres–Solomyak, Fan–Schmeling–Wu) Let B be a non-negative
irreducible k × k matrix. There exists a unique positive vector v such that Bv = v2, where
the entries of v2 are the square of those of v, i.e., (v)i

2 = vi for i = 1, · · · , k.

In the special case that A has entries which are natural numbers, this appears as Lemma 1.2
in [6]. A version of this for more general positive matrices appears as 4.1 in [2] (cf. also [3])
under very modest assumptions on the matrix. Other types of non-linear Perron–Frobenius
Theorem appear in [7] and [8].

The following is our main result, which can be viewed either as a non-linear version of
Theorem 1.3, or a generalisation of the Theorem 1.4 (at least for aperiodic matrices) from
matrices to functions.

Theorem 1.5 (Main Theorem) Let φ ∈ Fθ .

1. There exists ψ = ψφ ∈ Fθ with ψ > 0 such that Lφψ = ψ2;
2. for any ψ ′ ∈ Fθ with Lφψ ′ = ψ ′2 and ψ ′ > 0 then ψ ′ = ψ ; and
3. the dependence Fθ 	 φ 
→ ψφ ∈ Fθ is analytic providing ψφ is sufficiently close to the

constant function λφ1 in norm.
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Fig. 1 A plot of ψφ (x) using the dyadic expansion 0 ≤ ∑∞
n=0

(xn−1)
2n+1 ≤ 1 on the unit interval to represent

x ∈ �2

The result easily generalises to Lφψ = ψq , for any natural number q ≥ 2. We consider
only the case q = 2 to avoid introducing additional notation.

In the particular case that the function φ(x) = φ(x0, x1) depends on only finitely many
coordinates then Theorem 1.4 can be recovered as a corollary to Theorem 1.5.

Example 1.6 Let �2 = {1, 2}Z+ correspond to a full shift with F = {1, 2}. We can define a
function φ : �2 → R by

φ(x) = −4 sin

(

2π
∞∑

n=0

(xn − 1)

2n+1

)

and observe that φ ∈ Fθ for any 1/2 < θ < 1. By Theorem 1.5 (with the choice q = 2)
there is a function ψ such that Lφψ = ψ2. In Fig. 1 we plot a realisation of ψ using the
dyadic expansion on the unit interval.

Remark 1.7 If φ ∈ Fθ then, as usual, by replacing φ by φ1 = φ + logψφ − logψφ ◦ σ ∈
Fθ , where ψ is the positive eigenfunction in Theorem 1.3, we can assume without loss of
generality that ψφ1(x) = 1 is the constant function taking the value 1, i.e., Lφ11 = λ1,
where λ = λφ = λφ1 . In particular, for such special normalized functions φ1 the function
ψ Theorem 1.5 can easily be identified as ψ = ψφ1 = λ1, then we see that Lφ1ψ = ψ2.
Furthermore, the hypothesis for analyticity in part 3 of Theorem 1.5 automatically holds.

I am grateful to the referees and the editors for their patience and help with this short note.

2 Background to Theorem 1.4

Although our main result (Theorem 1.5) is of independent interest, for the reader’s benefit
we will now give a brief description of the original application of its precursor (Theorem 1.4)
which provided the motivation for its introduction.

Following [6] and [2,3] given a probability measure μ on � we can define a so-called
multiplicative measure ν on � = {1, . . . , k}Z+

, say, by writing � = ∏
j odd � j where

� j = {1, · · · , k}� j and � j = { j2n : n ≥ 0}, for j = 1, 3, 5, · · · , which form a natural
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partition of N by N = ∪ j odd� j . We can then define ν = ∏
j μ, in a natural sense. In [6]

and [3] the authors consider the measure μ to be a (generalised) Markov measure defined
in terms of the entries in the vector v in Theorem 1.4. The measure ν will typically not be
σ -invariant but is still useful in studying the Hausdorff dimension of certain sets.

We can define the pointwise dimension of ν by

dimH (ν) = − lim
n→+∞

1

n
log ν ([x0, x1, · · · , xn−1]) for a.e.(ν)x = (xn) ∈ �

where [x0, x1, · · · , xn−1] = {y = (yn) ∈ � : xi = yi , 0 ≤ i ≤ n − 1} is a cylinder set.
Finally, by Proposition 2.3 of [6] we have that for any σ -ergodic measure ν the pointwise
dimension is constant and takes the explicit value

dimH (ν) =
∞∑

n=1

1

2n+1 Hμ

(
∨n−1
i=0 σ−iα

)

where α = {[1], . . . , [k]} is the standard partition into cylinders of length one; ∨n−1
i=0 σ−iα

is the usual refinement to a partition by cylinders of length n; and Hμ(·) is the entropy for
partitions [11].

The pointwise dimension is particularly useful in estimating the Hausdorff Dimension of
sets (especially lower bounds via the usualmass distribution principle cf. [1], §4.2) associated
to multiple ergodic theorems, as the following example illustrates.

Example 2.1 (Golden Mean Example [4,6]) Fan–Liao–Ma and Kenyon–Peres–Solomyak
considered the golden mean example:

X =
{
(xn) ∈ {0, 1}N : xnx2n = 0,∀n ≥ 1

}
,

with the usual metric

dθ (x, x
′) =

{
θN (x,x ′) if x �= x ′

0 if x = x ′.

where N (x, x ′) = sup{n ≥ 0 : xi = x ′
i for 0 ≤ i ≤ n} (and N (x, x ′) = 0 if x0 �= x ′

0).

In this case one can consider the matrix B =
(
1 1
1 0

)

and the solution to Bv = v2, i.e.,

v =
(

v1
v2

)

satisfies v21 = v1 + v2 and v22 = v1. We then have that μ is a Markov measure for

P =
(
p 1 − p
1 0

)

, where p3 = (1− p)2, and finally dimH (X) = − log2 p = 0 · 81137 . . .

which is strictly less than the Minkowski dimension dimM (X) = 0 · 82429 . . . [4,6].

3 Proof of Theorem 1.5

The proof of the existence of the fixed point is the more interesting part of the problem. The
uniqueness and analyticity are then relatively easy to establish.
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3.1 Existence of the Fixed Point

The existence can be shown by looking for a fixed point of a suitable map in the space

�c :=
{
u : � → [0, 1] : u(x) ≤ u(x ′)ecdθ (x,x ′) for those x, x ′ ∈ � with x0 = x ′

0

}

where c > 0 and dθ (·, ·) is as defined in Example 2.1. We first note that �c ⊂ Fθ since for

u ∈ �c and x, x ′ ∈ � we can bound u(x) − u(x ′) ≤ ‖u‖∞
(
ecdθ (x,x ′) − 1

)
≤ Cdθ (x, x ′)

for sufficiently large C > 0 and then interchanging x and x ′ gives that ‖u‖θ ≤ C (cf. [9], p.
22).

We can now introduce a family of non-linear operators defined as follows:

Definition 3.1 For each n ≥ 1 we can associate to u ∈ �c a new function Nn(u) : � → R

defined by

Nn(u)(x) =
(

Lφ

(
u + 1

n 1
)
(x)

‖Lφ

(
u + 1

n 1
) ‖∞

) 1
2

where 1
n 1 represents the function taking the constant value 1

n .

Lemma 3.2 We have that Lφ(�c) ⊂ �c′ for c′ = (c + ‖φ‖θ )θ .

Proof Let x, x ′ ∈ � with x0 = x ′
0. Assume that dθ (x, x ′) = θN , for some N ≥ 0, then

xi = x ′
i for 0 ≤ i ≤ N and xN+1 �= x ′

N+1. If y ∈ σ−1x then we denote by y′ ∈ σ−1x ′ the
corresponding sequence for which y0 = y′

0, and thus we have that dθ (y, y′) = θN+1. Let
u ∈ �c then we have that

Lφu(x) = ∑
σ y=x e

φ(y)u(y)

≤ ∑
σ y=x e

φ(y′)+‖φ‖θ θN+1
(
u(y′)ecθN+1

)

≤ e(c+‖φ‖θ )θdθ (x,x ′) ∑
σ y′=x ′ eφ(y′)u(y′)

= e(c+‖φ‖θ )θdθ (x,x ′)Lφu(x ′)

where we have used that dθ (y, y′) = θN+1 and then since u ∈ �c we have that u(y) ≤
u(y′)ecθN+1

. In particular, we have that Lφu(x) ≤ ec
′dθ (x,x ′)Lφu(x ′), i.e., Lφu ∈ �c′ . ��

Remark 3.3 By definition of �c, we see that if c′ < c then �c′ ⊂ �c thus, providing c is
sufficiently large, Lemma 3.2 gives Lφ(�c) ⊂ �c.

We can use the above lemma to deduce the following.

Lemma 3.4 For c > 0 sufficiently large we have that Nφ(�c) ⊂ �c.

Proof Let u ∈ �c. For each n ≥ 1 the constant function 1
n 1 ∈ �c and so by applying Lemma

3.2 to the new function u + 1
n 1 we see that

Lφ

(

u + 1

n
1
)

(x) ≤ ec
′dθ (x,x ′)Lφ

(

u + 1

n
1
)

(x ′), (3.1)

for all x, x ′ ∈ � with x0 = x ′
0. Dividing both sides of (3.1) by ‖L (

u + 1
n 1

) ‖∞ > 0 we
have that

Lφ

(
u + 1

n 1
)
(x)

‖L (
u + 1

n 1
) ‖∞

≤ ec
′dθ (x,x ′)Lφ

(
u + 1

n 1
)
(x ′)

‖L (
u + 1

n 1
) ‖∞

. (3.2)
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Finally, since the values taken by both sides of (3.2) lie in the unit interval, taking square
roots preserves this property with c′ replaced by c′/2, i.e.,

Nn(u)(x) =
(

Lφ

(
u+ 1

n 1
)
(x)

‖Lφ

(
u+ 1

n 1
)
‖∞

) 1
2

≤ e(c′/2)dθ (x,x ′)
(

Lφ

(
u+ 1

n 1
)
(x ′)

‖Lφ

(
u+ 1

n 1
)
‖∞

) 1
2

= e(c′/2)dθ (x,x ′)Nn(u)(x ′)

i.e., Nn (u) ∈ �c′/2. Providing c is sufficiently large that c > c′/2 = (c+‖φ‖θ )θ/2 we have
that �c′/2 ⊂ �c and the result follows. ��

This now brings us to the existence of the fixed point for each of the operatorsNn : �c →
�c.

Lemma 3.5 For each n ≥ 1, there exists a non-trivial fixed point ψn ∈ �c such that
Nn(ψn) = ψn.

Proof By theArzela–Ascoli Theorem the space�c is compactwith respect to the norm ‖·‖∞.
For each n ≥ 1 and c > 0 sufficiently large the map Nn : �c → �c is a continuous map on
a compact convex subspace of C0(�) and we can apply the Schauder fixed point theorem to
deduce that there is a fixed point ψn ∈ �c for Nn . To see that ψn is not identically zero we
need only observe that by the definition of Nn there exists x (n) ∈ � with Nn(ψn)(x (n)) = 1
and by construction ψn(x (n)) = Nn(ψn)(x (n)) = 1. This completes the proof. ��

We can now use the compactness of �c with respect to ‖ · ‖∞ to deduce that (ψn)
∞
n=1

has a ‖ · ‖∞-convergent subsequence. We denote the limit point by ψ0 ∈ � and observe that
we have that Lφ(ψ0) = λψ2

0 , where λ = ‖Lφ(ψ0)‖∞. Moreover, since we observed that by
construction that ‖ψn‖∞ = 1, for each n ≥ 1, we can deduce that ‖ψ0‖∞ = 1 and thus, in
particular, ψ0 is non-zero. If we replace ψ0 by ψ = λψ0 then we finally get Lφ(ψ) = ψ2,
as required.

To see thatψ > 0, assume for a contradiction that there exists x0 ∈ � such thatψ(x0) = 0.
Since ψ ≥ 0 we see from the identity Lφ(ψ)(x0) = ψ2(x0) = 0, which implies that
ψ(y) = 0 whenever σ y = x0. Proceeding iteratively, we have that ψ vanishes on the set
∪∞
n=0σ

−nx0, which is dense by the mixing hypothesis on σ : � → � (corresponding to the
aperiodicity assumption on A). However, this contradicts that ψ �= 0.

3.2 Uniqueness of the Positive Fixed Point

Assume for a contradiction that we had a second distinct non-trivial positive fixed point, i.e.,
Lφ(ψ ′) = ψ ′2 with ψ ′ > 0 and ψ �= ψ ′. We can then associate ξ := inf{t > 0 : tψ − ψ ′ ≥
0} and thus, in particular, ξψ ≥ ψ ′. Observe that Lφ(ξψ − ψ ′) = ξψ2 − ψ ′2 ≥ 0, since Lφ

preserves positive functions. Since ξψ2 − ψ ′2 = (
√

ξψ + ψ ′)(
√

ξψ − ψ ′) ≥ 0 we deduce
that

√
ξψ −ψ ′ ≥ 0. In particular, this implies that ξ ≤ 1, otherwise it contradicts the original

definition of ξ .
Interchanging the roles of ψ and ψ ′ we can define ξ ′ := inf{t > 0 : tψ ′ − ψ ≥ 0} and

and thus, in particular, ξ ′ψ ′ ≥ ψ ≥ 0. A similar argument to the above shows that ξ ′ ≤ 1.
However, since we can then write (ξ ′ξ)ψ ′ ≥ ξψ ≥ ψ ′ this implies that ξ = ξ ′ = 1.

For the definition of ξ we can choose x0 with ψ(x0) = ψ ′(x0). We can then write
Lφ(ψ − ψ ′)(x0) = ψ2(x0) − ψ ′2(x0) = (ψ(x0) + ψ ′(x0))(ψ(x0) − ψ ′(x0)) = 0 which
implies that ψ(y) = ψ ′(y) whenever σ y = x0. Proceeding inductively we deduce that
ψ(y) = ψ ′(y) on the dense set of y ∈ ∪∞

n=1σ
−nx0, and this ψ = ψ ′.
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Remark 3.6 This simple argument doesn’t rule out the possibility of another non-positive
fixed point.

3.3 Analyticity

To show the analytic dependence of the solution we want to use the implicit function theorem
applied to the function G : Fθ × Fθ → Fθ defined by

G(φ, ψ) = Lφψ − ψ2.

In order to apply the implicit function theorem at (φ0, ψ0) ∈ Fθ × Fθ with ψ0 > 0, say,
satisfying G(φ0, ψ0) = 0 we need to show that (D2G)(φ0, ψ0) : Fθ → Fθ is invertible. An
easy calculation gives that

(D2G)(φ0, ψ0) = (
Lφ0 − 2ψ0

) : Fθ → Fθ . (3.3)

The spectral radius of any linear operator is the radius of the smallest disk (centred at the
origin) containing the spectrum.

We recall the following result [9] which is also due to Ruelle.

Lemma 3.7 (Ruelle) The operator Lφ0 : Fθ → Fθ has spectral radius λφ0 .

In particular, we see from Lemma 3.7 that (Lφ0 − 2λφ01)
−1 : Fθ → Fθ is a bounded

linear operator since 2λφ0 is not in the spectrum of Lφ0 . We can write
(
Lφ0 − 2ψ0

)−1 = (
(Lφ0 − 2λφ0)1 + 2(λφ01 − ψ0)

)−1

= (Lφ0 − 2λφ01)
−1

(∑∞
n=0

(
2(λφ01 − ψ0)(Lφ0 − 2λφ01)

−1
)n

)

which exists and is a bounded linear operator provided ‖λφ01 − ψ0‖ < 1
2‖(Lφ0−2λφ01)

−1‖ .

In particular, by (3.3)we see that (D2G)(φ0, ψ0) is invertible and thus the implicit function
theorem applies. This allows us to deduce the analytic dependence.

Remark 3.8 (The Tangent Operator) Closely related to this circle of ideas is the use of a
standard technique in understanding the iterates of a non-linear operator in a neighbourhood
of a fixed point. More precisely, we consider the first order approximation toG(φ0, ·) : ψ 
→
Lφ0ψ − ψ2 where ψ = ψ0 + εψ(1) + o(ε). A simple calculation gives that the tangent
operator

Tφ0ψ := lim
ε↘0

G(φ0, ψ0 + εψ(1)) − G(φ0, ψ0)

ε
= Lφ0ψ

(1) − 2ψ0ψ
(1).

For definiteness,we can consider the specific casewherewe replaceφ0 byφ1 as inRemark1.7,
then we see that the spectra sp(Tφ1) and sp(Lφ1) are simply related by sp(Tφ1) = sp(Lφ1)−2.
Thus, since λφ1 = 1, by Lemma 3.7 the tangent operator Tφ1 will have its spectra in the disk
centred at −2 and of radius 1 (and thus outside the unit disk, except for the value −1). This
suggests that the fixed point ψφ1 is locally unstable in a codimension one space under the
iteration G(φ1, ·)n

4 Measures

The classical transfer operatorLφ plays an important role in the ergodic theory of equilibrium
states associated to φ. More precisely, the equilibrium state is a fixed point for the dual L∗

φ1
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to the transfer operator Lφ1 (satisfying Lφ11 = 1) for the associated function φ1 (cf. Remark
1.6). Although there is no direct analogue of equilibrium states in the context of the nonlinear
equations Lφψ = ψ2 we have been studying, one can still use this identity to associate to
the two functions φ and ψ a natural invariant measure.

Given a solution Lφψ = ψ2 as in Theorem 1.5, we can consider the linear operator
Mφ : Fθ → Fθ given by

(Mφw)(x) =
∑

σ y=x

eφ(y)
(

ψ

ψ2 ◦ σ

)

(y)w(y)

which then satisfies Mφ1 = 1 (cf. Remark 1.7). Since Mφ is a transfer operator with a
Hölder continuous potential, it is a consequence of the simplicity of the maximal positive
eigenvalue for the operator in Theorem 1.3, and thus of its dual, that there is a unique σ -
invariant probability measure μ such that M∗

φμ = μ, i.e.,
∫

f dμ = ∫
Mψ f dμ for all

f ∈ C0(�). This leads to a non-standard version of the variational principle.

Lemma 4.1 (Variational Principle for φ and ψ) For any σ -invariant probability measure ν

we have that

h(ν) + ∫
φdν − ∫

logψdν ≤ 0 (4.1)

with equality if and only if ν = μ.

Proof Let φ2 := φ + logψ − 2 logψ ◦ σ then since Mφ = Lφ2 satisfies Lφ21 = 1 we see
that P(φ2) = 0 and μ is the unique equilibrium state associated to φ2, by Proposition 3.4 in
[9]. Thus by the variational principle (Theorem 3.5 in [9]) we have

h(ν) + ∫
(φ + logψ − 2(logψ) ◦ σ) dν

= h(ν) + ∫
φ2dν

≤ P(φ2) = 0 = h(μ) + ∫
φ2dμ

= h(μ) + ∫
(φ + logψ − 2(logψ) ◦ σ) dμ

(4.2)

with equality if and only if μ = ν. By σ -invariance of the measures we have that
∫
(logψ) ◦

σdμ = ∫
logψdμ and

∫
(logψ) ◦ σdν = ∫

logψdν and thus (4.1) follows from (4.2). ��

We consequently have a particularly simple expression for the entropy h(μ).

Corollary 4.2 We can write

h(μ) =
∫

(logψ)dμ −
∫

φdμ.
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