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Abstract The perceived randomness in the time evolution of “chaotic” dynamical systems
can be characterized by universal probabilistic limit laws, which do not depend on the fine
features of the individual system. One important example is the Poisson law for the times
at which a particle with random initial data hits a small set. This was proved in various
settings for dynamical systems with strong mixing properties. The key result of the present
study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy
universal limit laws which are, however, not Poisson. We describe the limit distributions for
“generic” integrable flows and a natural class of target sets, and illustrate our findings with
two examples: the dynamics in central force fields and ellipse billiards. The convergence of
the hitting time process follows from a new equidistribution theorem in the space of lattices,
which is of independent interest. Its proof exploits Ratner’s measure classification theorem
for unipotent flows, and extends earlier work of Elkies and McMullen.
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1 Introduction

Let (M,F , ν) be a probability space and consider a measure-preserving dynamical system

ϕt :M→M. (1.1)

A fundamental question is how often a trajectory with random initial data x ∈M intersects
a given target set D ∈ F within time t . If D is fixed, this problem has led to many important
developments in ergodic theory, which show that, if ϕt is sufficiently “chaotic” (e.g., partially
hyperbolic), the number of intersections satisfies a central limit theorem and more general
invariance principles. One of the first results in this direction was Sinai’s proof of the central
limit theorem for geodesic flows [42] and, with Bunimovich, the finite-horizon Lorentz gas
[10].We refer the reader to [2,15,21,47] for further references to the literature on this subject.
In the case of non-hyperbolic dynamical systems, such as horocycle flows or toral translations,
the classical stable limit laws generally fail and must be replaced by system-dependent limit
theorems [6–8,16,17,22]. If on the other hand one considers a sequence of target setsDρ ∈ F
such that ν(Dρ)→ 0 asρ → 0, then the number of intersectionswithin time t (nowmeasured
in units of the mean return time to Dρ) satisfies a Poisson limit law, provided ϕt is mixing
with sufficiently rapid decay of correlations. The first results of this type were proved by
Pitskel [36] for Markov chains, and by Hirata [25] in the case of Axiom A diffeomorphisms
by employing transfer operator techniques and the Ruelle zeta function. (Hirata’s paper was
in fact motivated by Sinai’s work [43,44] on the Poisson distribution for quantum energy
levels of generic integrable Hamiltonians, following a conjecture by Berry and Tabor [3,32]
in the context of quantum chaos.) For more recent studies on the Poisson law for hitting times
in “chaotic” dynamical systems, see [1,11,20,23,24,29,39] and references therein.

In the present paper we prove analogous limit theorems for integrable Hamiltonian flows
ϕt , which are not Poisson yet universal in the sense that they do not depend on the fine features
of the individual system considered. The principal result of this study is explained in Sect. 2
for the case of flows with two degrees of freedom, where the target set is a union of small
intervals of varying position, length and orientation on each Liouville torus. In the limit of
vanishing target size, the sequence of hitting times converges to a limiting process which is
described in Sect. 3. Sections 4 and 5 illustrate the universality of our limit distribution in the
case of two classic examples: the motion of a particle in a central force field and the billiard
dynamics in an ellipse. In both cases, the limit process for the hitting times, measured in units
of the mean return time on each Liouville torus, is independent of the choice of potential or
ellipse, and in fact only depends on the number of connected components of the target set on
the invariant torus. The results of Sect. 3 are generalized in Sect. 6 to integrable flows with
d degrees of freedom, where unions of small intervals are replaced by unions of shrinking
dilations of k given target sets. The key ingredient in the proof of the limit theorems for hitting
time statistics is the equidistribution of translates of certain submanifolds in the homogeneous
space G/�, where G = SL(d, R) � (Rd)k and � = SL(d, Z) � (Zd)k . These results, which
are stated and proved in Sect. 7, generalize the equidistribution theorems by Elkies and
McMullen [18] in the case of nonlinear horocycles (d = 2, k = 1), and are based on Ratner’s
celebratedmeasure classification theorem. The application of these results to the hitting times
is carried out in Sect. 8, and builds on our earlier work for the linear flow on a torus [34].

2 Integrable Flows with Two Degrees of Freedom

To keep the presentation as transparent as possible, we first restrict our attention to Hamil-
tonian flows with two degrees of freedom, whose phase space is the four-dimensional
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716 C. P. Dettmann et al.

symplectic manifold X . (The higher dimensional case is treated in Sect. 6.) The basic exam-
ple is of course X = R

2 × R
2, where the first factor represents the particle’s position and

the second its momentum. To keep the setting more general, we will not assume Liouville-
integrability on the entire phase space, but only on an open subset M ⊂ X , a so-called
integrable island. Liouville integrability [5, Sect. 1.4] implies that there is a foliation (the
Liouville foliation) ofM by two-dimensional leaves. Regular leaves are smooth Lagrangian
submanifolds of M that fill M bar a set of measure zero. A compact and connected regular
leaf is called a Liouville torus. Every Liouville torus has a neighbourhood that can be para-
metrised by action-angle variables (θ , J) ∈ T

2 × U , where T
2 = R

2/Z
2 and U is a bounded

open subset of R
2. In these coordinates the Hamiltonian flow is given by

ϕt : T2 × U → T
2 × U, (θ , J) �→ (θ + t f (J), J), (2.1)

with the smooth Hamiltonian vector field f = ∇JH . In what follows, the Hamiltonian
structure is in fact completely irrelevant, andwewill assumeU is a bounded open subset ofRm

(m ≥ 1 arbitrary), and f : U → R
2 a smooth function.Wewill refer to the corresponding ϕt

in (2.1) simply as an integrable flow. Even in the Hamiltonian setting, it is often not necessary
to represent the dynamics in action-angle variables to apply our theory; cf. the examples of
the central force field and billiards in ellipses discussed in Sects. 4 and 5.

We will consider random initial data (θ , J) that is distributed according to a given Borel
probability measure � on T

2 × U . One example is

� = LebT2 ×λ, (2.2)

where LebT2 is the uniform probability measure on T
2 and λ is a given absolutely continuous

Borel probability measure on U . This choice of � is ϕt -invariant. One of the key features
of this work is that our conclusions also hold for more singular and non-invariant measures
�, such as � = δθ0 × λ, where δθ0 is a point mass at θ0. The most general setting we will
consider is to define � as the push-forward of a given (absolutely continuous) probability
measure λ on U by the map J �→ (θ(J), J), where θ : U → T

2 is a fixed smooth map; this
means that we consider random initial data in T

2 × U of the form (θ(J), J), where J is a
random point in U distributed according λ. This is the set-up that we use in the formulation
of our main result, Theorem 1 below. We will demonstrate in Remark 2.1 that this setting is
indeed rather general, and allows a greater selection ofmeasures than is apparent; for instance
invariant measures of the form (2.2) can be realized within this framework.

We also note that the smoothness assumptions on f and θ are less restrictive than they
may appear: We can allow discontinuities in the derivatives of theses maps, provided there
is an open subset U ′ ⊂ U with λ(U \ U ′) = 0, so that the restrictions of f and θ to U ′ are
smooth. Furthermore, the smoothness requirements are a result of an application of Sard’s
theorem in Theorem 11 and may in fact be replaced by finite differentiability conditions.

We consider target sets Dρ = D(k)
ρ that, in each leaf, appear as disjoint unions of k short

intervals transversal to the flow direction. To give a precise definition of Dρ , fix smooth
functions u j : U → S1, φ j : U → T

2, and 	 j : U → R>0 ( j = 1, . . . , k) which describe
the orientation, midpoint and length of the j th interval in each leaf. Set

D(k)
ρ =

k⋃

j=1
D(u j ,φ j , ρ	 j ), (2.3)

where

D(u,φ, 	) :=
{(

φ(J)+ su(J)⊥, J
)
∈ T

2 × U
∣∣∣∣ −

	(J)

2
< s <

	(J)

2

}
, (2.4)

123



Universal Hitting Time Statistics. . . 717

with u(J)⊥ denoting a unit vector perpendicular to u(J). This yields, in each leaf T
2 × {J},

a union of k intervals, where the j th interval has length ρ	 j (J), is centered at φ j (J) and
perpendicular to u j (J). As mentioned, we assume that each interval is transversal to the flow
direction, i.e. u j (J) · f (J) 
= 0 for all j ∈ {1, . . . , k} and all J ∈ U ; in fact we will even
assume u j (J) · f (J) > 0, without any loss of generality.

Now, for any initial condition (θ , J), the set of hitting times

T (θ , J,Dρ) := {t > 0 | ϕt (θ , J) ∈ Dρ} (2.5)

is a discrete (possibly empty) subset of R>0, the elements of which we label by

0 < t1(θ , J,Dρ) < t2(θ , J,Dρ) < . . . . (2.6)

We call ti (θ , J,Dρ) the i th entry time to Dρ if (θ , J) /∈ Dρ , and the i th return time to Dρ if
(θ , J) ∈ Dρ . A simple volume argument (Santalo’s formula [12]) shows that for any fixed
J ∈ U such that the components of f (J) are not rationally related, the first return time toDρ

on the leaf T
2 × {J} satisfies the formula

∫

Dρ

t1(θ , J,Dρ) dνJ(θ) = 1, (2.7)

where νJ is the invariant measure on Dρ obtained by disintegrating Lebesgue measure on
T
2 × {J} with respect to the section Dρ of the flow ϕt . The measure νJ is explicitly given by

∫

Dρ

g dνJ =
k∑

j=1

(
u j (J) · f (J)

) ∫ ρ	 j (J)/2

−ρ	 j (J)/2
g
(
φ(J)+ su(J)⊥, J

)
ds, ∀g ∈ C(Dρ).

(2.8)

Recall that by transversality u j (J) · f (J) > 0. It follows that the mean return time with
respect to νJ equals

σ (k)(J)

ρ
, where σ (k)(J) := 1

∑k
j=1 	 j (J)u j (J) · f (J)

. (2.9)

If we also average over J with respect to the measure λ, the mean return time becomes

σ
(k)
λ

ρ
, where σ

(k)
λ :=

∫

U
σ (k)(J) λ(dJ). (2.10)

We have assumed here that the pushforward of λ by f has no atoms at points with rationally
related coordinates. This holds in particular if λ is f -regular as defined below.

For J a random point in U distributed according to λ, the hitting times tn(θ(J), J,D(k)
ρ )

become randomvariables, whichwe denote by τ
(k)
n,ρ . Also σ (k)(J) becomes a randomvariable,

which we denote by σ (k). In this paper, we are interested in the distribution of the sequence
of entry times τ

(k)
n,ρ rescaled by the mean return time (2.10), or by the conditional mean return

time (2.9).
Finally we introduce two technical conditions. Note that f (J) 
= 0 for all J ∈ U , by the

transversality assumption made previously. We say that λ is f -regular if the pushforward of
λ under the map

U → S1, J �→ f (J)

‖ f (J)‖ , (2.11)
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718 C. P. Dettmann et al.

is absolutely continuous with respect to Lebesgue measure on S1.We say a k-tuple of smooth
functions φ1, . . . ,φk : U → T

2 is (θ , λ)-generic, if for all m = (m1, . . . ,mk) ∈ Z
k \ {0}

we have

λ

⎛

⎝

⎧
⎨

⎩J ∈ U :
k∑

j=1
m j
(
φ j (J)− θ(J)

) ∈ R f (J)+ Q
2

⎫
⎬

⎭

⎞

⎠ = 0. (2.12)

The following is the main result of this paper.

Theorem 1 Let f : U → R
2 and θ : U → T

2 be smooth maps, λ an absolutely continuous
Borel probability measure on U , and for j = 1, . . . , k, let u j : U → S1, φ j : U → T

2 and
	 j : U → R>0 be smooth maps. Assume u j (J) · f (J) > 0 for all J ∈ U , j ∈ {1, . . . , k}. Also
assume that λ is f -regular and (φ1, . . . ,φk) is (θ , λ)-generic. Then there are sequences
of random variables (τi )

∞
i=1 and (̃τi )

∞
i=1 in R>0 such that in the limit ρ → 0, for every

integer N, (
ρτ

(k)
1,ρ

σ
(k)
λ

, . . . ,
ρτ

(k)
N ,ρ

σ
(k)
λ

)
d−→ (τ1, . . . , τN ), (2.13)

and (
ρτ

(k)
1,ρ

σ (k)
, . . . ,

ρτ
(k)
N ,ρ

σ (k)

)
d−→ (̃τ1, . . . , τ̃N ). (2.14)

Note that if σ
(k)
λ = ∞ then (2.13) is trivial, with τi = 0 for all i , since τ

(k)
i,ρ < ∞ a.s. for

every fixed ρ.

Remark 2.1 Recall that Theorem 1 assumes that the initial data is (θ(J), J) with J ∈ U
distributed according to λ. This seems to exclude natural choices such as invariant measures
of the form (2.2). Let us demonstrate that this is not the case. The setting of Theorem 1 (as
well as its generalisation to arbitrary dimension d ≥ 2, Theorem 2 below) in fact permits
random initial data (θ , J) distributed according to any probability measure � on T

d × U of
the form � = ι∗λ0, where λ0 is an absolutely continuous Borel probability measure on an
open subset U0 ⊂ R

m0 for some m0 ∈ Z
+, and some smooth map ι : U0 → T

d × U . Indeed,
such � can be realized within the setting of Theorem 1 by using

U0, f 0 := f ◦ pr2 ◦ι, θ0 := pr1 ◦ι, λ0 (2.15)

in place of
U, f , θ , λ, (2.16)

where pr1, pr2 are the projection maps from T
d × U to T

d and U , respectively. Of course,
for Theorem 1 to apply we need to assume that λ0 is f 0-regular, and that (φ1, . . . ,φk) is
(θ0, λ0)-generic.

Remark 2.2 We describe the limit sequences (τi )
∞
i=1 and (̃τi )

∞
i=1 in Sect. 3. A particular

highlight is that in the case of a single target (k = 1), or in the case of multiple targets with
the same lengths 	1 = . . . = 	k and orientiation u1 = . . . = uk , the distribution of (̃τi )

∞
i=1

is universal. This means that it is independent of the choice of U , f , λ, target orientations,
positions and sizes. In fact a weaker form of universality holds also in the general case, and for
both (τi )

∞
i=1 and (̃τi )

∞
i=1. Indeed, let us define the target weight functions L = (L1, . . . , Lk)

and L̃ = (L̃1, . . . , L̃k) from U to (R>0)
k , through

L j (J) = σ
(k)
λ 	 j (J)u j (J) · f (J) (2.17)
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Fig. 1 Numerically computed F1(s) and F2(s), compared with the exponential function e−s and the explicit
formula (3.12) for F1(s). The inset shows the difference between the numerically computed F1(s) and (3.12)

and
L̃ j (J) = σ (k)(J) 	 j (J)u j (J) · f (J). (2.18)

Then the distribution of (τi )
∞
i=1 depends on the system data only via the distribution of L(J)

for J random in U according to λ, and similarly (̃τi )
∞
i=1 depends only on the distribution of

L̃(J). Furthermore, both (τi )
∞
i=1 and (̃τi )

∞
i=1 yield stationary point processes, i.e. the random

set of time points {τi } has the same distribution as {τi − t} ∩ R>0 for every fixed t ≥ 0, and
similarly for {̃τi } (cf. Sect. 6).

Remark 2.3 Theorem 1 is stated for the convergence of entry time distributions. It is a general
fact that the convergence of entry time distributions implies the convergence of return time
distributions and vice versa, with a simple formula relating the two [33].

3 The Limit Distribution

We will now describe the limit processes (τi )
∞
i=1 and (̃τi )

∞
i=1 in terms of elementary random

variables in the unit cube. A more conceptual description in terms of Haar measure of the
special linear group SL(2, R) will be given in Sect. 6.

Pick uniformly distributed random points (a, b, c) in the unit cube (0, 1)3. The push-
forward of the uniform probability measure under the diffeomorphism

(0, 1)3 → F, (a, b, c) �→
(
sin( π

3 (a − 1
2 )),

cos( π
3 (a − 1

2 ))

1− b
, πc

)
(3.1)

yields the probability measure μF = 3
π2 y−2dx dy dθ on the domain

F = {(x, y, θ) ∈ R
3 : |x | < 1

2 , x2 + y2 > 1, y > 0, 0 < θ < π
}
. (3.2)
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720 C. P. Dettmann et al.

For x, y, θ ∈ R with y > 0 and 0 ≤ θ < π , consider the Euclidean lattice

L(x, y, θ) = kθ

(√
y 0
0 1/

√
y

)(
1 0
x 1

)
Z
2, where kθ :=

(
cos θ sin θ

− sin θ cos θ

)
. (3.3)

A basis for this lattice is given by the two vectors

b1 = y−1/2 kθ

(
y
x

)
and b2 = y−1/2 kθ

(
0
1

)
. (3.4)

Note that det(b1, b2) = 1 and henceL(x, y, θ) has unit covolume. If we choose (x, y, θ) ran-
dom according to the probabilitymeasureμF , thenL(x, y, θ) represents a randomEuclidean
lattice (of covolume one). Similarly, for α ∈ T

2, the shifted lattice

L(x, y, θ,α) = kθ

(√
y 0
0 1/

√
y

)(
1 0
x 1

)
(Z2 + α) (3.5)

represents a random affine Euclidean lattice if in addition α is uniformly distributed in T
2.

For a given affine Euclidean lattice L and 	 > 0, consider the cut-and-project set

P(L, l) :=
{
y1 > 0 :

(
y1
y2

)
∈ L, − l

2
< y2 <

l

2

}
⊂ R>0. (3.6)

Let (x, y, z) be randomly distributed according to μF , α1, . . . ,αk be independent and
uniformly distributed in T

2, and J ∈ U distributed according to λ. Let L j (J) be as in (2.17).
We will prove in Sect. 8 that the elements of the random set

k⋃

j=1
P
(
L(x, y, θ,α j ), L j (J)

)
, (3.7)

ordered by size, form precisely the sequence of random variables (τi )
∞
i=1 in Theorem 1. This

sequence evidently only depends on the choice of target weight function L and the choice
of U , λ. Similarly, replacing L j (J) by L̃ j (J) (cf. (2.18)) in (3.7), we obtain the sequence
(̃τi )
∞
i=1. Note that if 	1 = . . . = 	k and u1 = . . . = uk , then L̃ j (J) = 1/k, and thus (̃τi )

∞
i=1

is indeed universal as we stated below Theorem 1.
Let us describe in some more detail the distribution of the first entry times τ1 and τ̃1. In

the case of k holes, we have

P(τ1 > s) =
∫

U
Fk(s; L(J)) λ(dJ), (3.8)

P(̃τ1 > s) =
∫

U
Fk(s; L̃(J)) λ(dJ), (3.9)

with the universal function

Fk(s, l) = P
(
P(L(x, y, θ,α j ), l j ) ∩ (0, s] = ∅ for all j = 1, . . . , k

)
, (3.10)

where (x, y, θ) is taken to be randomly distributed according to μF and α1, . . . ,αk inde-
pendent and uniformly distributed in T

2, and l = (l1, . . . , lk). It follows from the invariance
properties of the underlying Haar measure (this will become clear in Sect. 6) that for any
h > 0

Fk

(
s

h
, hl
)
= Fk(s, l). (3.11)
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In the case of one hole (k = 1), the function F1(s) := F1(s, 1) appears as a limit in various
other problems; notably it corresponds to the distribution of free path lengths in the periodic
Lorentz gas in the small scatterer limit [4,34]. It is explicitly given by

F1(s)=

⎧
⎪⎨

⎪⎩

3

π2 s
2 − s+1 (0≤s≤1);

12

π2 (�(s)−�(s/2))+ 6

π2 s log s+
(6+6 log 2

π2 − 2
)
s+ 18 log 2

π2 (1≤s),
(3.12)

where�(s) for s > 0 is defined by�′′(s) = (1−s−1)2 log |1−s−1| and�(1) = �′(1) = 0.
In particular F1(s) has a heavy tail: One has

F1(s) = 2

π2s
+ O

( 1

s2

)
as s →∞. (3.13)

The formula (3.12) was derived in [46, Sec. 8]; cf. also [4, Theorem 1] and [14]. We are not
aware of explicit formulas for the multiple-hole case k > 1. In this case we evaluate the right
hand side of (3.10) numerically using aMonte Carlo algorithm. That is, we repeatedly gener-
ate a random tuple (x, y, θ,α1, . . . ,αk) as described above, and then determine the smallest
s > 0 such that for some j ∈ {1, . . . , k} there exists a lattice point (s, y2) ∈ L(x, y, θ,α j ) in
the strip −l j/2 < y2 < l j/2. In more detail, for given j , in order to determine the left-most
point in the intersection ofL(x, y, θ,α j ) and the stripR>0×(−l j/2, l j/2), onemay proceed
as follows. Write L(x, y, θ,α j ) = β +Zb1 +Zb2 with b1, b2 as in (3.4) and β ∈ R

2. After
possibly interchanging b1 and b2, and then possibly negating b1, we may assume that the
line Rb2 does not coincide with the x-axis and that the half plane R>0b1 + Rb2 intersects
the x-axis in the interval (0,+∞). Now determine the smallest integer m0 for which the
line β + m0b1 + Rb2 intersects the strip R>0 × (−l j/2, l j/2), and then successively for
m = m0,m0 + 1,m0 + 2, . . ., check whether there is one or more integers n for which
β + mb1 + nb2 lies in the strip. Note that once this happens for the first time, say for
(s′, y′) = β + m1b1 + nb2, we only need to investigate at most finitely many further m-
values m = m1 + 1,m1 + 2, . . ., namely those for which the line β +mb1 +Rb2 intersects
the box (0, s′)× (−l j/2, l j/2).

Our calculation for F2(s) := F2(s, (
1
2 ,

1
2 )) used 108 random lattices. The result is pre-

sented in Fig. 1. We tested the algorithm by using it to calculate F1(s) and comparing the
resulting graph with the explicit formula (3.12).

4 Central Force Fields

The dynamics of a point particle subject to a central force field in R
3 takes place in a

plane perpendicular to its angular momentum, which is a constant of motion. We choose a
coordinate system in which the angular momentum reads (0, 0, L), L ≥ 0. The equations of
motion for a particle of unit mass read in polar coordinates
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722 C. P. Dettmann et al.

φ̇ = L

r2
, ṙ = ±

√

2[E − V (r)] − L2

r2
, (4.1)

where V (r) is the potential as a function of the distance to the origin, and E the total energy.
It will be convenient to set J = (E, L), although this choice does not represent the canonical
action variables in this problem. The equations of motion separate, and the dynamics in r is

described by a one-dimensional Hamiltonian with effective potential V (r)+ L2

2r2
. For a given

initial r0 = r0(J), the dynamics takes place between the periastron r− = r−(J) ≤ r0(J)

and the apastron r+ = r+(J) ≥ r0(J), the minimal/maximal distance to the origin of the
particle trajectory with energy E and angular momentum L . We will consider cases when
the motion is bounded, i.e., 0 < r− ≤ r+ <∞. Then these values are the turning points of

the particle motion, and thus solutions to V (r)+ L2

2r2
= E . The solution of the equations of

motion (r(t), φ(t)) with (r(0), φ(0)) = (r0, φ0) and initial radial velocity ṙ(0) ≥ 0 is either
circular with ṙ(t) = 0 for all t , or otherwise implicitly given by

t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ r(t)

r0

dr ′√
2[E − V (r ′)] − L2

r ′2
+ nT (ṙ(t) ≥ 0)

(∫ r+

r0
+
∫ r+

r(t)

)
dr ′√

2[E − V (r ′)] − L2

r ′2
+ nT (ṙ(t) ≤ 0),

(4.2)

where n is an arbitrary integer. The period is

T = T (J) = 2
∫ r+(J)

r−(J)

dr√
2[E − V (r)] − L2

r2

. (4.3)

Also

φ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ0 +
∫ r(t)

r0

L
r ′2 dr

′
√
2[E − V (r ′)] − L2

r ′2
+ nα (ṙ(t) ≥ 0)

φ0 +
(∫ r+

r0
+
∫ r+

r(t)

) L
r ′2 dr

′
√
2[E − V (r ′)] − L2

r ′2
+ nα (ṙ(t) ≤ 0),

(4.4)

with rotation angle

α = α(J) = 2
∫ r+(J)

r−(J)

L
r2

dr
√
2[E − V (r)] − L2

r2

. (4.5)

The dynamics is described best by first considering the return map to the cross section
defined by restricting the radial variable to r = r0 with non-negative radial velocity ṙ ≥ 0;
here r0 = r0(J) is permitted to depend on J. This cross section is thus simply parametrized
by φ ∈ R/2πZ. The corresponding return map is

φ �→ φ + α(J) mod 2π, (4.6)

with rotation angle α(J) as in (4.5), and return time T (J) as in (4.3). We turn the map (4.6)
into a flow of the form (2.1) by considering its suspension flow

ϕt : T2 × U → T
2 × U, (θ , J) �→

(
θ + t

T (J)

(
1

α(J)
2π

)
, J
)

. (4.7)
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A comparison with (2.1) yields

f (J) = T (J)−1
(

1
α(J)
2π

)
. (4.8)

As to the hypotheses of Theorem 1, we see that a Borel probability measure λ on U is
f -regular if the push-forward of λ by the map

U → R, J �→ α(J), (4.9)

is absolutely continuous with respect to Lebesgue measure on R. Note that although this
condition can hold for most potentials V , it fails for the Coulomb potential and the isotropic
harmonic oscillator, where every orbit is closed.

A natural choice of target set in polar coordinates is

{(r, φ) | r = r0(J), −πρ < φ < πρ}, (4.10)

with no restriction on the sign of the radial velocity ṙ . We distinguish two cases:

(I) If r0(J) = r+(J) or r0(J) = r−(J), the target set is of the form (2.3), where

D(1)
ρ = D

(
u1,φ1, ρ

)
, u1 =

(
1
0

)
, φ1 =

(
0
0

)
. (4.11)

In this simple setting φ1 = 0 is (θ , λ)-generic if (recall (2.12))

λ

({
J ∈ U : θ(J) ∈ R

(
1

α(J)
2π

)
+ Q

2
})
= 0. (4.12)

(II) If r−(J) < r0(J) < r+(J), then the particle attains the value r = r0(J) with radial
velocity ṙ < 0 before returning to the section (r0, ṙ > 0). The traversed angle is

α∗(J) = 2
∫ r+(J)

r0(J)

L
r2

dr
√
2[E − V (r)] − L2

r2

, (4.13)

and the corresponding travel time is

T∗(J) = 2
∫ r+(J)

r0(J)

dr√
2[E − V (r)] − L2

r2

. (4.14)

The target set (4.10) has therefore the following angle-action representation, recall (2.3):

D(2)
ρ =

2⋃

j=1
D(u j ,φ j , ρ), (4.15)

with identical orientation

u1(J) = u2(J) =
(
1
0

)
, (4.16)

located at

φ1(J) =
(
0
0

)
, φ2(J) = T∗(J)

T (J)

(
1

α(J)
2π

)
−
(

0
α∗(J)
2π

)
. (4.17)

Here the target location is (θ , λ)-generic if for all (m′1,m′2) ∈ Z
2 \ {0}

λ

({
J ∈ U : m′1θ(J)+ m′2

(
0

α∗(J)
2π

)
∈ R

(
1

α(J)
2π

)
+ Q

2
})
= 0 (4.18)
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Fig. 2 Numerical simulations for the entry time distribution P(̃τ1 > s) for the potential V (r) = r − 1,
with different holes sizes ρ. We consider particles of mass m = 1 with initial position in polar coordinates
(r0, φ0) = (1,−2), initial velocity v = 0.3, initial angles uniform in [0.5, 1] with a sample size 108. The
target is located at radius r0 and angle interval [−ρ/2, ρ/2]. The deviation from the predicted distribution
F2(s) is shown in the inset

(indeed, set (m1,m2) = (m′2 − m′1,−m′2) in (2.12)).
For our numerical simulations of the first entry time, the relevant parameters used were
as follows. The potential is

V (r) =
{

rγ−1
γ

(γ 
= 0)

ln(r) (γ = 0),
(4.19)

where γ ∈ R, γ > −2. The particle mass is m = 1, initial position in polar coordinates
(r0, φ0) = (1,−2), initial velocity 0.3 with directions uniform in [0.5, 1] ⊂ [0, 2π]
(the sample size is 108); the target is the angular interval [−ρ/2, ρ/2] located at radius
r0 = 1. Figure 2 displays the results of computations with several values of ρ and fixed
γ = 1, and Fig. 3 the corresponding results for fixed ρ = 10−4 and various values of γ .

5 Integrable Billiards

The dynamics of a point particle in a billiard is integrable if there is a coordinate system
in which the Hamilton-Jacobi equation separates. All known examples in two dimensions
involve either very particular polygonal billiards, whose dynamics unfolds to a linear flow
on a torus, or billiards whose boundaries are aligned with elliptical coordinate lines (or the
degenerate cases of circular or parabolic coordinates). While many configurations can be
constructed from arcs of confocal ellipses and hyperbolas, the most natural and studied is
the ellipse billiard itself, of which the circle is a special case. Scaling of escape from a
circular billiard with a single small hole to a universal function of the product of hole size
and time was observed in Fig. 3 of [9]. We will here consider billiards in general ellipses,
where the target set is a sub-interval of the boundary. Action-angle coordinates for the billiard
flow have been described in the literature, for example in [45]. For our purposes it will be
simpler to formulate the dynamics in terms of the billiard map, which is the return map of
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Fig. 3 Numerical simulations for the entry time distribution P(̃τ1 > s) for the potential V (r) = rγ−1
γ

(γ 
= 0) and V (r) = log r (γ = 0). The hole size is ρ = 10−4, and all other parameter values as in Fig. 2.
The cases γ = −1, 2 correspond to the Coulomb potential and isotropic harmonic oscillator, for which the
assumptions of Theorem 1 are not satisfied, and indeed the hitting probability is zero for our choice of initial
data. In the remaining cases the deviation from the predicted distribution F2(s) is shown in the inset

the billiard flow to the boundary; see [48] for a detailed discussion. The billiard domain is
confined by the ellipse {(b cosφ, a sin φ) | φ ∈ [0, 2π)} with semi-axes a ≥ b, eccentricity
e = √1− b2/a2 and foci (0,±ae). The billiard dynamics conserves the kinetic energy
E = 1

2‖ξ‖2 (where ξ denotes the particle’s momentum) and the product L+L− of angular
momenta L± = x1ξ2− (x2∓ ae)ξ1 about the foci. Note that a change in energy E > 0 only
affects the speed of the billiard particle but not its trajectory, and we will fix E = 1

2 in the
following without loss of generality.

Each segment of the trajectory is tangent to a caustic given by a confocal conic of eccen-
tricity

ε =
√

a2e2

a2e2 + L+L−
∈ (e,∞). (5.1)

For ε < 1we have elliptic caustics, where the orbit rotates around the foci. For ε = 1we have
the separatrix, where the orbit passes through the foci; this has zero probability with respect
to an absolutely continuous distribution of initial conditions. For ε > 1 we have hyperbolic
caustics, and the orbit passes between the foci. Solving Eq. (5.1) for ξ gives two solutions,
which for ε < 1 correspond to the direction of rotation of the orbit, and for ε > 1 are both
contained in the closure of a single aperiodic orbit.

Following [48] in our notation, we parametrize the billiard boundary by the new parameter
θ ∈ T defined by

θ =
{ F(φ,ε)

F(2π,ε)
mod 1 (ε < 1)

F(arcsin(ε sin φ),ε−1)
F(2π,ε−1) mod 1 (ε > 1),

(5.2)

where F is the elliptic integral of the first kind [35]

F(φ, k) =
∫ φ

0

dt√
1− k2 sin2 t

. (5.3)
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The choice of branch for the arcsin (for ε > 1) depends on the choice of solution for ξ in
(5.1). The billiard map reads in these new coordinates

T→ T, θ �→ θ + f (ε) mod 1 (5.4)

where

f (ε) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

±2
F

(
arccos

√
e2(1−ε2)

ε2(1−e2)
,ε

)

F(2π,ε)
(ε < 1)

2
F

(
arccos

√
e2(ε2−1)
ε2−e2 ,ε−1

)

F(2π,ε−1) (ε > 1).

(5.5)

Here, the ± (for ε < 1) again depends on the choice of solution for ξ in (5.1). The time
between collisions with the boundary, averaged over the equilibriummeasure associated with
ε, is given by

l̄ =
⎧
⎨

⎩

2b
√

1−e2/ε2�(e2,ε)
K (ε)

(ε < 1)
2b
√

1−e2/ε2�(e2/ε2,ε−1)
K (ε−1) (ε > 1)

(5.6)

where K (ε) = F( π
2 , ε) = 1

4 F(2π, ε) and

�(α2, k) =
∫ π

2

0

dt

(1− α2 sin2 t)
√
1− k2 sin2 t

(5.7)

are complete elliptic integrals of the first and third kind respectively [35]. Even when f (ε)
is rational, hence the orbit is periodic (a set of zero measure of initial conditions), the mean
collision time is independent of the starting point, and hence given by the above formula [13].

We consider a single target set in the billiard’s boundary given by the interval φ0 − ρ
2 <

φ < φ0 + ρ
2 . If ε > 1, we assume the target intersects the region covered by the orbit, i.e.,

ε sin φ0 < 1. In this case a single target in φ corresponds to two equal-sized targets in θ

located at θ0 = θ
(1)
0 and θ

(2)
0 (which are functions of φ0 and ε). If ε < 1, a single target in φ

corresponds to a single target in θ .
For φ = φ0 + s with |s| small and θ (respectively θ0) the value defined by (5.2) for φ

(respectively φ0),

θ = θ0 + s

⎧
⎨

⎩

1

F(2π,ε)
√

1−ε2 sin2 φ0
(ε < 1)

ε

F(2π,ε−1)
√

1−ε2 sin2 φ0
(ε > 1)

⎫
⎬

⎭+ O(s2). (5.8)

Up to a small error, which is negligible when ρ → 0, the target becomes the interval
θ0 − ρ	

2 < θ < θ0 + ρ	
2 where

	 = 	(ε) =
⎧
⎨

⎩

1

F(2π,ε)
√

1−ε2 sin2 φ0
(ε < 1)

ε

F(2π,ε−1)
√

1−ε2 sin2 φ0
(ε > 1)

. (5.9)

The circle is a special case, with e = 0 and hence ε = 0. The constant of motion is the
angular momentum about the centre, L = x1ξ2 − x2ξ1. In this case

θ = φ

2π
, f (0) = ± 1

π
arccos

L

a
, 	 = 1

2π
, l̄ = 2

√
a2 − L2, (5.10)

which is consistent with the above expressions for ellipses in the limit e → 0. For ellipses
of small eccentricity, this approach gives a systematic expansion in powers of e2.
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Fig. 4 Numerical simulations confirming that the entry time distribution P(̃τ1 > s) for an arbitrary ellipse
scales to the expected universal functions for initial conditions with ε < 1 (upper panel) and ε > 1 (lower
panel). The inset panels highlight the difference between the ellipse simulations and theoretical predictions
F1(s) resp. F2(s). The choice of initial data and target set is specified at the end of Sect. 5

Finally, we have for the mean return time (2.9)

σ (k)(ε) =
{

l̄
	(ε)

(ε < 1, i.e. k = 1)
l̄

2	(ε) (ε > 1, i.e. k = 2).
(5.11)

For our numerical simulations of the first entry time, the relevant parameters used were
as follows: a = 10, b ∈ {6, 8, 10} corresponding to e ∈ {0.8, 0.6, 0} respectively. The target
was 2.8 − 5 × 10−5 < φ < 2.8 + 5 × 10−5, i.e. φ0 = 2.8 and ρ = 10−4. The entry
time distribution P(̃τ1 > s) for the actual billiard flow was sampled by taking a fixed initial
point x = (3, 7) inside the ellipse, and 108 initial directions ξ ∈ S1 chosen randomly with
uniform angular distribution in the intervals [2, 2.6] or [3.8, 4.4] for the hyperbolic or elliptic
caustics, respectively. All the numerical curves are shown in Fig. 4 and are identical within
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numerical errors too small to see on the plot; differences between the ellipse calculations and
the theoretical predictions from Theorem 1 are shown in the inset panels.

6 Integrable Flows in Arbitrary Dimension

We now state the generalization of Theorem 1 to arbitrary dimension d ≥ 2. The basic setting
is just as in Sect. 2, but with T

d in place of T
2: Let U be a bounded open subset of R

m for
some m ∈ Z

+, and let f : U → R
d be a smooth function. We consider the flow

ϕt : Td × U → T
d × U, (θ , J) �→ (θ + t f (J), J). (6.1)

Let λ be an absolutely continuous Borel probability measure on U , and let θ be a smooth
map from U to T

d . We will consider the random initial data (θ(J), J) in T
d × U , where J is

a random point in U distributed according λ.
We next define the target sets. Let us fix a map v �→ Rv , S

d−1
1 → SO(d), such that

Rvv = e1 for all v ∈ Sd−11 , and such that v �→ Rv is smooth throughout Sd−11 \ {v0}, where
v0 is a fixed point in Sd−11 . Fix k ∈ Z

+ and for each j = 1, . . . , k, fix smooth functions
u j : U → Sd−11 , φ j : U → T

d and a bounded open subset � j ⊂ R
d−1 × U . Set

Dρ = D(k)
ρ :=

k⋃

j=1
Dρ(u j ,φ j ,� j ), (6.2)

where

Dρ(u,φ,�) :=
{(

φ(J)+ ρR−1u(J)

(
0
x

)
, J
)
∈ T

d × U
∣∣∣∣ (x, J) ∈ � j

}
. (6.3)

Here we use the convention

(
0
x

)
:=

⎛

⎜⎜⎜⎝

0
x1
...

xd−1

⎞

⎟⎟⎟⎠ ∈ R
d when x =

⎛

⎜⎝
x1
...

xd−1

⎞

⎟⎠ . (6.4)

Note that all points R−1u(J)

(
0
x

)
lie in the linear subspace orthogonal to u(J) in R

d . We write

� j (J) := {x ∈ R
d−1 : (x, J) ∈ � j }, and assume � j (J) 
= ∅ for all J ∈ U . As in Sect. 2

we also impose the condition u j (J) · f (J) > 0 for all j ∈ {1, . . . , k} and J ∈ U , which
implies that each sub-targetDρ(u j ,φ j ,� j ) is transversal to the flow direction. Note that the

target set D(k)
ρ defined here generalizes the one introduced in Sect. 2. Indeed, for d = 2, and

given smooth functions u j : U → S1, φ j : U → T
2, and 	 j : U → R>0 ( j = 1, . . . , k),

we recover the target set in (2.3) as
⋃k

j=1 Dρ(u j ,φ j ,� j ) where � j = {(s, J) : J ∈
U, − 1

2	 j (J) < s < 1
2	 j (J)}.

For any initial condition (θ , J), let T (θ , J,D(k)
ρ ) be the set of hitting times, as in (2.5).

This is a discrete subset of R>0, and we label its elements

0 < t1(θ , J,D(k)
ρ ) < t2(θ , J,D(k)

ρ ) < . . . . (6.5)
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Again by Santalo’s formula, for any fixed J ∈ U such that the components of f (J) are not
rationally related, the first return time to Dρ on the leaf T

d × {J} satisfies the formula
∫

Dρ

t1(θ , J,Dρ) dνJ(θ) = 1, (6.6)

where νJ is the invariant measure on Dρ obtained by disintegrating Lebesgue measure on
T
d × {J} with respect to the section Dρ of the flow ϕt ; explicitly

∫

Dρ

g dνJ =
k∑

j=1

(
u j (J) · f (J)

) ∫

ρ� j (J)

g

(
φ j (J)+ R−1u j (J)

(
0
x

)
, J
)
dx, ∀g ∈ C(Dρ).

(6.7)

It follows that the mean return time with respect to νJ equals

σ (k)(J)

ρd−1 , where σ (k)(J) := 1
∑k

j=1 Leb(� j (J)) u j (J) · f (J)
, (6.8)

with Leb denoting Lebesgue measure on R
d−1. If we also average over J with respect to the

measure λ (assuming that the pushforward of λ by f has no atoms at points with rationally
related coordinates), the mean return time becomes

σ
(k)
λ

ρd−1 , where σ
(k)
λ :=

∫

U
σ (k)(J)λ(dJ). (6.9)

As in Sect. 2, for J a random point in U distributed according λ, the hitting times
tn(θ(J), J,D(k)

ρ ) become random variables, which we denote by τ
(k)
n,ρ ; also σ (k)(J) becomes

a random variable, which we denote by σ (k). We say that λ is f -regular if the pushforward
of λ under the map

U → Sd−11 , J �→ f (J)

‖ f (J)‖ , (6.10)

is absolutely continuous with respect to Lebesgue measure on Sd−11 , and we say the k-tuple
of smooth functions φ1, . . . ,φk : U → T

d is (θ , λ)-generic, if for all m = (m1, . . . ,mk) ∈
Z
k \ {0} we have

λ

({
J ∈ U :

k∑

j=1
m j
(
φ j (J)− θ(J)

) ∈ R f (J)+ Q
d
})
= 0. (6.11)

The following theorem generalizes Theorem 1 to arbitrary dimension d ≥ 2.

Theorem 2 Let f : U → R
d and θ : U → T

d be smooth maps, λ an absolutely continuous
Borel probability measure on U , and for j = 1, . . . , k, let u j : U → Sd−11 and φ j : U → T

d

be smooth maps and� j a bounded open subset of R
d−1×U . For each j = 1, . . . , k, assume

that

(i) λ(u−1j ({v0})) = 0 (where by assumption v0 is the point in Sd−11 such that v �→ Rv is

smooth throughout Sd−11 \ {v0}),
(ii) u j (J) · f (J) > 0 for all J ∈ U ,
(iii) � j has boundary of measure zero with respect to Leb×λ,
(iv) Leb(� j (J)) is a smooth and positive function of J ∈ U .

123



730 C. P. Dettmann et al.

Also assume that λ is f -regular and (φ1, . . . ,φk) is (θ , λ)-generic. Then there are sequences
of random variables (τi )

∞
i=1 and (̃τi )

∞
i=1 inR>0 such that in the limit ρ → 0, for every integer

N, (
ρd−1τ (k)

1,ρ

σ
(k)
λ

, . . . ,
ρd−1τ (k)

N ,ρ

σ
(k)
λ

)
d−→ (τ1, . . . , τN ), (6.12)

and (
ρd−1τ (k)

1,ρ

σ (k)
, . . . ,

ρd−1τ (k)
N ,ρ

σ (k)

)
d−→ (̃τ1, . . . , τ̃N ). (6.13)

We next give an explicit description of the limit processes (τi )
∞
i=1 and (̃τi )

∞
i=1 appearing

in Theorem 2. For a given affine Euclidean lattice L in R
d and a subset � ⊂ R

d−1, consider
the cut-and-project set

P(L,�) :=
{
t > 0 :

(
t
x

)
∈ L, x ∈ −�

}
. (6.14)

Fix an arbitrary (measurable) fundamental domain F ⊂ SL(d, R) for SL(d, R)/SL(d, Z),
and let μF be the (left and right) Haar measure on SL(d, R) restricted to F , normalized to
be a probability measure. If we choose g ∈ F random according to μF then gZ

d represents
a random Euclidean lattice in R

d (of covolume one). Similarly, if α is a random point in T
d ,

uniformly distributed and independent from g, then the shifted lattice g(Zd + α) represents
a random affine Euclidean lattice in R

d .
Let us define

v(J) = f (J)

‖ f (J)‖ ∈ Sd−11 (J ∈ U). (6.15)

For j ∈ {1, . . . , k} and J ∈ U we set R j (J) = Rv(J)R
−1
u j (J) ∈ SO(d), and let R̃ j (J) be the

bottom right (d − 1) × (d − 1) submatrix of R j (J). In other words, R̃ j (J) is the matrix

of the linear map x �→
(
R j (J)

(
0
x

))

⊥
on R

d−1, where u⊥ := (u2, . . . , ud)t ∈ R
d−1 for

u = (u1, . . . , ud)t ∈ R
d . Noticing that R j (J) is an orientation preserving isometry of R

d

which takes e1 to R j (J)(e1) and
(

0
R
d−1
)
onto (R j (J)(e1))⊥, we find that

det R̃ j (J) = e1 ·R j (J)(e1) = e1 · Rv(J)(u j (J)) = u j (J) · v(J) > 0. (6.16)

For J ∈ U we define

� j (J) := (σ (k)
λ ‖ f (J)‖)1/(d−1)R̃ j (J)� j (J) ⊂ R

d−1 (6.17)

and

�̃ j (J) := (σ (k)(J)‖ f (J)‖)1/(d−1)R̃ j (J)� j (J) ⊂ R
d−1. (6.18)

Geometrically, thus, both � j (J) and �̃ j (J) are obtained by orthogonally projecting the sub-
target {x ∈ T

d : (x, J) ∈ Dρ(u j ,φ j ,� j )} onto the hyperplane orthogonal to the flow
direction f (J) (which is identified with R

d−1 via the rotation Rv(J)), and then scaling the
sets with appropriate scalar factors, which in particular make � j (J) and �̃ j (J) independent
of ρ.
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Now let J, g and α1, . . . ,αk be independent random points in U , F and T
d , respectively,

distributed according to λ, μF and Leb
Td . We will prove in Sect. 8 that the elements of the

random set

k⋃

j=1
P(g(Zd + α j ),� j (J)), (6.19)

ordered by size, form precisely the sequence of random variables (τi )
∞
i=1 in Theorem 2.

Similarly the elements of

k⋃

j=1
P(g(Zd + α j ), �̃ j (J)), (6.20)

ordered by size, form the sequence of random variables (̃τi )
∞
i=1. We will also see in the proof

that, for any N ∈ Z
+, both (τ1, . . . , τN ) and (̃τ1, . . . , τ̃N ) have continuous distributions, that

is, the cumulative distribution functions P
(
τn ≤ Tn for 1 ≤ n ≤ N ) and P

(
τ̃n ≤ Tn for 1 ≤

n ≤ N ) depend continuously on (Tn) ∈ R
N
>0.

One verifies easily that the above description generalizes the one in Sect. 3. Indeed, note
that the image of the set F in (3.2) under the map

(x, y, θ) �→ kθ

(√
y 0
0 1/

√
y

)(
1 0
x 1

)
(6.21)

is a fundamental domain for SL(2, R)/SL(2, Z), and the pushforward of the measure μF

in Sect. 3 gives the measure μF considered in the present section. Note also that for d = 2,
R j (J) is the 1× 1 matrix with the single entry u j (J) · v(J) (cf. (6.16)), and now one checks
that if� j = {(s, J) : J ∈ U,− 1

2	 j (J) < s < 1
2	 j (J)} then for any affineEuclidean latticeL,

the cut-and-project set P(L,� j (J)) equals P(L, L j (J)), and similarly P(L, �̃ j (J)) equals
P(L, L̃ j (J)) (cf. (3.6) and (6.14)).

Finally let us point out three invariance properties of the limit distributions. First, both
(τi )
∞
i=1 and (̃τi )

∞
i=1 yield stationary point processes, i.e. the random set of time points {τi }

has the same distribution as {τi − t} ∩ R>0 for every fixed t ≥ 0, and similarly for {̃τi }.
This is clear from the explicit description above, using in particular the fact that Lebesgue
measure on the torus T

d is invariant under any translation. Secondly, by the same argument,
the distributions of (τi )

∞
i=1 and (̃τi )

∞
i=1 are not affected by any leaf-wise translation of any

of the sets � j , i.e. replacing � j by the set {(x + g(J), J) : (x, J) ∈ � j }, where g is any
bounded continuous function from U to R

d−1. Thirdly, we point out the identity

P
((

h−1 0t

0 H

)
L, H�

)
= h−1P(L,�), (6.22)

which holds for any L and � as in (6.14), and any H ∈ GLd−1(R) with h = det H > 0.
Note also that the map

g SL(d, Z) �→
(
h−1 0t

0 H

)
g SL(d, Z) (6.23)

is ameasure preserving transformation of SL(d, R)/SL(d, Z) onto itself. For d = 2 these two
facts immediately lead to the formula (3.11) in Sect. 3. For general d ≥ 2, the same facts imply
for example that if u1 = · · · = uk then the limit random sequences (τi )

∞
i=1 and (̃τi )

∞
i=1 are not

affected if � j is replaced by {(H1x, J) : (x, J) ∈ � j } simultaneously for all j , where H1 is
any fixed (d−1)×(d−1)matrixwith positive determinant. Indeed, the given replacement has
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the effect that bothσ (k)(J) andσ
(k)
λ aremultiplied by the constant (det H1)

−1; thus both� j (J)

and �̃ j (J) get transformed by the linear map H := (det H1)
−1/(d−1)R̃ j (J)H1R̃ j (J)−1,

which has determinant 1 and is independent of j since u1(J) = · · · = uk(J); hence the
statement follows from the two facts noted above.

7 An Application of Ratner’s Theorem

In this section we will introduce a homogeneous space G/� which parametrizes such k-
tuples of translates of a common lattice as appear in (6.19) and (6.20), and then use Ratner’s
classification of unipotent-flow invariant measures to prove an asymptotic equidistribution
result in G/�, Theorem 3, which will be a key ingredient for our proof of Theorem 2 in
Sect. 8.

Let SL(d, R) act on (Rd)k through

Mv = M(v1, . . . , vk) = (Mv1, . . . , Mvk), (7.1)

for v = (v1, . . . , vk) ∈ (Rd)k and M ∈ SL(d, R). Let G be the semidirect product

G = SL(d, R) � (Rd)k,

with multiplication law

(M, ξ)(M ′, ξ ′) = (MM ′, ξ + Mξ ′).

We extend the action of SL(d, R) to an action of G on (Rd)k , by defining

(M, ξ)v := Mv + ξ for (M, ξ) ∈ G, v ∈ (Rd)k . (7.2)

Set � = SL(d, Z) � (Zd)k and X = G/�. Let μX be the (left and right) Haar measure
on G, normalized so as to induce a probability measure on X , which we also denote by μX .
We also set

D(ρ) = diag[ρd−1, ρ−1, . . . , ρ−1] ∈ SL(d, R), ρ > 0,

and

n−(x) =
(
1 0t

x 1d−1

)
∈ SL(d, R), x ∈ R

d−1.

We view SL(d, R) as embedded in G through M �→ (M, 0).

Theorem 3 Let M ∈ SL(d, R); let U be an open subset of R
d−1; let φ : U → (Rd)k be a

Lipschitz map, and let λ be a Borel probability measure on U which is absolutely continuous
with respect to Lebesgue measure. Writing φ(v) = (φ1(v), . . . ,φk(v)), we assume that for
every w = (w1, . . . , wk) ∈ Z

k \ {0},

λ

({
v ∈ U :

k∑

j=1
w j · φ j (v) ∈ RM−1

(
1
−v

)
+ Q

d
})
= 0. (7.3)

Then for any bounded continuous function f : X → R,

lim
ρ→0

∫

U
f
(
D(ρ)n−(v)M(1d ,φ(v))

)
dλ(v) =

∫

X
f (g) dμX (g). (7.4)
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Remark 7.1 For related results on equidistribution of expanding translates of curves, cf.
Shah, [40, Theorem 1.2].

Remark 7.2 The proof of Theorem 3 extends trivially to the more general situation when �

is a subgroup of SL(d, Z) � (Zd)k of finite index. In this form, Theorem 3 contains Elkies
andMcMullen, [18, Theorem 2.2] as a special case. Indeed, applying Theorem 3 with d = 2,

k = 1, M =( 0 −11 0

)
, ϕ(v) =

(
x(v)+ vy(v)

y(v)

)
and f (g) := f0(M−1g), where f0 : X →

R is an arbitrary bounded continuous function, and noticing D(ρ)n−(v)M(12, ϕ(v)) =
MD(ρ−1)

((
1 −v

0 1

)
,

(
x(v)

y(v)

))
, we obtain

lim
s→∞

∫

U
f0

(
D(s)

((
1 −v

0 1

)
,

(
x(v)

y(v)

)))
dλ(v) =

∫

X
f0(g) dμX (g),

provided that

λ
({

v ∈ U : x(v) ∈ Q+ Qv
}) = 0.

Our proof of Theorem 3 follows the same basic strategy as the proof of Theorem 2.2 in [18],
but with several new complications arising.

Remark 7.3 Theorem 3 also generalizes [34, Theorem 5.2], which is obtained by taking
k = 1 and φ(v) = φ a constant vector independent of v. Indeed note that (7.4) in this case is
equivalent with φ /∈ Q

d . (To translate into the setting of [34], where vectors are represented
as rowmatrices and one considers�\G in place ofG/�; apply the map (M, ξ) �→ (M t, ξ t).)

Wenowgive the proof ofTheorem3.LetM,U,φ, λ satisfy all the assumptions ofTheorem
3. As an initial reduction, let us note that by a standard approximation argument where one
removes from U a subset of small λ-measure, we may in fact assume that U is bounded, and
furthermore that there is a constant B > 0 such that λ(A) ≤ B Leb(A) for every Borel set
A ⊂ U . (We will only use these properties in the proof of Lemma 9 below.)

For each ρ > 0, let μρ be the probability measure on X defined by

μρ( f ) =
∫

U
f
(
D(ρ)n−(v)M(1d ,φ(v))

)
dλ(v), f ∈ Cc(X). (7.5)

Our task is to prove thatμρ converges weakly toμX as ρ → 0. In fact it suffices to prove that
μρ( f )→ μX ( f ) holds for every function f in the space of continuous compactly supported
functions on X , Cc(X). Recall that the unit ball in the dual space of Cc(X) is compact in
the weak* topology (Alaoglu’s Theorem). Hence by a standard subsequence argument, it
suffices to prove that every weak* limit of (μρ) as ρ → 0 must equal μX . Thus from now
on, we let μ be a weak* limit of (μρ), i.e. μ is a Borel measure (apriori not necessarily a
probability measure) on X , and we have μρ j ( f )→ μ( f ) for every f ∈ Cc(X), where (ρ j )

is a fixed sequence of positive numbers tending to 0. Our task is to prove μ = μX .
Let π : G → SL(d, R) be the projection (M, ξ) �→ M ; this map induces a projection

X → X ′ := SL(d, R)/SL(d, Z) which we also call π . Let μX ′ be the unique SL(d, R)

invariant probability measure on X ′.

Lemma 4 π∗μ = μX ′ .
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Proof For any f ∈ Cc(X ′) we have

π∗μ( f ) = lim
j→∞μρ j ( f ◦ π) = lim

j→∞

∫

U
f
(
D(ρ j )n−(v)M

)
dλ(v) = μX ′( f ). (7.6)

For the last equality, cf., e.g., [28, Prop. 2.2.1]. (The point here is that f is averaged along
expanding translates of a horospherical subgroup, and such translates can be proved to become
asymptotically equidistributed using the so called thickening method, originally introduced
in the 1970 thesis of Margulis [31].) ��
Lemma 5 μ is invariant under n−(x) for every x ∈ R

d−1.

Proof (Cf. [18, Theorem 2.5].) Let λ′ ∈ L1(Rd−1) be the Radon-Nikodym derivative of λ

with respect to Lebesgue measure (thus λ′(v) = 0 for v /∈ U). Let f ∈ Cc(X) and x ∈ R
d−1

be given, and define f1 ∈ Cc(X) through f1(p) = f (n−(x)p). Then our task is to prove
that μ( f1) = μ( f ), viz., to prove that the difference

∫

U
f
(
n−(x)D(ρ j )n−(v)M(1d ,φ(v))

)
λ′(v) dv

−
∫

U
f
(
D(ρ j )n−(w)M(1d ,φ(w))

)
λ′(w) dw

tends to 0 as j →∞. Using n−(x)D(ρ j ) = D(ρ j )n−(ρd
j x) and substituting v = w− ρd

j x
in the first integral, the difference can be rewritten as

∫

(U+ρd
j x)∩U

(
f
(
D(ρ j )n−(w)M(1d ,φ(w − ρd

j x))
)

− f
(
D(ρ j )n−(w)M(1d ,φ(w))

))
λ′(w) dw

+
∫

U+ρd
j x

f
(
D(ρ j )n−(w)M(1d ,φ(w − ρd

j x))
)(

λ′(w − ρd
j x)− λ′(w)

)
dw

−
∫

U\(U+ρd
j x)

f
(
D(ρ j )n−(w)M(1d ,φ(w))

)
λ′(w) dw. (7.7)

The absolute value of this expression is bounded above by

sup
w∈(U+ρd

j x)∩U

∣∣∣ f
(
D(ρ j )n−(w)M(1d ,φ(w − ρd

j x))
)− f

(
D(ρ j )n−(w)M(1d ,φ(w))

)∣∣∣

+
(
sup
X
| f |
) ∫

Rd−1

∣∣λ′(w − ρd
j x)− λ′(w)

∣∣ dw. (7.8)

By assumption, there existsC > 0 such that ‖φ(w′)−φ(w)‖ ≤ C‖w′−w‖ for allw,w′ ∈ U ,
where in the left hand side ‖ · ‖ is the standard Euclidean norm on (Rd)k . In particular for
any w ∈ (U + ρd

j x) ∩ U we have φ(w − ρd
j x) = φ(w)+ η for some η = η(w, j) ∈ (Rd)k

satisfying ‖η‖ ≤ Cρd
j ‖x‖, and thus

D(ρ j )n−(w)M(1d ,φ(w − ρd
j x)) = D(ρ j )n−(w)M(1d ,φ(w)+ η)

= (1d , D(ρ j )n−(w)Mη
)
D(ρ j ) n−(w) M

(
1d ,φ(w)

)
.

Now if Mη = (η′1, . . . , η′k) and η′	 = (η′	,1, . . . , η′	,d)t for each 	, then the 	th component

of D(ρ j )n−(w)Mη equals ρ−1j η′	,1
(

ρd
j

w

)
+ ρ−1j (0, η′	,2, · · · , η′	,d)t . Now ‖Mη‖ �C,M
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ρd
j ‖x‖, and thus the element (1d , D(ρ j )n−(w)Mη) tends to the identity in G as j → ∞,

uniformly over all w ∈ (U + ρd
j x) ∩ U . But f is uniformly continuous since f ∈ Cc(X);

hence it follows that the first term in the right hand side of (7.8) tends to zero as j → ∞.
Also the second term tends to zero; cf., e.g., [19, Prop. 8.5]. This completes the proof of the
lemma. ��

Since μ is n−(Rd−1)-invariant, we can apply ergodic decomposition to μ: Let E be the
set of ergodic n−(Rd−1)-invariant probability measures on X , provided with its usual Borel
σ -algebra; then there exists a unique Borel probability measure P on E such that

μ =
∫

E
ν dP(ν). (7.9)

Cf., e.g., [49, Theorem 4.4]. Note that (7.9) together with Lemma 4 implies μX ′ = π∗μ =∫
E π∗ν dP(ν), and for each ν ∈ E , π∗ν is an ergodic n−(Rd−1)-invariant measure on X ′.
Hence in fact π∗ν = μX ′ for P-almost all ν ∈ E , by uniqueness of the ergodic decomposition
of μX ′ .

Now fix an arbitrary ν ∈ E satisfying π∗ν = μX ′ . We now apply Ratner’s classification
of unipotent-flow invariant measures, [38, Thm 3], to ν. Let H be the closed (Lie) subgroup
of G given by

H = {g ∈ G : g∗ν = ν},
where g∗ν denotes the push-forward of ν by the map x �→ gx on X (viz., (g∗ν)(B) :=
ν(g−1B) for any Borel set B ⊂ X ). Note that

n−(Rd−1) ⊂ H, (7.10)

by definition. The conclusion from [38, Thm 3] is that there is some g0 ∈ G such that
ν(Hg0�/�) = 1. Note that in this situation the measure ν0 := g−10∗ ν is g−10 Hg0 invariant
and ν0(g

−1
0 Hg0�/�) = 1. Hence under the standard identification of g−10 Hg0�/� with the

homogeneous space g−10 Hg0/(�∩g−10 Hg0) (viz., h� �→ h(�∩g−10 Hg0) for h ∈ g−10 Hg0),
ν0 is the unique invariant probability measure on g−10 Hg0/(� ∩ g−10 Hg0), induced from a
Haar measure on g−10 Hg0. In particular � ∩ g−10 Hg0 is a lattice in g−10 Hg0, and both
g−10 Hg0�/� and Hg0�/� are closed subsets of X (cf. also [37, Theorem1.13]); furthermore
supp(ν) = Hg0�/�.

Lemma 6 In this situation, π(H) = SL(d, R).

Proof (Cf. [18, Theorem 2.8].) We have π(supp ν) = suppπ∗ν, since π : X → X ′ has
compact fibers, and suppπ∗ν = X ′, since we are assuming π∗ν = μX ′ . Also supp ν =
Hg0�/�. Hence π(H)π(g0)SL(d, Z) = SL(d, R), and thus π(H) = SL(d, R). ��
In the next lemma we deduce from (7.10) and Lemma 6 an explicit presentation of H . For
ξ = (ξ1, . . . , ξ k) ∈ (Rd)k and u = (u1, . . . , uk) ∈ R

k , let us introduce the notation

ξ · u :=
k∑

j=1
u j ξ j ∈ R

d .

Given any linear subspace U ⊂ R
k , we let L(U ) be the linear subspace consisting of all

ξ ∈ (Rd)k satisfying ξ · u = 0 for all u ∈ U⊥, where U⊥ is the orthogonal complement of
U in R

k with respect to the standard inner product. (It is natural to identify ξ = (ξ1, . . . , ξ k)
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with the d×k-matrix with columns ξ1, . . . , ξ k ; then ξ ·u is simply matrix multiplication, and
L(U ) is the space of all d × k-matrices such that every row vector is in U .) Note that L(U )

is closed under multiplication from the left by any SL(d, R)-matrix. Hence the following is
a closed Lie subgroup of G:

HU := SL(d, R) � L(U ).

Let e1 = (1, 0, . . . , 0)t ∈ R
d . Then e⊥1 = {(0, ξ2, . . . , ξd)t : ξ j ∈ R}, and (e⊥1 )k is a linear

subspace of (Rd)k .

Lemma 7 There exist U ⊂ R
k and ξ ∈ (e⊥1 )k such that H = (1d , ξ)HU (1d , ξ)−1.

Proof Set V = {ξ ∈ (Rd)k : (1d , ξ) ∈ H}; this is a closed subgroup of 〈(Rd)k,+〉, and it
follows using Lemma 6 that V is SL(d, R)-invariant, i.e. Mξ ∈ V whenever M ∈ SL(d, R)

and ξ ∈ V . Let sl(d, R) be the Lie algebra of SL(d, R), i.e. the Lie algebra of d×d matrices
with trace 0. Then for every ξ ∈ V , A ∈ sl(d, R) and n ∈ Z

+ we have n(exp(n−1A)ξ − ξ) ∈
V , and since V is closed, letting n→∞weobtain Aξ ∈ V . Using the formula Ei j E ji = Eii ,
where Ei j denotes the d × d matrix which has (i, j)th entry 1 and all other entries 0, the last
invariance is upgraded to: Aξ ∈ V for any real d × d-matrix A and ξ ∈ V . This is easily
seen to imply V = L(U ) for some subspace U ⊂ R

k . Thus

N = H ∩ π−1({1d}) = {1d} � L(U ).

This is a normal subgroup of G. Given any M ∈ SL(d, R), by Lemma 6 there exists some
ξ ∈ (Rd)k such that h := (M, ξ) ∈ H , and then H ∩ π−1({M}) = Nh. Using also the
fact that (Rd)k = L(U ) ⊕ L(U⊥) it follows that for each M ∈ SL(d, R) there is a unique
η ∈ L(U⊥) such that (M, η) ∈ H . Hence if we let H ′ be the closed Lie subgroup of HU⊥
given by

H ′ := H ∩ HU⊥ ,

then H ′ contains exactly one element above each M ∈ SL(d, R), and H = NH ′ = H ′N .
Note that the unipotent radical of HU⊥ = SL(d, R) � L(U⊥) equals {1d} � L(U⊥), and
thus H ′ is a Levi subgroup of HU⊥ . Hence by Malcev’s Theorem ([30]; [26, Ch. III.9]) there
exists some ξ ∈ L(U⊥) such that H ′ = (1d , ξ)SL(d, R)(1d , ξ)−1. (Recall that we view
SL(d, R) as embedded in G through M �→ (M, 0).) Hence

H = NH ′ = (1d , ξ)HU (1d , ξ)−1.

Finally using (7.10) we see that ξ must lie in (e⊥1 )k . ��
Next, for any linear subspace U ⊂ R

k , q ∈ Z
+ and ξ ∈ (e⊥1 )k , we set

XU,q,ξ = {g� : g ∈ G, g−1ξ ∈ L(U )+ q−1(Zd)k} ⊂ X. (7.11)

Note here that the set L(U )+ q−1(Zd)k is invariant under the action of �; hence if g−1ξ ∈
L(U )+q−1(Zd)k then also (gγ )−1ξ ∈ L(U )+q−1(Zd)k for every γ ∈ �. Note also that ifU
intersectsZ

k in a lattice (viz.,Zk∩U contains anR-linear basis forU ), then L(U )+q−1(Zd)k

is a closed subset of (Rd)k , and it follows that XU,q,ξ is a closed subset of X .

Lemma 8 There exist q ∈ Z
+ and ξ ∈ (e⊥1 )k , and a linear subspace U ⊂ R

k which
intersects Z

k in a lattice, such that supp(ν) = Hg0�/� ⊂ XU,q,ξ .
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Proof Take U ⊂ R
k and ξ ∈ (e⊥1 )k as in Lemma 7; then H = (1d , ξ)HU (1d ,−ξ). Now

� intersects g−10 Hg0 in a lattice; hence if g = g−10 (1d , ξ) then g−1�g intersects HU in a
lattice. Set ξ ′ = g−10 ξ ; then g = (M, ξ ′) = (1d , ξ

′)M for some M ∈ SL(d, R), and since
M normalizes HU , it follows that �̃ := (1d , ξ

′)−1�(1d , ξ
′)∩ HU is a lattice in HU . By [37,

Cor. 8.28], this implies that �̃r := {v ∈ L(U ) : (1d , v) ∈ �̃} = (Zd)k ∩ L(U ) is a lattice in
L(U ), and π(�̃) is a lattice in SL(d, R). The first condition implies that Z

k ∩U contains an
R-linear basis for U , i.e. U intersects Z

k in a lattice. Next we compute

π(�̃) = {γ ∈ SL(d, Z) : (1d − γ )ξ ′ ∈ L(U )+ (Zd)k}.
This is a subgroup of SL(d, Z) and a lattice in SL(d, R); hence π(�̃) must be a subgroup of
finite index in SL(d, Z). Now fix any γ ∈ π(�̃) for which 1d − γ is invertible (for example
we can take γ as an appropriate integer power of any given hyperbolic element in SL(d, Z)).
Then 1d−γ ∈ GL(d, Q), andwe conclude ξ ′ ∈ (1d−γ )−1(L(U )+(Zd)k) ⊂ L(U )+(Qd)k ,
i.e. ξ ′ = u + q−1m for some u ∈ L(U ), q ∈ Z>0 and m ∈ (Zd)k .

Now for every g ∈ Hg0� we have (1d ,−ξ)g0�g−1(1d , ξ) ∩ HU 
= ∅, i.e. there
is some γ ∈ � such that (1d ,−ξ)g0γ g−1(1d , ξ)0 ∈ L(U ), or equivalently g−1ξ ∈
γ−1g−10 (1d , ξ)L(U ). But we have g−10 (1d , ξ) = (M, ξ ′) = (M, u + q−1m) and hence
γ−1g−10 (1d , ξ)L(U ) = γ−1(L(U )+ q−1m) ⊂ L(U )+ q−1(Zd)k . Hence every g ∈ Hg0�
satisfies g−1ξ ∈ L(U )+ q−1(Zd)k , i.e. we have Hg0�/� ⊂ XU,q,ξ . ��

Recall that we have fixed μ as an arbitrary weak* limit of (μρ) as ρ → 0. The proof
of the following Lemma 9 makes crucial use of the genericity assumption (7.3) in Theorem
3; later Lemma 9 combined with Lemma 8 will allow us to conclude that in the ergodic
decomposition (7.9), we must have ν = μX for P-almost all ν.

Lemma 9 Let q ∈ Z
+ and let U be a linear subspace of R

k of dimension < k which
intersects Z

k in a lattice. Then μ
(∪ξ∈(e⊥1 )k XU,q,ξ

) = 0.

Proof Let Bd
C be the closed ball of radius C in R

d centered at the origin. It suffices to prove
that for each C > 0, the set

XU,q,C :=
⋃

ξ∈(Bd
C∩e⊥1 )k

XU,q,ξ ⊂ X (7.12)

satisfies μ
(
XU,q,C

) = 0. Let N be the family of open subsets of G containing the identity
element. Then for any � ∈ N , �XU,q,C is an open set in X containing XU,q,C . Hence, since
μ is a weak* limit of (μρ) as ρ → 0 along some subsequence, it now suffices to prove that
for every ε > 0 there exists some � ∈ N such that lim supρ→0 μρ(�XU,q,C ) < ε. We have
g� ∈ XU,q,C if and only if the set g(L(U )+ q−1(Zd)k) in (Rd)k has some point in common
with (Bd

C ∩ e⊥1 )k . The latter is a compact set, which for any η > 0 is contained in the open
set V k

η , where (after increasing C by 1)

Vη :=
{
(ξ1, . . . , ξd)

t : |ξ1| < η, ‖(ξ2, . . . , ξd)‖ < C
} ⊂ R

d . (7.13)

Hence for every η > 0, there exists some � ∈ N such that

�XU,q,C ⊂ XU,q,C,η :=
{
g� : g(L(U )+ q−1(Zd)k) ∩ V k

η 
= ∅
}
. (7.14)

Hence it now suffices to prove

lim
η→0

lim sup
ρ→0

μρ(XU,q,C,η) = 0. (7.15)
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By the definition of μρ we have μρ(XU,q,C,η) = λ(Tρ), where

Tρ =
{
v ∈ U : D(ρ)n−(v)M(1d ,φ(v)) ∈ XU,q,C,η

}

= {v ∈ U : D(ρ)n−(v)M(L(U )+ q−1(Zd)k + φ(v)) ∩ V k
η 
= ∅

}
.

It follows from our assumptions on U that there exists some w ∈ Z
k \ {0} such that U is

contained in w⊥, the orthogonal complement of w in R
k . Now every ξ ∈ L(U )+ q−1(Zd)k

satisfies ξ · w ∈ q−1Zd , and hence for any v ∈ U , every ξ in the set D(ρ)n−(v)M(L(U )+
q−1(Zd)k + φ(v)) satisfies

ξ · w ∈ D(ρ)n−(v)M(q−1Zd + φ(v) · w). (7.16)

But on the other hand, for every ξ ∈ V k
η we have

ξ · w ∈ ‖w‖Vη =
{
(ξ1, . . . , ξd)

t : |ξ1| < ‖w‖η, ‖(ξ2, . . . , ξd)‖ < ‖w‖C}. (7.17)

Hence

Tρ ⊂
{
v ∈ U : D(ρ)n−(v)M(q−1Zd + φ(v) · w) ∩ ‖w‖Vη 
= ∅

}
. (7.18)

Therefore, if we alter the constant “C” appropriately in the definition of Vη, we see that it
now suffices to prove that

lim
η→0

lim sup
ρ→0

λ

( ⋃

m∈q−1Zd

T̃m
ρ

)
= 0, (7.19)

where

T̃m
ρ : =

{
v ∈ U : D(ρ)n−(v)M(m + φ(v) · w) ∈ Vη

}
. (7.20)

For v ∈ R
d−1 and u = (u1, . . . , ud)t ∈ R

d let us write u⊥ := (u2, . . . , ud)t ∈ R
d−1 and

�v(u) = u1v + u⊥ ∈ R
d−1, so that n−(v)u =

(
e1 · u
�v(u)

)
. Then the set T̃m

ρ can be expressed

as

T̃m
ρ = Xm

ρ ∩ Ym
ρ , (7.21)

where

Xm
ρ =

{
v ∈ U : �v(M(m + φ(v) · w)) ∈ Bd−1

Cρ

}

and

Ym
ρ =

{
v ∈ U : e1 · M(m + φ(v) · w) ∈ (−ηρ1−d , ηρ1−d)

}
.

Let us note that the genericity assumption (7.3) in Theorem 3 immediately implies that

lim
ρ→0

λ(Xm
ρ ) = 0 for each fixedm ∈ q−1Zd . (7.22)

Next, since φ is Lipschitz and U is bounded (after the initial reduction at the start of the proof
of Theorem 3), there exists a constant C1 > 0 such that for any ρ > 0 and m ∈ q−1Zd ,

|e1 · Mm| > C1 ⇒ Leb
(
Xm

ρ

)� ρd−1|e1 · Mm|1−d . (7.23)
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(Here and in the rest of the proof, the implied constant in any� bound is allowed to depend
onC, q, M,w,φ, but not onm, η, ρ.) Furthermore, increasingC1 if necessary, and assuming
that ρ is so small that ηρ1−d ≥ 1 and Cρ < 1, we see that

|e1 · Mm| ≥ C1ηρ
1−d ⇒ Ym

ρ = ∅. (7.24)

and

‖(Mm)⊥‖ ≥ C1
(
1+ |mM · e1|

) ⇒ Xm
ρ = ∅.

Hence if we set

A1 = {m ∈ q−1Zd : |e1 · Mm| < C1ηρ
1−d};

A2 = {m ∈ q−1Zd : |e1 · Mm| > C1};
A3 = {m ∈ q−1Zd : ‖(mM)⊥‖ < C1(1+ |e1 · Mm|)},

then for any 0 < η < 1 and 0 < ρ < min(C−1, η1/(d−1)), we have

λ

( ⋃

m∈q−1Zd

T̃m
ρ

)
≤

∑

m∈A1∩A3

λ
(
Xm

ρ

)�
∑

m∈A1∩A2∩A3

ρd−1|e1 · Mm|1−d +
∑

m∈A3\A2

λ(Xm
ρ ).

(In the last bound we used the fact that λ(A)� Leb(A) uniformly over all Borel sets A ⊂ U ,
because of our initial reduction at the start of the proof of Theorem 3) Here A3 \ A2 is a
finite set, and hence the last sum above tends to zero as ρ → 0, by (7.22). Finally the set
A1∩ A2∩ A3 can be covered by the dyadic pieces Ds = A3∩{2sC1 < |e1 ·Mm| ≤ 2s+1C1}
with s running through 0, 1, . . . , S := �log2(ηρ1−d)�. Here #Ds � 2sd and so

∑

m∈A1∩A2∩A3

ρd−1|e1 · Mm|1−d � ρd−1
S∑

s=0
2sd · 2s(1−d) � ρd−12S � η.

Taken together these bounds prove that (7.19) holds, and the lemma is proved. ��
We are now in a position to complete the proof of Theorem 3.

Conclusion of the proof of Theorem 3 We wish to prove that our arbitrary weak* limit μ

necessarily equals μX . Assume the contrary; μ 
= μX ; then in the ergodic decomposition
(7.9) we have P(E \ {μX }) > 0. Using then Lemma 8, and the fact that there are only
countably many q ∈ Z

+, and countably many subspacesU ⊂ R
k intersecting Z

k in a lattice,
it follows that there exists some such subspaceU of dimension < k, and some q ∈ Z

+, such
that μ

( ⋃ {
XU,q,ξ : ξ ∈ (e⊥1 )k

})
> 0. This contradicts Lemma 9. Hence Theorem 3 is

proved. ��
Next we note the following consequence of Theorem 3.

Corollary 10 Let M ∈ SL(d, R), let U ⊂ R
d−1 be an open subset and let E1 : U → SO(d)

be a smooth map such that the map x �→ E1(x)−1e1 from U to Sd−11 has a nonsingular
differential at (Lebesgue-)almost all x ∈ U . Let φ : U → (Rd)k be a Lipschitz map, and
let λ be a Borel probability measure on U , absolutely continuous with respect to Lebesgue
measure. Assume that for every w = (w1, . . . , wk) ∈ Z

k \ {0},

λ

({
x ∈ U :

k∑

j=1
w j · φ j (x) ∈ RM−1E1(x)−1e1 + Q

d
})
= 0. (7.25)
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Then for any bounded continuous function f : X × U → R,

lim
ρ→0

∫

U
f
(
D(ρ)E1(x)M(1d ,φ(x)), x

)
dλ(x) =

∫

X×U
f (g, x) dμX (g) dλ(x). (7.26)

Proof Let us first note that if (7.4) holds for every bounded continuous function f : X → R,
thenby a standard approximation argument (cf. [34, proof ofTheorem5.3]), also the following
more general limit statement holds: For each smallρ > 0, let fρ : X×U → R be a continuous
function satisfying | fρ | < B where B is a fixed constant, and assume that fρ → f as ρ → 0,
uniformly on compacta, for some continuous function f : X × U → R. Then

lim
ρ→0

∫

U
fρ
(
D(ρ)n−(v)M(1d ,φ(v)), v

)
dλ(v) =

∫

X×U
f (g, v) dμX (g) dλ(v). (7.27)

Now Corollary 10 is proved by a direct mimic of the proof of [34, Cor. 5.4], using (7.27) in
place of [34, Theorem 5.3]. (Recall that we translate from the setting in [34] by applying the
transpose map, which also changes order of multiplication. Following the proof of [34, Cor.
5.4], the task becomes to prove that D(ρ)n−(̃x)E1(x0)M(1d ,φ(x)), for x in a fixed small
neighborhood of an arbitrary point x0 ∈ U , becomes asymptotically equidistributed in X as

ρ → 0. Here x̃ = −c(x)−1v(x) with c(x) and v(x) given by

(
c(x)

v(x)

)
= E1(x0)E1(x)−1e1.

The condition for equidistribution, (7.3), then becomes

λ

({
x :

k∑

j=1
w j · φ j (x) ∈ RM−1E1(x0)−1

(
1
−x̃
)
+ Q

d
})
= 0,

or equivalently, (7.25).) ��
Finally from Corollary 10 we derive the following equidistribution result, which is more

directly adapted to the proof of Theorem 2. Recall from Sect. 6 that we have fixed the map
v �→ Rv , S

d−1
1 → SO(d), such that Rvv = e1 for all v ∈ Sd−11 , and such that v �→ Rv

is smooth throughout Sd−11 \ {v0}. Note that since the proof below involves using Sard’s
Theorem, the proof does not apply to arbitrary Lipschitz maps.

Theorem 11 Let U be an open subset ofRm (m ≥ 1), let λ be a Borel probability measure on
U which is absolutely continuous with respect to Lebesgue measure, and let f : U → R

d be a
smooth map. Assume that f (J) 
= 0 for all J ∈ U and λ is f -regular. Also let φ : U → (Rd)k

be a smooth map such that for every m = (m1, . . . ,mk) ∈ Z
k \ {0},

λ

({
J ∈ U :

k∑

j=1
m j φ j (J) ∈ R f (J)+ Q

d
})
= 0. (7.28)

Then for any h ∈ Cb(X × U), writing v(J) := ‖ f (J)‖−1 f (J),

lim
ρ→0

∫

U
h
(
D(ρ)Rv(J)

(
1d ,φ(J)

)
, J
)
dλ(J) =

∫

U

∫

X
h(p, J) dμX (p) dλ(J). (7.29)

Proof Note that v is a smooth map from U to Sd−11 , and the fact that λ is f -regular means
exactly that v∗(λ) is absolutely continuous with respect to the Lebesgue measure on Sd−11 .
Hence m ≥ d − 1, and by Sard’s Theorem the set of critical values of v has measure zero
with respect to v∗(λ), and so the set of critical points of v has measure zero with respect to
λ. For each point J ∈ U which is not a critical point of v, there exists a diffeomorphism ι
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from the unit box (0, 1)m onto an open neighborhood of J in U such that v(ι(x)) depends
only on (x1, . . . , xd−1), and this function gives a diffeomorphism of (0, 1)d−1 onto an open
subset of Sd−11 . Hence by decomposition and approximation of λ, it follows that it suffices to
prove Theorem 11 in the case when λ is supported in a fixed such coordinate neighborhood.
Changing coordinates via the diffeomorphism ι, we may assume from now on that U =
(0, 1)m and thatv(x)depends only on (x1, . . . , xd−1) andgives a diffeomorphismof (0, 1)d−1
onto an open subset of Sd−11 .

Let us first assumem = d−1. Then v is a diffeomorphism of U = (0, 1)d−1 onto an open
subset of Sd−11 . Recall that v �→ Rv is smooth throughout Sd−11 \ {v0}. If v0 is in the image
of v, then we replace U by U \ v−1(v0). Now the map x �→ Rv(x) is smooth throughout U ,
and x �→ R−1v(x)e1 = v(x) has everywhere nonsingular differential. Now (7.29) follows from
Corollary 10 applied with M = 1d and E1(x) = Rv(x).

It remains to consider the casem > d−1.We are assuming that λ is absolutely continuous;
hence λ has a density λ′ ∈ L1((0, 1)m, dx). Now (7.28) says that

∫

(0,1)m
I

( k∑

j=1
m jφ j (x) ∈ Rv(x)+ Q

d
)

λ′(x) dx = 0.

Decompose x as (x1, x2) ∈ R
d−1 × R

m−d−1, and recall that v(x) only depends on x1, i.e.
we may write v(x) = v(x1). It follows that for (Lebesgue) a.e. x2 ∈ (0, 1)m−d−1,

∫

(0,1)d−1
I

( k∑

j=1
m jφ j (x1, x2) ∈ Rv(x1)+ Q

d
)

λ′(x1, x2) dx1 = 0.

Furthermore
∫
(0,1)m λ′(x1, x2) dx1 dx2 = 1; hence for a.e. x2 we have

∫
(0,1)d−1 λ′(x1, x2)

dx1 <∞. For each fixed x2 ∈ (0, 1)m−d−1 which satisfies both the last two conditions, our
result for the case m = d − 1 applies, showing that

lim
ρ→0

∫

(0,1)d−1
h1
(
D(ρ)Rv(x1)(1d ,φ(x1, x2)), (x1, x2)

)
λ′(x1, x2) dx1

=
∫

(0,1)d−1×X
h1
(
p, (x1, x2)) λ′(x1, x2) dx1 dμX (p).

Now (7.29) follows by integrating the last relation over x2 ∈ (0, 1)m−d−1, applying
Lebesgue’s Bounded Convergence Theorem to change order of limit and integration. ��

8 Proof of Theorem 2

We now give the proof of Theorem 2. We will only discuss the proof of (6.13) in detail.
The proof of (6.12) is completely similar; basically one just has to replace σ (k)(J) with the
constant σ (k)

λ throughout the discussion; cf. Remark 8.1 below.
Recall that

v(J) = f (J)

‖ f (J)‖ ∈ Sd−11 (J ∈ U). (8.1)

We start by making some initial reductions. First, the assumptions of Theorem 2 imply
that the open subset

{J ∈ U : v(J) 
= v0, u j (J) 
= v0 ∀ j} (8.2)
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has full measure in U with respect to λ, and so we may just as well replace U by that set.
Hence from now on Rv(J) is a smooth function on all U , and the same holds for Ru j (J) for
each j ∈ {1, . . . , k}. Next let us set, for η > 0,

Uη := {J ∈ U : ‖φ j (J)− φ	(J)‖ > η ∀ j 
= 	}, (8.3)

where ‖·‖ denotes distance to the origin inT
d (viz., ‖x‖ = infm∈Zd ‖x̃−m‖ for any x ∈ T

d ,
where x̃ is any lift of x to R

d ). Note that the fact that (φ1, . . . ,φk) is (θ , λ)-generic implies
that for any j 
= 	, φ j (J) 
= φ	(J) holds for λ-a.e. J ∈ U . Hence λ(Uη) → 1 as η → 0,
and thus by a standard approximation argument (cf., e.g., [27, Theorem 4.28]), it suffices to
prove that for all sufficiently small η > 0, the convergence (6.13) holds when U is replaced
by Uη and λ is replaced by λ(Uη)

−1λ|Uη . In other words, from now on we may assume that
there exists a constant 0 < η < 1 such that ‖φ j (J)− φ	(J)‖ > η for all j 
= 	 and J ∈ U .

For any j ∈ {1, . . . , k}, ρ > 0, T > 0, we introduce the following “cylinder” subset of
R
d × U :

A j,ρ,T :=
{(

t f (J)− ρR−1u j (J)

(
0
x

)
, J
) ∣∣∣∣ (x, J) ∈ � j , 0 < t ≤ Tσ (k)(J)ρ1−d

}
. (8.4)

For any subset A ⊂ R
d ×U and J ∈ U , we write A(J) := {x ∈ R

d : (x, J) ∈ A}. Let us set
C := sup

{‖x‖ : j ∈ {1, . . . , k}, (x, J) ∈ � j
}; (8.5)

this is a finite positive real constant, since each � j is a non-empty bounded open set.

Lemma 12 For any 0 < ρ < η/(10C), (θ , J) ∈ T
d × U , n ∈ Z

+ and T > 0, the following
equivalence holds:

ρd−1tn(θ , J,D(k)
ρ )

σ (k)(J)
≤ T ⇔

k∑

j=1
#
(
A j,ρ,T (J) ∩ (φ j (J)− θ + Z

d)
) ≥ n. (8.6)

(In (8.6), φ j (J)− θ + Z
d denotes a translate of the lattice Z

d , i.e. a subset of R
d . Note that

this set is well-defined, i.e. independent of the choice of lifts of φ j (J) and θ to R
d .)

Proof Let ρ, (θ , J), n and T be given as in the statement of the lemma. Note that the given
restriction on ρ implies that each target set,

Dρ(u j ,φ j ,� j )(J) =
{
φ j (J)+ ρR−1u j (J)

(
0
x

) ∣∣∣∣ x ∈ � j (J)

}
⊂ T

d (8.7)

is contained within a ball of radius < η/10 < 1/10, centered at φ j (J). In particular each
target is injectively embedded in T

d , and the targets for j = 1, . . . , k are pairwise disjoint,
since ‖φ j (J)−φ	(J)‖ > η for all j 
= 	. Hence the left inequality in (8.6) holds if and only
if

k∑

j=1
#

{
t ∈ (0, Tσ (k)(J)ρ1−d] : θ + t f (J) ∈ Dρ(u j ,φ j ,� j )(J)

}
≥ n. (8.8)

Note that each set in the left hand side is a discrete set of t-values, since the target set
Dρ(u j ,φ j ,� j )(J) is contained in a hyperplane orthogonal to u j (J), and u j (J) · f (J) > 0
by assumption.Lifting the situation fromT

d toR
d wenowsee, via (8.7) and (8.4), that for each

j the corresponding term in the left hand side of (8.8) equals #
(
A j,ρ,T (J)∩(φ j (J)−θ+Z

d)
)
.

Hence the lemma follows. ��
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Next we prove that the linear map D(ρ)Rv(J) takes the cylinder A j,ρ,T (J) into a cylinder
which is approximately normalized, in an appropriate sense. Indeed, for any real numbers
Y < Z , define Ã j,Y,Z ⊂ R

d × U through

Ã j,Y,Z :=
{((

t
−R̃ j (J)x

)
, J
) ∣∣∣∣ (x, J) ∈ � j , σ (k)(J)‖ f (J)‖Y < t ≤ σ (k)(J)‖ f (J)‖Z

}
,

(8.9)

where R̃ j (J) is as in Sect. 6. We then have the following lemma.

Lemma 13 Given ε > 0 and T > 0, there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0),
j ∈ {1, . . . , k} and J ∈ U ,

Ã j,ε,T−ε(J) ⊂ D(ρ)Rv(J)A j,ρ,T (J) ⊂ Ã j,−ε,T+ε(J)

Proof By direct computation,

D(ρ)Rv(J)A j,ρ,T (J)

=
{
te1 − ρD(ρ)R j (J)

(
0
x

) ∣∣∣∣ x ∈ � j (J), 0 < t ≤ σ (k)(J)‖ f (J)‖T
}
.

Using ρD(ρ) = diag(ρd , 1, . . . , 1) and (8.5), it follows that for every x ∈ � j (J),

ρD(ρ)R j (J)

(
0
x

)
=
(

r
R̃ j (J)x

)

where |r | ≤ Cρd . Note also that, by (6.8),

(
σ (k)(J)‖ f (J)‖)−1 =

k∑

j=1
Leb(� j (J)) u j (J) · v(J)

and this sum is bounded from above by a constant independent of J, since each set � j is
bounded. The lemma follows from these observations. ��

LetG1 = SL(d, R)�R
d . This is the group “G for k = 1”; in particularG1 acts onR

d (cf.
(7.2)). For g = (M, (ξ1, . . . , ξ k)) ∈ G and j ∈ {1, . . . , k} we write g[ j] := (M, ξ j ) ∈ G1.

We also introduce the short-hand notation N := {1, . . . , N }. Given real numbers Yn < Zn

for n ∈ N , we define B[(Yn), (Zn)] to be the following subset of X × U :

B[(Yn), (Zn)] :=
{
(g�, J) ∈ X × U :

k∑

j=1
#
(
Ã j,Yn ,Zn (J) ∩ g[ j](Zd)

) ≥ n ∀n ∈ N

}
.

(8.10)

In the following the Lebesgue measure in various dimensions will appear within the same
discussion; for clarity we will therefore write Lebm for the Lebesgue measure in R

m .
The following is a “trivial” variant of Siegel’s mean value theorem [41]:

Lemma 14 For any j ∈ {1, . . . , k} and f ∈ L1(Rd),
∫

X

∑

m∈Zd

f (g[ j](m)) dμX (g) =
∫

Rd
f (x) dx. (8.11)

In particular for any Lebesgue measurable subset A ⊂ R
d ,

μX ({�g ∈ X : g[ j](Zd) ∩ A 
= ∅}) ≤ Lebd(A). (8.12)

123



744 C. P. Dettmann et al.

Proof (Cf., e.g., [46, proof of Lemma 10].) In the left hand side of (8.11) we write g =
(M, (ξ1, . . . , ξ k)), integrate out all variables ξ 	, 	 
= j , and then substitute ξ j = Mη; this
gives

∫

X

∑

m∈Zd

f (g[ j](m)) dμX (g) =
∫

F

∫

[0,1]d
∑

m∈Zd

f (M(m + η)) dη dμ(M), (8.13)

where F ⊂ SLd(R) is a fundamental domain for SLd(R)/SLd(Z) and μ is Haar measure on
SLd(R) normalized so that μ(F) = 1. Now (8.11) follows since the inner integral in (8.13)
equals

∫
Rd f (x) dx for every M . The last statement of the lemma then follows by noticing

that the left hand side of (8.12) is bounded above by the left hand side of (8.11) with f equal
to the characteristic function of A. ��
Lemma 15 The number (μX × λ)

(
B[(Yn), (Zn)]

)
depends continuously on ((Yn), (Zn)).

(Here we keep ((Yn), (Zn)) ∈ R
N × R

N subject to Yn < Zn for all n ∈ N , as before.)

Proof Let D(J) ∈ SL(d, R) be the diagonal matrix

D(J) = diag
[(

σ (k)(J)‖ f (J)‖)−1, (σ (k)(J)‖ f (J)‖)1/(d−1), . . . , (σ (k)(J)‖ f (J)‖)1/(d−1)
]
.

Using the fact that μX is G-invariant (thus invariant under g� �→ D(J)g�) we see that

(μX × λ)
(
B[(Yn), (Zn)]

) = (μX × λ)
(
B ′[(Yn), (Zn)]

)
, (8.14)

where B ′[(Yn), (Zn)] is the set obtained by replacing Ã j,Y,Z (J) by Ã′j,Y,Z (J) :=
D(J) Ã j,Y,Z (J) in the definition (8.10). Hence it now suffices to prove that (μX ×
λ)
(
B ′[(Yn), (Zn)]

)
depends continuously on ((Yn), (Zn)). Note also that

Ã′j,Y,Z (J) :=
{(

t
−x
) ∣∣∣∣ x ∈ �̃ j (J), Y < t ≤ Z

}
, (8.15)

where �̃ j (J) is as in (6.18).
To prove the continuity, consider any real numbers Yn, Zn, Y ′n, Z ′n for n ∈ N , subject to

Yn < Zn and Y ′n < Z ′n . Writing ! for symmetric set difference, we have

B ′[(Yn), (Zn)] ! B ′[(Y ′n), (Z ′n)]

⊂
⋃

n∈N

k⋃

j=1

{
(g�, J) ∈ X × U : ( Ã′j,Yn ,Zn

(J)! Ã′j,Y ′n ,Z ′n (J)
) ∩ g[ j](Zd) 
= ∅

}
,

and hence by (8.12) and (8.15),

(μX × λ)
(
B ′[(Yn), (Zn)] ! B ′[(Y ′n), (Z ′n)]

)

≤
∑

n∈N

k∑

j=1

∫

U
Lebd

(
Ã′j,Yn ,Zn

(J)! Ã′j,Y ′n ,Z ′n (J)
)
dλ(J)

≤
∑

n∈N

k∑

j=1

∫

U
Leb1

(
(Yn, Zn] ! (Y ′n, Z ′n]

)
Lebd−1(�̃ j (J)) dλ(J).

However it follows from (6.16) and (6.18) that

Lebd−1(�̃ j (J)) = σ (k)(J)Lebd−1(� j (J)) u j (J) · f (J),
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and using also (6.8) it follows that

k∑

j=1
Lebd−1(�̃ j (J)) = 1 (8.16)

for all J ∈ U . Hence we conclude
∣∣∣(μX × λ)

(
B ′[(Yn), (Zn)]

)−(μX × λ)
(
B ′[(Y ′n), (Z ′n)]

)∣∣∣ ≤
∑

n∈N

∣∣Yn − Y ′n
∣∣+
∑

n∈N

∣∣Zn−Z ′n
∣∣.

This proves the desired continuity. ��
We wish to prove that the limit relation (7.29) in Theorem 11 holds with h equal to the

characteristic function of B = B[(Yn), (Zn)]. For this we need to prove that the boundary,
∂B, has measure zero with respect to μX × λ. Here by ∂B we denote the boundary of B in
X ×U , and similarly ∂ Ã j,Yn ,Zn denotes the boundary of Ã j,Yn ,Zn in R

d ×U . (The alternative
would have been to consider the boundaries in X × R

m and R
d × R

m , respectively.)

Lemma 16 For any B = B[(Yn), (Zn)], if (g�, J) ∈ ∂B then g[ j](Zd)∩(∂ Ã j,Yn ,Zn )(J) 
= ∅
for some j ∈ {1, . . . , k} and n ∈ N.

Proof Assume (g�, J) ∈ ∂B. Then there exist sequences {(gm�, Jm)} and {(g̃m�, J̃m)} in
X × U such that both (gm�, Jm) → (g�, J) and (g̃m�, J̃m) → (g�, J) as m → ∞, and
(gm�, Jm) ∈ B and (g̃m�, J̃m) /∈ B for all m. In particular for each m there is some n ∈ N
such that

k∑

j=1
#
(
Ã j,Yn ,Zn (̃Jm) ∩ g̃[ j]m (Zd)

)
< n. (8.17)

By passing to an appropriate subsequence, we may in fact assume that n is fixed in (8.17),
i.e. n does not depend on m. On the other hand (gm�, Jm) ∈ B for each m, and thus

k∑

j=1
#
(
Ã j,Yn ,Zn (Jm) ∩ g[ j]m (Zd)

) ≥ n. (8.18)

Hence for each m there is some j ∈ {1, . . . , k} such that

#
(
Ã j,Yn ,Zn (̃Jm) ∩ g̃[ j]m (Zd)

)
< #
(
Ã j,Yn ,Zn (Jm) ∩ g[ j]m (Zd)

)
. (8.19)

By again passing to a subsequence we may assume that also j is independent of m. We
have gm�→ g� as m →∞, and by choosing the gm’s appropriately we may even assume
gm → g; similarly we may assume g̃m → g. Using now gm → g and Jm → J together
with the fact that � j is bounded, it follows that there exists a compact set C ⊂ R

d such

that (g[ j]m )−1 Ã j,Yn ,Zn (Jm) ⊂ C for all m, and in particular the cardinality of Ã j,Yn ,Zn (Jm)∩
g[ j]m (Zd) remains the same if we replace Z

d with the finite set C ∩ Z
d . Now (8.19) implies

that for each m there is some q ∈ C ∩ Z
d such that g̃[ j]m (q) /∈ Ã j,Yn ,Zn (̃Jm) but g[ j]m (q) ∈

Ã j,Yn ,Zn (Jm); and since C ∩Z
d is finite we may assume, after passing to a subsequence, that

q is independent of m. Taking now m →∞ it follows that (g[ j](q), J) ∈ ∂ Ã j,Yn ,Zn , and the
lemma is proved. ��
Lemma 17 Every set B = B[(Yn), (Zn)] satisfies (μX × λ)(∂B) = 0.
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Proof In view of Lemma 16 and (8.12) in Lemma 14, it suffices to prove that for every
j ∈ {1, . . . , k} and n ∈ N , ∂ Ã j,Yn ,Zn has measure zero with respect to Lebd ×λ. Recalling
(8.9) we see that, for any Y < Z ,

∂ Ã j,Y,Z =
{((

t
−R̃ j (J)x

)
, J
) ∣∣∣∣ (x, J)∈∂� j , σ (k)(J)‖ f (J)‖ Y ≤ t ≤ σ (k)(J)‖ f (J)‖ Z

}

⋃{((
t

−R̃ j (J)x

)
, J
) ∣∣∣∣ (x, J)∈� j , t ∈{σ (k)(J)‖ f (J)‖ Y, σ (k)(J)‖ f (J)‖ Z}

}
.

Now the claim follows by Fubini’s Theorem, using the assumption from Theorem 2 that ∂� j

has measure zero with respect to Lebd−1×λ. ��
We are now ready to complete the proof of Theorem 2.

Conclusion of the proof of Theorem 2 Let φ̃ : U → (Rd)k be the map

J �→ (
φ1(J)− θ(J), . . . , φk(J)− θ(J)

)
.

Then Theorem 11 applies for our U, λ, f and φ̃; in particular, the condition (7.28) holds
for φ̃ since we assume that (φ1, . . . ,φk) is (θ , λ)-generic. Now for any fixed set B =
B[(Yn), (Zn)], since (μX × λ)(∂B) = 0 by Lemma 17, a standard approximation argument
(cf., e.g., [27, Theorem 4.25]) shows that the conclusion of Theorem 11, (7.29), applies also
for h = 1B , the characteristic function of B. In other words,

lim
ρ→0

λ
({
J ∈ U : (D(ρ)Rv(J)

(
1d , φ̃(J)

)
, J
) ∈ B

}) = (μX × λ)(B). (8.20)

Combining this with the definition of B = B[(Yn), (Zn)], (8.10), we conclude:

lim
ρ→0

λ

({
J :

k∑

j=1
#
(
Ã j,Yn ,Zn (J) ∩ D(ρ)Rv(J)

(
φ j (J)− θ(J)+ Z

d)) ≥ n ∀n ∈ N

})

= (μX × λ)(B). (8.21)

Now let positive real numbers T1, . . . , Tn be given, and consider a number ε subject to
0 < ε < 1

2 min(T1, . . . , Tn). Applying (8.21) with Yn = ε and Zn = Tn − ε we get, via
Lemma 13:

lim inf
ρ→0

λ

({
J :

k∑

j=1
#
(
A j,ρ,Tn (J) ∩ (φ j (J)− θ(J)+ Z

d)) ≥ n ∀n ∈ N

})

≥ (μX × λ)
(
B[(ε)Nn=1, (Tn − ε)Nn=1]

)
. (8.22)

Similarly if we take Yn = −ε and Zn = Tn + ε then we get

lim sup
ρ→0

λ

({
J :

k∑

j=1
#
(
A j,ρ,Tn (J) ∩ (φ j (J)− θ(J)+ Z

d)) ≥ n ∀n ∈ N

})

≤ (μX × λ)
(
B[(−ε)Nn=1, (Tn + ε)Nn=1]

)
. (8.23)

These relations hold for all sufficiently small ε > 0; letting ε → 0 we get, via Lemma 15,
when also rewriting the left hand side using Lemma 12:

lim
ρ→0

λ

({
J : ρd−1tn(θ , J,D(k)

ρ )

σ (k)(J)
≤ Tn ∀n ∈ N

})
= (μX × λ)

(
B[(0)Nn=1, (Tn)Nn=1]

)
.

(8.24)
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The fact that (8.24) holds for any T1, . . . , TN > 0 implies that (6.13) in Theorem 2 holds. ��
Remark 8.1 Asmentioned, the proof of (6.12) in Theorem 2 is completely similar; in princi-
ple one only has to replace σ (k)(J)with the constant σ (k)

λ throughout the discussion. However

a couple of extra technicalities appear. First of all, it may happen that σ (k)
λ = ∞; however in

this case (6.12) is trivial, with τi = 0 for all i . Hence from now on we assume 0 < σ
(k)
λ <∞.

Secondly, the last steps of the proofs of Lemmata 13 and 15 do not carry over verbatim. One
way to manage those steps is to assume from start that 0 < η < ‖ f (J)‖ < η−1 for all J ∈ U ;
this is permissible by the argument given below (8.3), but with Uη replaced with

Uη := {J ∈ U : ‖φ j (J)− φ	(J)‖ > η ∀ j 
= 	 and η < ‖ f (J)‖ < η−1}. (8.25)

With this assumption, we have
(
σ

(k)
λ ‖ f (J)‖)−1 <

(
σ

(k)
λ η
)−1 for all J ∈ U , and using this

the proof of Lemma 13 extends to the present situation. Furthermore, by (6.17) and (6.16),

Lebd−1
(
� j (J)

) = (σ (k)
λ u j (J) · f (J)

)
Lebd−1

(
� j (J)

)
< σ

(k)
λ η−1 Lebd−1

(
� j (J)

)
,

which is bounded from above by a constant independent of J, since the set � j is bounded.
Using this fact, the proof of the continuity in Lemma 15 carries over to the present situation.

Concerning the distribution of the limit variables (̃τ1, . . . , τ̃N ), we see from the above
proof of (6.13) that for any T1, . . . , Tn > 0,

P
(
τ̃n ≤ Tn ∀n ∈ N

) = (μX × λ)
(
B[(0)Nn=1, (Tn)Nn=1]

)
. (8.26)

Combining this with (8.14) and (8.15), we get

P
(
τ̃n ≤ Tn ∀n ∈ N

)

= (μX × λ)

({
(g�, J) :

k∑

j=1
#

{(
t
x

)
∈ g[ j](Zd) : 0 < t ≤ Tn, x ∈ −�̃ j (J)

}
≥ n

∀n ∈ N

})
. (8.27)

Hence the limit variables (̃τi )
∞
i=1 may be described as follows. Recall (6.14). Let J be a

random point in U distributed according to λ, and let g� be a random point in X distributed
according to μX , and independent from J. Then (̃τi )

∞
i=1 can be taken to be the elements of

the random set

k⋃

j=1
P(g[ j](Zd), �̃ j (J)), (8.28)

ordered by size. Similarly, (τi )∞i=1 can be taken to be the elements of the random set

k⋃

j=1
P(g[ j](Zd),� j (J)), (8.29)

ordered by size. This description clearly agrees with the one in (6.19) and (6.20). Let us also
note that it follows from (8.26) and Lemma 15, and the σ

(k)
λ -analogues of these, that the

distribution functions P
(
τn ≤ Tn ∀n ∈ N

)
and P

(
τ̃n ≤ Tn ∀n ∈ N

)
depend continuously

on (Tn) ∈ R
N
>0, as stated in Sect. 6.

123



748 C. P. Dettmann et al.

Acknowledgements The research leading to these results has received funding from the European Research
Council under the EuropeanUnion’s Seventh Framework Programme (FP/2007-2013) / ERCGrantAgreement
n. 291147. CPD is supported by EPSRC Grant EP/N002458/1. AS is supported by a grant from the Göran
Gustafsson Foundation for Research in Natural Sciences and Medicine, and also by the Swedish Research
Council Grant 621-2011-3629.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abadi, M., Saussol, B.: Hitting and returning to rare events for all alpha-mixing processes. Stoch. Process.
Appl. 121(2), 314–323 (2011)

2. Bálint, P., Chernov, N., Dolgopyat, D.: Limit theorems for dispersing billiards with cusps. Commun.
Math. Phys. 308(2), 479–510 (2011)

3. Berry, M.V., Tabor, M.: Level clustering in the regular spectrum. Proc. R. Soc. A 356, 375–394 (1977)
4. Boca, F.P., Zaharescu, A.: The distribution of the free path lengths in the periodic two-dimensional Lorentz

gas in the small-scatterer limit. Commun. Math. Phys. 269, 425–471 (2007)
5. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems. Geometry, Topology, Classification.

Chapman & Hall/CRC, Boca Raton (2004)
6. Bufetov, A.: Limit theorems for translation flows. Ann. Math. 179, 431–499 (2014)
7. Bufetov, A., Solomyak, B.: Limit theorems for self-similar tilings. Commun. Math. Phys. 319, 761–789

(2013)
8. Bufetov, A., Forni, G.: Limit theorems for horocycle flows. Ann. Sci. Éc. Norm. Supér. 47(5), 851–903

(2014)
9. Bunimovich, L.A., Dettmann, C.P.: Open circular billiards and the Riemann hypothesis. Phys. Rev. Lett.

94, 100201 (2005)
10. Bunimovich, L.A.: Sinai, Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scat-

terers. Commun. Math. Phys. 78(4), 479–497 (1980)
11. Chazottes, J.-R., Collet, P.: Poisson approximation for the number of visits to balls in non-uniformly

hyperbolic dynamical systems. Ergodic Theory Dyn. Syst. 33(1), 49–80 (2013)
12. Chernov, N.: Entropy, Lyapunov exponents, and mean free path for billiards. J. Stat. Phys. 88(1–2), 1–29

(1997)
13. Crespi, B., Chang, S.-J., Shi, K.-J.: Elliptical billiards and hyperelliptic functions. J. Math. Phys. 34,

2257–2289 (1993)
14. Dahlqvist, P.: The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10,

159–173 (1997)
15. Dolgopyat, D., Chernov, N.: Anomalous current in periodic Lorentz gases with an infinite horizon. Russ.

Math. Surv. 64(4), 651–699 (2009)
16. Dolgopyat, D., Fayad, B.: Deviations of ergodic sums for toral translations I. Convex bodies. Geom.

Funct. Anal. 24, 85–115 (2014)
17. D. Dolgopyat and B. Fayad, Limit theorems for toral translations. Hyperbolic dynamics, fluctuations and

large deviations, 227–277, Proc. Sympos. Pure Math., 89, Amer. Math. Soc., Providence, RI, 2015
18. Elkies, N.D., McMullen, C.T.: Gaps in

√
n mod 1 and ergodic theory. Duke Math. J. 123, 95–139 (2004)

and a correction in Duke Math J. 129, 405–406 (2005)
19. Folland, G.: Real Analysis. Wiley, New York (1999)
20. Freitas, J.M., Haydn, N., Nicol, M.: Convergence of rare event point processes to the Poisson process for

planar billiards. Nonlinearity 27(7), 1669–1687 (2014)
21. Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. Hyperbolic dynamics,

fluctuations and large deviations, pp. 161–193, Proceedings of Symposium on Pure Mathematics, vol.
89, American Mathematical Society , Providence, RI (2015)

22. Griffin, J., Marklof, J.: Limit theorems for skew translations. J. Mod. Dyn. 8(2), 177–189 (2014)
23. Haydn, N.: Entry and return times distribution. Dyn. Syst. 28(3), 333–353 (2013)
24. Haydn, N., Psiloyenis, Y.: Return times distribution for Markov towers with decay of correlations. Non-

linearity 27(6), 1323–1349 (2014)
25. Hirata, M.: Poisson law for AxiomA diffeomorphisms. Ergodic Theory Dyn. Syst. 13(3), 533–556 (1993)

123

http://creativecommons.org/licenses/by/4.0/


Universal Hitting Time Statistics. . . 749

26. Jacobson, N.: Interscience Tracts in Pure and Applied Mathematics. Lie algebras, vol. 10. Interscience
Publishers (a division of John Wiley & Sons), New York-London (1962)

27. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)
28. Kleinbock, D., Margulis, G.: Bounded orbits of nonquasiunipotent flows on homogeneous spaces. Am.

Math. Soc. Transl. 171, 141–172 (1996)
29. Lucarini, V., et al.: Extremes and Recurrence in Dynamical Systems. Wiley, New York (2016)
30. Malcev, A.: On the representation of an algebra as a direct sumof the radical and a semi-simple subalgebra.

C. R. (Doklady) Acad. Sci. URSS 36, 42–45 (1942)
31. Margulis, G.: On SomeAspects of the Theory of Anosov Systems, SpringerMonographs inMathematics.

Springer, Berlin (2004) (A translation of PhD Thesis, Moscow State University, 1970)
32. Marklof, J.: The Berry–Tabor conjecture. European Congress of Mathematics, Vol. II (Barcelona, 2000),

pp. 421–427, Progress Mathematics, vol. 202, Birkhäuser, Basel (2001)
33. Marklof, J.: Entry and return times for semi-flows, arXiv:1605.02715
34. Marklof, J., Strömbergsson, A.: The distribution of free path lengths in the periodic Lorentz gas and

related lattice point problems. Ann. Math. 172, 1949–2033 (2010)
35. Olver, F.W.J. (ed.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York

(2010)
36. Pitskel, B.: Poisson limit law for Markov chains. Ergodic Theory Dyn. Syst. 11(3), 501–513 (1991)
37. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, New York (1972)
38. Ratner, M.: On Raghunathan’s measure conjecture. Ann. Math. 134, 545–607 (1991)
39. Rousseau, J.: Hitting time statistics for observations of dynamical systems.Nonlinearity 27(9), 2377–2392

(2014)
40. Shah, N.: Expanding translates of curves and Dirichlet–Minkowski theorem on linear forms. J. Am.Math.

Soc. 23, 563–589 (2010)
41. Siegel, C.L.: A mean value theorem in geometry of numbers. Ann. Math. 46, 340–347 (1945)
42. Sinai, Ya.G.: The central limit theorem for geodesic flows on manifolds of constant negative curvature.

Soviet Math. Dokl. 1, 983–987 (1960)
43. Sinai, Ya.G.: Mathematical problems in the theory of quantum chaos. Geometric Aspects of Functional

Analysis. Lecture Notes in Mathematics, vol. 1469, pp. 41–59. Springer, Berlin (1991)
44. Sinai, Ya.G.: Poisson distribution in a geometric problem. Dynamical Systems and Statistical Mechan-

ics (Moscow, 1991). Advances in Soviet Mathematics, pp. 199–214. American Mathematical Society,
Providence, RI (1991)

45. Strutinsky, V.M., Magner, A.G., Ofengenden, S.R., Døssing, T.: Semiclassical interpretation of the gross-
shell structure in deformed nuclei. Z. Phys. A 283, 269–285 (1977)

46. Strömbergsson, A., Venkatesh, A.: Small solutions to linear congruences and Hecke equidistribution.
Acta Arith. 118, 41–78 (2005)

47. Szász, D., Varjú, T.: Limit laws and recurrence for the planar Lorentz process with infinite horizon. J.
Stat. Phys. 129(1), 59–80 (2007)

48. Tabachnikov, S.: Geometry and Billiards. StudentMathematical Library, vol. 30. AmericanMathematical
Society, Providence, RI (2005)

49. Varadarajan, V.S.: Groups of automorphisms of Borel spaces. Trans. Am.Math. Soc. 109, 191–220 (1963)

123

http://arxiv.org/abs/1605.02715

	Universal Hitting Time Statistics for Integrable Flows
	Abstract
	1 Introduction
	2 Integrable Flows with Two Degrees of Freedom
	3 The Limit Distribution
	4 Central Force Fields
	5 Integrable Billiards
	6 Integrable Flows in Arbitrary Dimension
	7 An Application of Ratner's Theorem
	8 Proof of Theorem 2
	Acknowledgements
	References




