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Abstract We prove the large deviation principle (LDP) for the trajectory of a broad class
of finite state mean-field interacting Markov jump processes via a general analytic approach
based on viscosity solutions. Examples include generalized Ehrenfest models as well as
Curie–Weiss spin flip dynamics with singular jump rates. The main step in the proof of
the LDP, which is of independent interest, is the proof of the comparison principle for an
associated collection of Hamilton–Jacobi equations. Additionally, we show that the LDP
provides a general method to identify a Lyapunov function for the associated McKean–
Vlasov equation.
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1 Introduction

We consider two models of Markov jump processes with mean-field interaction. In both
cases, we have n particles or spins that evolve as a pure jump process, where the jump rates
of the individual particles depend on the empirical distribution of all n particles.

We prove the large deviation principle (LDP) for the trajectory of these empirical quanti-
ties, with Lagrangian rate function, via a proof that an associated Hamilton–Jacobi equation
has a unique viscosity solution. The uniqueness is a consequence of the comparison principle,
and the proof of this principle is the main novel contribution of this paper.
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322 R. Kraaij

The first set of models that we consider are conservative models that generalize the Ehren-
fest model. In the one dimensional setting, this model can also be interpreted as the Moran
model without mutation or selection.

We consider d-dimensional spins σ(1), . . . , σ (n) taking their values in {−1, 1}d . The
quantity of interest is the empirical magnetisation xn = (xn,1, . . . , xn,d) ∈ E1 := [−1, 1]d ,
where xn,i = xn,i (σ ) = 1

n

∑n
j=1 σi ( j).

The second class of models are jump processes (σ (1), . . . , σ (n) on a finite state space
{1, . . . , d}. As an example, we can consider Glauber type dynamics, such as Curie–Weiss
spin flip dynamics. In this case, the empirical measure μn(t) ∈ E2 := P(1, . . . , d) is given
by

μn(t) := 1

n

∑

i≤n

δσi (t),

where σi (t) ∈ {1, . . . , d} is the state of the i th spin at time t .
Under some appropriate conditions, the trajectory xn(t) or μn(t) converges as n → ∞

to x(t), or μ(t), the solution of a McKean–Vlasov equation, which is a generalization of
the linear Kolmogorov forward equation which would appear in the case of independent
particles.

For these sets of models, we obtain a LDP for the trajectory of these empirical measures
on the space DEi (R

+), i ∈ {1, 2} of càdlàg paths on Ei of the form

P
[{xn(t)}t≥0 ≈ γ

] ≈ e−nI (γ ), P
[{μn(t)}t≥0 ≈ γ

] ≈ e−nI (γ )

where

I (γ ) = I0(γ (0)) +
∫ ∞

0
L(γ (s), γ̇ (s))ds

for trajectories γ that are absolutely continuous and I (γ ) = ∞ otherwise. In particular,
I (γ ) = 0 for the solution γ of the limiting McKean–Vlasov equation. The Lagrangian
L : Ei ×R

d → R
+ is defined as the Legendre transform of a Hamiltionan H : Ei ×R

d → R

that can be obtained via a limiting procedure

H(x,∇ f (x)) = H f (x) = lim
n

1

n
e−n f Anen f . (1.1)

Here An is the generator of the Markov process of {xn(t)}t≥0 or {μn(t)}t≥0. More details on
the models and definitions follow shortly in Sect. 2.

Recent applications of the path-space LDP are found in the study of mean-field Gibbs-
non-Gibbs transitions, see e.g. [20,29] or the microscopic origin of gradient flow structures,
see e.g. [1,27]. Other authors have considered the path-space LDP in various contexts before,
see for example [3,9,13,19,23,24,26]. A comparison with these results follows in Sect. 2.6.

The novel aspect of this paper with respect to large deviations for jump processes is an
approach via a class of Hamilton–Jacobi equations. In [22], a general strategy is proposed for
the study for large deviations of trajectories which is based on an extension of the theory of
convergence of non-linear semigroups by the theory of viscosity solutions. As in the theory
of weak convergence of Markov processes, this program is carried out in three steps, first
one proves convergence of the generators, i.e. (1.1), secondly one shows that H is indeed
the generator of a semigroup. The third step is the verification of the exponential compact
containment condition, which for our compact state-spaces is immediate, that yields, given
the convergence of generators, exponential tightness on the Skorokhod space. This final step
reduces the proof of the large deviation principle on the Skorokhod space to that of the finite
dimensional distributions, which can then be proven via the first two steps.
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Large Deviations for Finite State Markov Jump Processes 323

Showing that H generates a semigroup is non-trivial and follows for example by showing
that the Hamilton–Jacobi equation

f (x) − λH(x,∇ f (x)) − h(x) = 0 (1.2)

has a unique solution f for all h ∈ C(Ei ) and λ > 0 in the viscosity sense. As mentioned
above, it is exactly this problem that is the main focus of the paper. An extra bonus of this
approach is that the conditions on the Markov processes for finite n are weaker than in
previous studies, and allow for singular behaviour in the jump rate if the empirical quantity
is close to the boundary.

This approach via the Hamilton–Jacobi equation has been carried out in [22] for Levy
processes on R

d , systems with multiple time scales and for stochastic equations in infinite
dimensions. In [16], the LDP for a diffusion process on (0,∞) is treated with singular
behaviour close to 0.

As a direct consequence of our LDP, we obtain a straightforward method to find Lyapunov
functions for the limiting McKean–Vlasov equation. If An is the linear generator of the
empirical quantity of interest of the n-particle process, the operator A obtained by A f =
limn An f can be represented by A f (μ) = 〈∇ f (x), F(x)〉 for some vector fieldF. If solutions
to

ẋ(t) = F(x(t)) (1.3)

are unique for a given starting point and if the empirical quantity xn(0) (or μn(0), in the
setting of the second model) converges to x(0), the empirical quantities {xn(t)}t≥0 converge
almost surely to a solution {x(t)}t≥0 of (1.3). In Sect. 2.4, we will show that if the stationary
measures of An satisfy a LDP on Ei with rate function I0, then I0 is a Lyapunov function for
(1.3).

The paper is organised as follows. In Sect. 2, we introduce the models and state our
results. Additionally, we give some examples to show how to apply the theorems. In Sect. 3,
we recall the main results from [22] that relate the Hamilton–Jacobi equations (1.2) to the
large deviation problem. Additionally, we verify conditions from [22] that are necessary to
obtain our large deviation result with a rate function in Lagrangian form, in the case that we
have uniqueness of solutions to the Hamilton–Jacobi equations. Finally, in Sect. 4 we prove
uniqueness of viscosity solutions to (1.2).

2 Main Results

2.1 Two Models of Interacting Jump Processes

Wedoa large deviation analysis of the trajectory of the empiricalmagnetization or distribution
for two models of interacting spin-flip systems.

2.1.1 Generalized Ehrenfest Model in d-Dimensions

Consider d-dimensional spins σ = (σ (1), . . . , σ (n)) ∈ ({−1, 1}d)n . For example, we can
interpret this as n individuals with d types, either being −1 or 1. For k ≤ n, we denote the
i th coordinate of σ(k) by σi (k). Set xn = (xn,1, . . . , xn,d) ∈ E1 := [−1, 1]d , where xn,i =
xn,i (σ ) = 1

n

∑n
j=1 σi ( j) the empirical magnetisation in the i th spin. For later convenience,

denote by E1,n the discrete subspace of E1 which is the image of ({−1, 1}d)n under the map
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324 R. Kraaij

σ �→ xn(σ ). The spins evolve according to mean-field Markovian dynamics with generator
An :

An f (σ ) =
d∑

i=1

n∑

j=1

1{σi ( j)=−1}r i
n,+(xn(σ ))

[
f (σ i, j ) − f (σ )

]

+
d∑

i=1

n∑

j=1

1{σi ( j)=1}r i
n,−(xn(σ ))

[
f (σ i, j ) − f (σ )

]
.

The configuration σ i, j is obtained by flipping the i th coordinate of the j th spin. The functions
r i

n,+, r i
n,− are non-negative and represent the jump rate of the i th spin flipping from a −1 to

1 or vice-versa.
The empirical magnetisation xn itself also behavesMarkovian. Tomotivate the form of the

generator of the xn process, we turn to the transition semigroups. For g ∈ C(({−1, 1}d)n),
denote

S1
n (t)g(σn) = E [g(σn(t)) | σn(0) = σn] .

As the rates in the generator of σn only depend on the empirical magnetization, we find that
for f ∈ C(E1,n)

E [ f (xn(σn(t))) | xn(σn(0)) = x]

only depends on x and not on σn(0). Therefore, we can denote this object by S2
n (t) f (x). Addi-

tionally, we see that S1
n (t)( f ◦xn)(σn) = S2

n (t) f (xn(σn)). Thus, the empirical magnetization
has generator An : C(E1,n) → C(E1,n) which satisfies An f (xn(σ )) := An( f ◦ xn)(σ ) and
is given by

An f (x) =
d∑

i=1

{

n
1 − xi

2
r i

n,+(x)

[

f

(

x + 2

n
ei

)

− f (x)

]

+ n
1 + xi

2
r i

n,−(x)

[

f

(

x − 2

n
ei

)

− f (x)

] }

,

where ei the vector consisting of 0s, and a 1 in the i th component.
Note that An can be obtained from An also intuitively. A change from −1 to 1 in the i th

coordinate induces a change + 2
n ei in the empirical magnetisation. This happens at a rate

r i
n,+(xn(σ )) multiplied by the number of spins. i.e. n 1−xn,i (σ )

2 , that satisfy σi = −1.
Under suitable conditions on the rates r i

n,+ and r i
n,−, wewill derive a LDP for the trajectory

{xn(t)}t≥0 in the Skorokhod space DE1(R
+) of right continuous E1 valued paths that have

left limits.

2.1.2 Systems of Glauber Type with d States

Wewill also study the large deviation behaviour of copies of a Markov process on {1, . . . , d}
that evolve under the influence of somemean-field interaction. Here σ = (σ (1), . . . , σ (n)) ∈
{1, . . . , d}n and the empirical distribution μ is given by μn(σ ) = 1

n

∑
i≤n δσ(i) which takes

values in

E2,n :=
{

μ ∈ P(E2) | μ = 1

n

n∑

i=1

δxi , for some xi ∈ {1, . . . , d}
}

.
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Large Deviations for Finite State Markov Jump Processes 325

Of course, this set can be seen as discrete subset of E2 := P({1, . . . , d}) = {μ ∈
R

d | μi ≥ 0,
∑

i μi = 1}. We take some n-dependent family of jump kernels rn :
{1, . . . , d} × {1, . . . , d} × E2,n → R

+ and define Markovian evolutions for σ by

An f (σ (1), . . . , σ (n)) =
n∑

i=1

d∑

b=1

rn

(

σ(i), b,
1

n

n∑

i=1

δσ(i)

)
[

f (σ i,b) − f (σ )
]
,

where σ i,b is the configuration obtained from σ by changing the i th coordinate to b. Again,
we have an effective evolution for μn , which is governed by the generator

An f (μ) = n
∑

a,b

μ(a)rn(a, b, μ)
[

f
(
μ − n−1δa + n−1δb

) − f (μ)
]
.

As in the first model, we will prove, under suitable conditions on the jump kernels rn a LDP
in n for {μn(t)}t≥0 in the Skorokhod space DE2(R

+).

2.2 Large Deviation Principles

The main results in this paper are the two large deviation principles for the two sets of
models introduced above. To be precise, we say that the sequence xn ∈ DE1(R

+), or for
the second case μn ∈ DE2(R

+), satisfies the large deviation principle with rate function
I : DE1(R

+) → [0,∞] if I is lower semi-continuous and the following two inequalities
hold:

(a) For all closed sets G ⊆ DE1(R
+), we have

lim sup
n→∞

1

n
logP[{xn(t)}t≥0 ∈ G] ≤ − inf

γ∈G
I (γ ).

(b) For all open sets U ⊆ DE1(R
+), we have

lim inf
n→∞

1

n
logP[{xn(t)}t≥0 ∈ U ] ≥ − inf

γ∈U
I (γ ).

For the definition of the Skorokhod topology defined on DE1(R
+), see for example [21]. We

say that I is good if the level sets I −1[0, a] are compact for all a ≥ 0.
Carrying out the procedure in (1.1) for our two sets of models, we obtain, see Lemma 1

below, operators (H,D(H)), D(H) = C1(E) that are of the form H f (x) = H(x,∇ f (x)),
H : E × R

d → R. These are the Hamiltonians that appear in Theorems 1 and 2.
For a trajectory γ ∈ DE1(R), we say that γ ∈ AC if the trajectory is absolutely continuous.

For the d-dimensional Ehrenfest model, we have the following result.

Theorem 1 Suppose that

lim
n→∞ sup

x∈E1,n

d∑

i=1

∣
∣
∣
∣
1 − xi

2
r i

n,+(x) − vi+(x)

∣
∣
∣
∣ +

∣
∣
∣
∣
1 + xi

2
r i

n,−(x) − vi−(x)

∣
∣
∣
∣ = 0, (2.1)

for some family of continuous functions vi+, vi− : E1 → R
+, 1 ≤ i ≤ d with the following

properties.
The rate vi+ is identically zero or we have the following set of conditions.

(a) vi+(x) > 0 if xi �= 1.
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326 R. Kraaij

(b) For z ∈ [−1, 1]d such that zi = 1, we have vi+(z) = 0 and for every such z
there exists a neighbourhood Uz of z on which there exists a decomposition vi+(x) =
vi+,z,†(xi )v

i+,z,‡(x), where vi+,z,† is decreasing and where vi+,z,‡ is continuous and sat-

isfies vi+,z,‡(z) �= 0.

The rate vi− is identically zero or we have the following set of conditions.

(a) vi−(x) > 0 if xi �= −1.
(b) For z ∈ [−1, 1]d such that zi = −1, we have vi−(z) = 0 and for every such z

there exists a neighbourhood Uz of z on which there exists a decomposition vi−(x) =
vi−,z,†(xi )v

i−,z,‡(x), where vi+,z,† is increasing and where vi−,z,‡ is continuous and sat-

isfies vi−,z,‡(z) �= 0.

Furthermore, suppose that {xn(0)}n≥1 satisfies the LDP on E1 with good rate function I0.
Then, {xn}n≥1 satisfies the LDP on DE1(R

+) with good rate function I given by

I (γ ) =
{

I0(γ (0)) + ∫ ∞
0 L(γ (s), γ̇ (s))ds if γ ∈ AC,

∞ otherwise

where the Lagrangian L(x, v) : E1×R
d → R is given by the Legendre transform L(x, v) =

supp∈Rd 〈p, v〉 − H(x, p) of the Hamiltonian H : E1 × R
d → R, defined by

H(x, p) =
d∑

i=1

vi+(x)
[
e2pi − 1

] + vi−(x)
[
e−2pi − 1

]
. (2.2)

Remark 1 Note that the functions vi+ and vi− do not have to be of the form vi+(x) =
1−xi
2 r i+(x), vi−(x) = 1+xi

2 r i−(x) for some bounded functions r i+, r i−. This we call singular
behaviour, as such a rate cannot be obtained the LDP for independent particles via Varadhan’s
lemma and the contraction principle as in [26] or [13].

Theorem 2 Suppose that

lim
n→∞ sup

μ∈En

|μ(a)rn(a, b, μ) − v(a, b, μ)| = 0, (2.3)

for some continuous function v : {1, . . . , d} × {1, . . . , d} × E2 → R
+ with the following

properties.
For each a, b, the map μ �→ v(a, b, μ) is either identically equal to zero or satisfies the

following two properties.

(a) v(a, b, μ) > 0 for all μ such that μ(a) > 0.
(b) For ν such that ν(a) = 0, there exists a neighbourhood Uν of ν on which there exists a

decomposition v(a, b, μ) = vν,†(a, b, μ(a))vν,‡(a, b, μ) such that vν,† is increasing in
the third coordinate and such that vν,‡(a, b, ·) is continuous and satisfies vν,‡(a, b, ν) �=
0.

Additionally, suppose that {μn(0)}n≥1 satisfies the LDP on E2 with good rate function I0.
Then, {μn}n≥1 satisfies the LDP on DE2(R

+) with good rate function I given by

I (γ ) =
{

I0(γ (0)) + ∫ ∞
0 L(γ (s), γ̇ (s))ds if γ ∈ AC

∞ otherwise,
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Large Deviations for Finite State Markov Jump Processes 327

where L : E2 × R
d → R

+ is the Legendre transform of H : E2 × R
d → R given by

H(μ, p) =
∑

a,b

v(a, b, μ)
[
epb−pa − 1

]
. (2.4)

2.3 The Comparison Principle

Themain results in this paper are the two large deviation principles as stated above. However,
the main step in the proof of these principles is the verification of the comparison principle
for a set of Hamilton–Jacobi equations. As this result is of independent interest, we state
these results here as well, and leave explanation on why the comparison principle is relevant
for the large deviation principles for later. We start with some definitions.

For E equals E1 or E2, let H : E × R
d → R be some continuous map. For λ > 0 and

h ∈ C(E). Set Fλ,h : E × R × R
d → R by

Fλ,h(x, ξ, p) = ξ − λH(x, p) − h(x).

We will solve the Hamilton–Jacobi equation

Fλ,h(x, f (x),∇ f (x)) = f (x) − λH(x,∇ f (x)) − h(x) = 0 x ∈ E, (2.5)

in the viscosity sense.

Definition 1 We say that u is a (viscosity) subsolution of Eq. (2.5) if u is bounded, upper
semi-continuous and if for every f ∈ C1(E) and x ∈ E such that u − f has a maximum at
x , we have

Fλ,h(x, u(x),∇ f (x)) ≤ 0.

We say that u is a (viscosity) supersolution of Eq. (2.5) if u is bounded, lower semi-continuous
and if for every f ∈ C1(E) and x ∈ E such that u − f has a minimum at x , we have

Fλ,h(x, u(x),∇ f (x)) ≥ 0.

We say that u is a (viscosity) solution of Eq. (2.5) if it is both a sub and a super solution.

There are various other definitions of viscosity solutions in the literature. This definition
is the standard one for continuous H and compact state-space E .

Definition 2 We say that Eq. (2.5) satisfies the comparison principle if for a subsolution u
and supersolution v we have u ≤ v.

Note that if the comparison principle is satisfied, then a viscosity solution is unique.

Theorem 3 Suppose that H : E1×R
d → R is given by (2.2) and that the family of functions

vi+, vi− : E1 → R
+, 1 ≤ i ≤ d, satisfy the conditions of Theorem 1.

Then, for every λ > 0 and h ∈ C(E1), the comparison principle holds for f (x) −
λH(x,∇ f (x)) − h(x) = 0.

Theorem 4 Suppose that H : E2 × R
d → R is given by (2.4) and that function

v : {1, . . . , d} × {1, . . . , d} × E2 → R
+ satisfies the conditions of Theorem 2.

Then, for every λ > 0 and h ∈ C(E2), the comparison principle holds for f (μ) −
λH(μ,∇ f (μ)) − h(μ) = 0.
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328 R. Kraaij

The main consequence of the comparison principle for the Hamilton–Jacobi equations
stems from the fact, as we will see below, that the operator H generates a strongly continuous
contraction semigroup on C(E).

The proof of the LDP is, in a sense, a problemof semigroup convergence. At least for linear
semigroups, it is well known that semigroup convergence can be proven via the convergence
of their generators. The main issue in this approach is to prove that the limiting generator H
generates a semigroup. It is exactly this issue that the comparison principle takes care of.

Hence, the independent interest of the comparison principle comes from the fact that we
have semigroup convergence whatever the approximating semigroups are, as long as their
generators converge to H , i.e. this holds not just for the specifically chosen approximating
semigroups that we consider in Sect. 3.

2.4 A Lyapunov Function for the Limiting Dynamics

As a corollary to the large deviation results, we show how to obtain a Lyapunov function for
the solutions of

ẋ(t) = F(x(t)), (2.6)

where F(x) := Hp(x, 0) for a Hamiltonian as in (2.4) or (2.2). Here Hp(x, p) is interpreted
as the vector of partial derivatives of H in the second coordinate.

We will see in Example 3 that the trajectories solving this differential equation are the
trajectories with 0 Lagrangian cost: ẋ = F(x) if and only if L(x, ẋ) = 0. Additionally, the
limiting operator (A, C1(E)) obtained by

sup
x∈En∩K

|An f (x) − A f (x)| → 0

for all f ∈ C1(E) and compact sets K ⊆ E has the form by A f (x) = 〈∇ f (x), F(x)〉 for the
same vector field F. This implies that the 0-cost trajectories are solutions to the McKean–
Vlasov equation (2.6). Solutions to 2.6 are not necessarily unique, see Example 3. Uniqueness
holds for example under a one-sided Lipschitz condition: if there exists M > 0 such that
〈F(x) − F(y), x − y〉 ≤ M |x − y|2 for all x, y ∈ E .

For non-interacting systems, it is well known that the relative entropy with respect to
the stationary measure is a Lyapunov function for solutions of (2.6). The large deviation
principle explains this fact and gives a method to obtain a suitable Lyapunov function, also
for interacting dynamics.

Proposition 1 Suppose the conditions for Theorems 1 or 2 are satisfied. Suppose there
exists measures νn ∈ P(En) ⊆ P(E) that are invariant for the dynamics generated by An.
Furthermore, suppose that the measures νn satisfy the large deviation principle on E with
good rate function I0.

Then I0 is increasing along any solution of ẋ(t) = F(x(t)).

Note that we do not assume that (2.6) has a unique solution for a given starting point.

2.5 Examples

We give a series of examples to show the extent of Theorems 1 and 2.
For the Ehrenfest model, we start with the basic case, of spins flipping under the influence

of some mean-field potential.
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Large Deviations for Finite State Markov Jump Processes 329

Example 1 To be precise, fix some continuously differentiable V : [−1, 1]d → R and set
for every n ≥ 1 and i ∈ {1, . . . , d} the rates

r+
n,i (x) = exp

{

−n2−1
(

V

(

x + 2

n
ei

)

− V (x)

)}

,

r−
n,i (x) = exp

{

−n2−1
(

V

(

x − 2

n
ei

)

− V (x)

)}

.

The limiting objects vi+ and vi− are given by

vi+(x) = 1 − xi

2
e−∇i V (x), vi−(x) = 1 + xi

2
e∇i V (x),

which already have the decomposition as required in the conditions of the Theorem 1. For
example, condition (b) for vi+ is satisfied by

vi+,z,†(xi ) := 1 − xi

2
, vi+,z,‡(x) := e−∇i V (x).

For d = 1,we give two extra notable examples, the first one exhibits unbounded jump rates
for the individual spins if the empirical magnetisation is close to one of the boundary points.
The second example shows a case where we have multiple trajectories γ with I (γ ) = 0 that
start from x0 = 0.

As d = 1, we drop all sub- and super-scripts i ∈ {1, . . . , d} for the these two examples.

Example 2 Consider the one-dimensional Ehrenfest model with

rn,+(x) = 2√
1 − x

∧ n, rn,−(x) = 2√
1 + x

∧ n.

Set v+(x) = √
1 − x , v−(x) = √

1 + x . By Dini’s theorem, we have

sup
x∈[−1,1]

∣
∣
∣
∣
1 − x

2
rn,+(x) − v+(x)

∣
∣
∣
∣ = 0, sup

x∈[−1,1]

∣
∣
∣
∣
1 + x

2
rn,−(x) − v−(x)

∣
∣
∣
∣ = 0.

And additionally, conditions (a) and (b) of Theorem 1 are satisfied, e.g. take v+,1,†(x) =√
1 − x , v+,1,‡(x) = 1.

Example 3 Consider the one-dimensional Ehrenfest model with some rates rn,+, rn,− and
functions v+(x) > 0, v−(x) > 0 such that 12 (1−x)rn,+(x) → v+(x) and 1

2 (1+x)rn,−(x) →
v−(x) uniformly in x ∈ [−1, 1].

Now suppose that there is a neighbourhood U of 0 on which v+, v− have the form

v+(x) =
{
1 + √

x x ≥ 0,

1 x < 0,
v−(x) = 1.

Consider the family of trajectories t �→ γa(t), a ≥ 0, defined by

γa(t) :=
{
0 for t ≤ a,

(t − a)2 for t ≥ a.

Let T > 0 be small enough such that γ0(t) ∈ U , and hence γa(t) ∈ U , for all t ≤ T .
A straightforward calculation yields

∫ T
0 L(γa(t), γ̇a(t))dt = 0 for all a ≥ 0. So we find

multiple trajectories starting at 0 that have zero Lagrangian cost.
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Indeed, note that L(x, v) = 0 is equivalent to v = Hp(x, 0) = 2
[
v+(x) − v−(x)

] =
2
√

(x). This yields that trajectories that have 0 Lagrangian cost are the trajectories, at least
in U , that solve

γ̇ (t) = 2
√

γ (t)

which is the well-known example of a differential equation that allows for multiple solutions.

We end with an example for Theorem 2 and Proposition 1 in the spirit of Example 1.

Example 4 (Glauber dynamics for the Potts-model) Fix some continuously differentiable
function V : Rd → R. Define the Gibbs measures

νn(dσ) := e−V (μn(σ ))

Zn
P⊗,n(dσ)

on {1, . . . , d}n , where P⊗,n is the n-fold product measure of the uniform measure P on
{1, . . . , d} and where Zn are normalizing constants.

Let S(μ | P) denote the relative entropy of μ ∈ P({1, . . . , d}) with respect to P:

S(μ | P) =
∑

a

log(dμ(a))μ(a).

By Sanov’s theorem and Varadhan’s lemma, the empirical measures under the laws νn satisfy
a LDP with rate function I0(μ) = S(μ | P) + V (μ).

Now fix some function r : {1, . . . , d} × {1, . . . , d} → R
+. Set

rn(a, b, μ) = r(a, b) exp
{−n2−1 (

V
(
μ − n−1δa + n−1δb

) − V (μ)
)}

.

As n goes to infinity, we have uniform convergence of μ(a)rn(a, b, μ) to

v(a, b, μ) := μ(a)r(a, b) exp

{
1

2
∇a V (μ) − 1

2
∇bV (μ)

}

,

where ∇a V (μ) is the derivative of V in the ath coordinate. As in Example 1, condition (b)
of Theorem 2 is satisfied by using the obvious decomposition.

By Proposition 1, we obtain that S(μ | P) + V (μ) is Lyapunov function for

μ̇(a) =
∑

b

[v(b, a, μ) − v(a, b, μ)] a ∈ {1, . . . , d}.

2.6 Discussion and Comparison to the Existing Literature

We discuss our results in the context of the existing literature that cover our situation. Addi-
tionally, we consider a few cases where the LDP is proven for diffusion processes, because
the proof techniques could possibly be applied in this setting.

2.6.1 LDP: Approach Via Non-interacting Systems, Varadhan’s Lemma and the
Contraction Principle

In [3,13,26], the first step towards the LDP of the trajectory of some mean-field statistic of
n interacting particles is the LDP for non-interacting particles on some large product space
obtained via Sanov’s theorem. Varadhan’s lemma then gives the LDP in this product space
for interacting particles, after which the contraction principle gives the LDP on the desired
trajectory space. In [13,26], the set-up is more general compared to ours in the sense that in
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[26] the behaviour of the particles depends on their spatial location, and in [13] the behaviour
of a particle depends on some external random variable.

On the other hand, systems as in Example 2 fall outside of the conditions imposed in the
three papers, if we disregard spatial dependence or external randomness.

The approach via Varadhan’s lemma, which needs control over the size of the perturbation,
does not work, at least naively, for the situation where the jump rate for individual particles
is diverging to ∞, or converging to 0, if the mean is close to the boundary, see Remark 1.

2.6.2 LDP: Explicit Control on the Probabilities

For another approach considering interacting spins that have a spatial location, see [8]. The
jump rates are taken to be explicit and the LDP is proven via explicit control on the Radon–
Nikodym derivatives. This method should in principle work also in the case of singular v.
The approach via the generators Hn in this paper, avoids arguments based on explicit control.
This is an advantage for processes where the functions rn and v are not very regular. Also
in the classical Freidlin–Wentzell approach [24] for dynamical systems with Gaussian noise
the explicit form of the Radon–Nikodym derivatives is used to prove the LDP.

2.6.3 LDP: Direct Comparison to a Process of Independent Particles

The main reference concerning large deviations for the trajectory of the empirical mean for
interacting diffusion processes on R

d is [14]. In this paper, the large deviation principle is
also first established for non-interacting particles. An explicit rate function is obtained by
showing that the desired rate is in between the rate function obtained via Sanov’s theorem and
the contraction principle and the projective limit approach. The LDP for interacting particles
is then obtained via comparing the interacting process with a non-interacting process that has
a suitably chosen drift. For related approaches, see [23] for large deviations of interacting
jump processes onN, where the interaction is unbounded and depends on the average location
of the particles. See [4] for mean-field jump processes on R

d .
Again, the comparison with non-interacting processes would fail in our setting due the

singular interaction terms.

2.6.4 LDP: Variational Representation of Poisson Random Measure

A proof of the large deviation principle for mean-field interacting jump processes has been
given recently in [19]. The setting is similar to that of Theorem 2, but the proof of [19] allows
for the possibility of more particles changing their state at the same time. The result is based
on a variational representation for the Poisson random measure that can be used to establish
bounds for trajectories in the interior of the simplex and perturbation arguments that show
that trajectories that hit the boundary can be sufficiently well approximated by trajectories in
the interior. For these arguments it is assumed that the rates are Lipschitz and ergodic. These
are two conditions that are not necessary for our proof. On the other hand, the proof of the
comparison principle using the methods from this paper fails in the context where multiple
particles can change their state at the same time.

2.6.5 LDP: Proof Via Operator Convergence and the Comparison Principle

Regarding our approach based on the comparison principle, see Feng and Kurtz [22, Sect.
13.3], for an approach based on the comparison principle in the setting ofDawson andGärtner
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[14] and Budhiraja et al. [5]. See Deng et al. [16] for an example of large deviations of a
diffusion processes on (0,∞) with vanishing diffusion term with singular behaviour at the
boundary. The methods to prove the comparison principle in Sects. 9.2 and 9.3 in [22] do not
apply in our setting due to the different nature of our Hamiltonians.

2.6.6 LDP: Comparison of the Approaches

The method of obtaining exponential tightness in [22], and thus employed for this paper, is
via density of the domain of the limiting generator (H,D(H)). Like in the theory of weak
convergence, functions f ∈ D(H) in the domain of the generator, and functions fn ∈ D(Hn)

that converge to f uniformly, can be used to bound the fluctuations in the Skorokhod space.
This method is similar to the approaches taken in [9,14,24].

The approach using operator convergence is based on a result by Feng and Kurtz, anal-
ogous to the projective limit theorem, that allows one, given exponential tightness on the
Skorokhod space, to establish a LDP via the large deviation principle for all finite dimen-
sional distributions. This is done via the convergence of the logarithmic moment generating
functions for the finite dimensional distributions. The Markov property reduces this to
the convergence of the logarithmic moment generating function for time 0 and conver-
gence of the conditional moment generating functions, that form a semigroup Vn(t) f (x) =
1
n logE[en f (Xn(t)) | Xn(0) = x]. Thus, the problem is reduced to proving convergence of
semigroups Vn(t) f → V (t) f . As in the theory of linear semigroups, this comes down to
two steps. First one proves convergence of the generators Hn → H . Then one shows that
the limiting semigroup generates a semigroup. The verification of the comparison principle
implies that the domain of the limiting operator is sufficiently large to pin down a limiting
semigroup.

This can be compared to the same problem for linear semigroups and the martingale
problem. If the domain of a limiting linear generator is too small, multiple solutions to the
martingale problem can be found, giving rise to multiple semigroups, see Chap. 12 in [28]
or Sect. 4.5 in [21].

The convergence of Vn(t) f (x) → V (t) f (x) uniformly in x corresponds to having suffi-
cient control on the Doob-h transforms corresponding to the change of measures

dP f,t
n,x

dPn,x
(Xn) = exp {n f (Xn(t))} ,

where Pn,x is themeasure corresponding to the process Xn started in x at time 0. An argument
based on the projective limit theorem and control on the Doob h-transforms for independent
particles is also used in [14], whereas the methods in [9,24] are based on direct calculation
of the probabilities being close to a target trajectories.

2.6.7 Large Deviations for Large Excursions in Large Time

A notable second area of comparison is the study of large excursions in large time in the
context of queuing systems, see e.g. [2,17,18] and references therein. Here, it is shown that
the rate functions themselves, varying in space and time, are solutions to a Hamilton–Jacobi
equation. As in our setting, one of the main problems is the verification of the comparison
principle. The notable difficulty in these papers is a discontinuity of the Hamiltonian at the
boundary, but in their interior the rates are uniformly bounded away from infinity and zero.
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2.6.8 Lyapunov Functions

In [6,7], Lyapunov functions are obtained for theMcKean–Vlasov equation corresponding to
interactingMarkov processes in a setting similar to the setting of Theorem 2. Their discussion
goes much beyond Proposition 1, which is perhaps best compared to Theorem 4.3 in [7].
However, the proof of Proposition 1 is interesting in its own right, as it gives an intuitive
explanation for finding a relative entropy as a Lyapunov functional and is not based on explicit
calculations. In particular, the proof of Proposition 1 in principle works for any setting where
the path-space large deviation principle holds.

3 Large Deviation Principle Via an Associated Hamilton–Jacobi Equation

In this section, we will summarize the main results of [22]. Additionally, we will verify
the main conditions of their results, except for the comparison principle of an associated
Hamilton–Jacobi equation. This verification needs to be done for each individual model
separately and this is the main contribution of this paper. We verify the comparison principle
for our two models in Sect. 4.

3.1 Operator Convergence

Let En and E denote either of the spaces En,1, E1 or En,2, E2. Furthermore, denote by C(E)

the continuous functions on E and byC1(E) the functions that are continuously differentiable
on a neighbourhood of E in R

d .
Assume that for each n ∈ N, we have a jump process Xn on En , generated by a bounded

infinitesimal generator An . For the two examples, this process is either xn or μn . We denote
by {Sn(t)}t≥0 the transition semigroups Sn(t) f (y) = E [ f (Xn(t)) | Xn(0) = y] on C(En).
Define for each n the exponential semigroup

Vn(t) f (y) := 1

n
log Sn(t)en f (y) = 1

n
logE

[
en f (Xn(t)) | Xn(0) = y

]
.

As in the theory of weak convergence, given that the processes Xn satisfy a exponential
compact containment condition on the Skorokhod space, which in this setting is immediate,
[22] show that the existence of a strongly continuous limiting semigroup {V (t)}t≥0 on C(E)

in the sense that for all f ∈ C(E) and T ≥ 0, we have

lim
n→∞ sup

t≤T
sup

x∈En

|V (t) f (x) − Vn(t) f (x)| = 0, (3.1)

allows us to study the large deviation behaviour of the process Xn . We will consider this
question from the point of view of the generators Hn of {Vn(t)}t≥0, where Hn f is defined
by the norm limit of t−1(Vn(t) f − f ) as t ↓ 0. Note that Hn f = n−1e−n f Anen f , which for
our first model yields

Hn f (x) =
d∑

i=1

{
1 − xi

2
r i

n,+(x)

[

exp

{

n

(

f

(

x + 2

n
ei

)

− f (x)

)}

− 1

]

+ 1 + xi

2
r i

n,−(x)

[

exp

{

n

(

f

(

x − 2

n
ei

)

− f (x)

)}

− 1

]}

.
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For our second model, we have

Hn f (μ) =
d∑

a,b=1

μ(a)rn(a, b, μ)
[
exp

{
n

(
f
(
μ − n−1δa + n−1δb

) − f (μ)
)} − 1

]
.

In particular, Feng and Kurtz show that, as in the theory of weak convergence of Markov
processes, the existence of a limiting operator (H,D(H)), such that for all f ∈ D(H)

lim
n→∞ sup

x∈En

|H f (x) − Hn f (x)| = 0, (3.2)

for which one can show that (H,D(H)) generates a semigroup {V (t)}t≥0 on C(E) via the
Crandall-Liggett theorem, [11], then (3.1) holds.

Lemma 1 For either of our two models, assuming (2.1) or (2.3), we find that Hn f → H f ,
as in (3.2) holds for f ∈ C1(E), where H f is given by H f (x) := H(x,∇ f (x)) and where
H(x, p) is defined in (2.2) or (2.4).

The proof of the lemma is straightforward using the assumptions and the fact that f is
continuously differentiable.

Thus, the problem is reduced to proving that (H, C1(E)) generates a semigroup. The
verification of the conditions of the Crandall-Liggett theorem is in general very hard, or even
impossible. Two conditions need to be verified, the first is the dissipativity of H , which can
be checked via the positive maximum principle. The second condition is the range condition:
one needs to show that for λ > 0, the range of (1−λH) is dense in C(E). In other words, for
λ > 0 and sufficientlymanyfixed h ∈ C(E), we need to solve f −λH f = h with f ∈ C1(E).
An alternative is to solve this equation in the viscosity sense. If a viscosity solution exists and
is unique, we denote it by R̃(λ)h. Using these solutions, we can extend the domain of the
operator (H, C1(E)) by adding all pairs of the form (R̃(λ)h, λ−1(R̃(λ)h − h)) to the graph
of H to obtain an operator Ĥ that satisfies the conditions for the Crandall-Liggett theorem.
This is part of the content of Theorem 5 stated below.

As a remark, note that any concept of weak solutions could be used to extend the operator.
However, viscosity solutions are special in the sense that the extended operator remains
dissipative.

The next result is a direct corollary of Theorem 6.14 in [22].

Theorem 5 For either of our two models, assume that (2.1) or (2.3) holds. Additionally,
assume that the comparison principle is satisfied for (2.5) for all λ > 0 and h ∈ C(E).

Then, the operator

Ĥ :=
⋃

λ>0

{(
R̃(λ)h, λ−1(R̃(λ)h − h)

)
| h ∈ C(E)

}

generates a semigroup {V (t)}t≥0 as in the Crandall-Liggett theorem and we have (3.1).
Additionally, suppose that {Xn(0)} satisfies the large deviation principle on E with good

rate function I0. Then Xn satisfies the LDP on DE (R+) with good rate function I given by

I (γ ) = I0(γ (0)) + sup
m

sup
0=t0<t1<···<tm

m∑

k=1

Itk−tk−1(γ (tk) | γ (tk−1)),

where Is(y | x) := sup f ∈C(E) f (y) − V (s) f (x).

123



Large Deviations for Finite State Markov Jump Processes 335

Note that to prove Theorem 6.14 in [22], one needs to check that viscosity sub- and super-
solutions to (2.5) exist. Feng and Kurtz construct these sub- and super-solutions explicitly,
using the approximating operators Hn , see the proof of Lemma 6.9 in [22].

Proof We check the conditions for Theorem 6.14 in [22]. In our models, the maps ηn :
En → E are simply the embedding maps. Condition (a) is satisfied as all our generators An

are bounded. The conditions for convergence of the generators follow by Lemma 1.

The additional assumptions in Theorems 1 and 2 are there to make sure we are able to
verify the comparison principle. This is themajor contribution of the paper andwill be carried
out in Sect. 4.

The final steps to obtain Theorems 1 and 2 are to obtain the rate function as the integral
over a Lagrangian. Also this is based on results in Chap. 8 of [22].

3.2 Variational Semigroups

In this section, we introduce the Nisio semigroup V(t), of which we will show that it equals
V (t) on C(E). This semigroup is given as a variational problem where one optimises a
payoff f (γ (t)) that depends on the state γ (t) ∈ E , but where a cost is paid that depends
on the whole trajectory {γ (s)}0≤s≤t . The cost is accumulated over time and is given by a
‘Lagrangian’. Given the continuous and convex operator H f (x) = H(x,∇ f (x)), we define
this Lagrangian by taking the Legendre-Fenchel transform:

L(x, u) := sup
p∈Rd

{〈p, u〉 − H(x, p)} .

As p �→ H(x, p) is convex and continuous, it follows by the Fenchel - Moreau theorem that
also

H f (x) = H(x,∇ f (x)) = sup
u∈Rd

{〈∇ f (x), u〉 − L(x, u)} .

Using L, we define the Nisio semigroup for measurable functions f on E :

V(t) f (x) = sup
γ∈AC
γ (0)=x

f (γ (t)) −
∫ t

0
L(γ (s), γ̇ (s))ds. (3.3)

To be able to apply the results from Chap. 8 in [22], we need to verify Conditions 8.9 and
8.11 of [22].

For the semigroup to bewell behaved,we need to verifyCondition 8.9 in [22]. In particular,
this condition implies Proposition 8.13 in [22] that ensures that the Nisio semigroup is in fact
a semigroup on the upper semi-continuous functions that are bounded above. Additionally, it
implies that all absolutely continuous trajectories up to time T , that have uniformly bounded
Lagrangian cost, are a compact set in DE ([0, T ]).

Lemma 2 For the Hamiltonians in (2.2) and (2.4), Condition 8.9 in [22] is satisfied.

Proof For (1),take U = R
d and set A f (x, v) = 〈∇ f (x), v〉. Considering Definition 8.1 in

[22], if γ ∈ AC, then

f (γ (t)) − f (γ (0)) =
∫ t

0
A f (γ (s), γ̇ (s))ds
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by definition of A. In Definition 8.1, however, relaxed controls are considered, i.e. instead of
a fixed speed γ̇ (s), one considers a measure λ ∈ M(Rd ×R

+), such that λ(Rd × [0, t]) = t
for all t ≥ 0 and

f (γ (t)) − f (γ (0)) =
∫ t

0
A f (γ (s), v)λ(dv, ds).

These relaxed controls are then used to define the Nisio semigroup in Eq. (8.10). Note
however, that by convexity of H in the second coordinate, also L is convex in the second
coordinate. It follows that a deterministic control λ(dv, dt) = δv(t)(dv)dt is always the
control with the smallest cost by Jensen’s inequality. We conclude that we can restrict the
definition (8.10) to curves in AC. This motivates our changed definition in Eq. (3.3).

For this paper, it suffices to set 	 = E × R
d , so that (2) is satisfied. By compactness of

E , (4) is clear.
We are left to prove (3) and (5). For (3), note that L is lower semi-continuous by con-

struction. We also have to prove compactness of the level sets. By lower semi-continuity, it
is sufficient to show that the level sets {L ≤ c} are contained in a compact set.

Set N := ∩x∈E
{

p ∈ R
d | H(x, p) ≤ 1

}
. First, we show that N has non-empty interior,

i.e. there is some ε > 0 such that the open ball B(0, ε) of radius ε around 0 is contained inN .
Suppose not, then there exists xn and pn such that pn → 0 and for all n: H(xn, pn) = 1. By
compactness of E and continuity of H , we find some x ∈ E such that H(x, 0) = 1, which
contradicts our definitions of H , where H(y, 0) = 0 for all y ∈ E .

Let (x, v) ∈ {L ≤ c}, then
〈p, v〉 ≤ L(x, v) + H(x, p) ≤ c + 1

for all p ∈ B(0, ε) ⊆ N . It follows that v is contained in some bounded ball inRd . It follows
that {L ≤ c} is contained in some compact set by the Heine-Borel theorem.

Finally, (5) can be proven as Lemma 10.21 in [22] or Lemma 4.29 in [25]

The last property necessary for the equality of V (t) f andV(t) f onC(E) is the verification
of Condition 8.11 in [22]. This condition is key to proving that a variational resolvent, see
Eq. (8.22), is a viscosity super-solution to (2.5). As the variational resolvent is also a sub-
solution to (2.5) by Young’s inequality, the variational resolvent is a viscosity solution to this
equation. If viscosity solutions are unique, this yields, after an approximation argument that
V (t) = V(t).

Lemma 3 Condition 8.11 in [22] is satisfied. In other words, for all g ∈ C1(E) and x0 ∈ E,
there exists a trajectory γ ∈ AC such that γ (0) = x0 and for all T ≥ 0:

∫ T

0
Hg(γ (t))dt =

∫ T

0
〈∇g(γ (t)), γ̇ (t)〉 − L(γ (t), γ̇ (t))dt. (3.4)

Proof Fix T > 0, g ∈ C1(E) and x0 ∈ E . We introduce a vector field Fg : E → R
d , by

Fg(x) := Hp(x,∇g(x)),

where Hp(x, p) is the vector of partial derivatives of H in the second coordinate. Note that
in our examples, H is continuously differentiable in the p-coordinates. For example, for the
d = 1 case of Theorem 1, we obtain

Fg(x) := 2v+(x)e2∇g(x) − 2v−(x)e−2∇g(x).
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As Fg is a continuous vector field, we can find a local solution γ g(t) in E to the differential
equation {

γ̇ (t) = Fg(γ (t)),

γ (0) = x0,

by an extended version of Peano’s theorem [10]. The result in [10] is local, however, the
length of the interval on which the solution is constructed depends inversely on the norm of
the vector field, see his Eq. (2). As our vector fields are globally bounded in size, we can
iterate the construction in [10] to obtain a global existence result, such that γ̇ g(t) = Fg(γ (t))
for almost all times in [0,∞).

We conclude that on a subset of full measure of [0, T ] that
L(γ g(t), γ̇ g(t)) = L(γ g(t), Fg(γ g(t)))

= sup
p∈Rd

〈p, Fg(γ g(t))〉 − H(γ g(t), p)

= sup
p∈Rd

〈p, Hp(γ
g(t),∇g(γ g(t)))〉 − H(γ g(t), p).

By differentiating the final expression with respect to p, we find that the supremum is taken
for p = ∇g(γ g(t)). In other words, we find

L(γ g(t), γ̇ g(t)) = 〈∇g(γ g(t)), Hp(γ
g(t),∇g(γ g(t)))〉 − H(γ g(t),∇g(γ g(t)))

= 〈∇g(γ g(t)), γ̇ g(t)〉 − Hg(γ g(t)).

By integrating over time, the zero set does not contribute to the integral, we find (3.4).

The following result follows from Corollary 8.29 in [22].

Theorem 6 For either of our two models, assume that (2.1) or (2.3) holds. Assume that the
comparison principle is satisfied for (2.5) for all λ > 0 and h ∈ C(E). Finally, suppose that
{Xn(0)} satisfies the large deviation principle on E with good rate function I0.

Then, we have V (t) f = V(t) f for all f ∈ C(E) and t ≥ 0. Also, Xn satisfies the LDP
on DE (R+) with good rate function I given by

I (γ ) :=
{

I0(γ (0)) + ∫ ∞
0 L(γ (s), γ̇ (s))ds if γ ∈ AC,

∞ if γ /∈ AC.

Proof We check the conditions for Corollary 8.29 in [22]. Note that in our setting H = H.
Therefore, condition (a) of Corollary 8.29 is trivially satisfied. Furthermore, we have to
check the conditions for Theorems 6.14 and 8.27. For the first theorem, these conditions
were checked already in the proof of our Theorem 5. For Theorem 8.27, we need to check
Conditions 8.9, 8.10 and 8.11 in [22]. As H1 = 0, Condition 8.10 follows from 8.11. 8.9
and 8.11 have been verified in Lemmas 2 and 3.

The last theorem shows us that we have Theorems 1 and 2 if we can verify the comparison
principle, i.e. Theorems 3 and 4. This will be done in the section below.

Proof of Theorems 1 and 2 The comparison principles for equation (2.5) are verified in The-
orems 3 and 4. The two theorems now follow from Theorem 6. ��
Proof of Proposition 1 We give the proof for the system considered in Theorem 1. Fix t ≥ 0
and some starting point x0. Let x(t) be any solution of ẋ(t) = F(x(t)) with x(0) = x0. We
show that I0(x(t)) ≤ I0(x0).
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Let Xn(0) be distributed as νn . Then it follows by Theorem 1 that the LDP holds for
{Xn}n≥0 on DE (R+).

As νn is invariant for the Markov process generated by An , also the sequence {Xn(t)}n≥0

satisfies the large deviation principle on E with good rate function I0. Combining these two
facts, the Contraction principle [15, Theorem 4.2.1] yields

I0(x(t)) = inf
γ∈AC:γ (t)=x(t)

I0(γ (0)) +
∫ t

0
L(γ (s), γ̇ (s))ds

≤ I0(x(0)) +
∫ t

0
L(x(s), ẋ(s))ds = I0(x(0)).

Note that L(x(s), ẋ(s)) = 0 for all s as was shown in Example 3. ��

4 The Comparison Principle

We proceed with checking the comparison principle for equations of the type f (x) −
λH(x,∇ f (x)) − h(x) = 0. In other words, for subsolutions u and supersolutions v we
need to check that u ≤ v. We start with some known results. First of all, we give the main
tool to construct sequences xα and yα that converge to a maximising point z ∈ E such that
u(z)− v(z) = supz′∈E u(z′)− v(z′). This result can be found for example as Proposition 3.7
in [12].

Lemma 4 Let E be a compact subset of Rd , let u be upper semi-continuous, v lower semi-
continuous and let � : E2 → R

+ be a lower semi-continuous function such that �(x, y) = 0
if and only if x = y. For α > 0, let xα, yα ∈ E such that

u(xα) − v(yα) − α�(xα, yα) = sup
x,y∈E

{u(x) − v(y) − α�(x, y)} .

Then the following hold

(i) limα→∞ α�(xα, yα) = 0.
(ii) All limit points of (xα, yα) are of the form (z, z) and for these limit points we have

u(z) − v(z) = supx∈E {u(x) − v(x)}.
We say that � : E2 → R

+ is a good penalization function if �(x, y) = 0 if and
only if x = y, it is continuously differentiable in both components and if (∇�(·, y))(x) =
−(∇�(x, ·))(y) for all x, y ∈ E . The next two results can be found as Lemma 9.3 in [22].
We will give the proofs of these results for completeness.

Proposition 2 Let (H,D(H)) be an operator such that D(H) = C1(E) of the form
H f (x) = H(x,∇ f (x)). Let u be a subsolution and v a supersolution to f (x) −
λH(x,∇ f (x)) − h(x) = 0, for some λ > 0 and h ∈ C(E). Let � be a good penaliza-
tion function and let xα, yα satisfy

u(xα) − v(yα) − α�(xα, yα) = sup
x,y∈E

{u(x) − v(y) − α�(x, y)} .

Suppose that

lim inf
α→∞ H (xα, α(∇�(·, yα))(xα)) − H (yα, α(∇�(·, yα))(xα)) ≤ 0,

then u ≤ v. In other words, f (x) − λH(x,∇ f (x)) − h(x) = 0 satisfies the comparison
principle.
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Proof Fix λ > 0 and h ∈ C(E). Let u be a subsolution and v a supersolution to

f (x) − λH(x,∇ f (x)) − h(x) = 0. (4.1)

We argue by contradiction and assume that δ := supx∈E u(x) − v(x) > 0. For α > 0, let
xα, yα be such that

u(xα) − v(yα) − α�(xα, yα) = sup
x,y∈E

{u(x) − v(y) − α�(x, y)} .

Thus Lemma 4 yields α�(xα, yα) → 0 and for any limit point z of the sequence xα , we
have u(z) − v(z) = supx∈E u(x) − v(x) = δ > 0. It follows that for α large enough,
u(xα) − v(yα) ≥ 1

2 δ.
For every α > 0, the map 
1

α(x) := v(yα) + α�(x, yα) is in C1(E) and u(x) − 
1
α(x)

has a maximum at xα . On the other hand, 
2
α(y) := u(xα)−α�(xα, y) is also in C1(E) and

v(y) − 
2
α(y) has a minimum at yα . As u is a sub- and v a super solution to (4.1), we have

u(xα) − h(xα)

λ
≤ H(xα, α(∇�(·, yα))(xα))

v(yα) − h(yα))

λ
≥ H(yα,−α(∇�(xα, ·))(yα))

= H(yα, α(∇�(·, yα))(xα))

where the last equality follows as � is a good penalization function. It follows that for α

large enough, we have

0 <
δ

2λ
≤ u(xα) − v(yα)

λ
(4.2)

= u(xα) − h(xα)

λ
− v(yα) − h(yα)

λ
+ 1

λ
(h(xα) − h(yα))

≤ H(xα, α(∇�(·, yα))(xα)) − H(yα, α(∇�(·, yα))(xα)) + 1

λ
(h(xα) − h(yα))

As h is continuous, we obtain limα→∞ h(xα) − h(yα) = 0. Together with the assumption
of the proposition, we find that the lim inf as α → ∞ of the third line in (4.2) is bounded
above by 0, which contradicts the assumption that δ > 0. ��

The next lemma gives additional control on the sequences xα, yα .

Lemma 5 Let (H,D(H)) be an operator such that D(H) = C1(E) of the form H f (x) =
H(x,∇ f (x)). Let u be a subsolution andv a supersolution to f (x)−λH(x,∇ f (x))−h(x) =
0, for some α > 0 and h ∈ C(E). Let � be a good penalization function and let xα, yα satisfy

u(xα) − v(yα) − α�(xα, yα) = sup
x,y∈E

{u(x) − v(y) − α�(x, y)} .

Then we have that
sup
α

H (yα, α(∇�(·, yα))(xα)) < ∞. (4.3)

Proof Fix λ > 0, h ∈ C(E) and let u and v be sub- and super-solutions to f (x) −
λH(x, f (x)) − h(x) = 0. Let � be a good penalization function and let xα, yα satisfy

u(xα) − v(yα) − α�(xα, yα) = sup
x,y∈E

{u(x) − v(y) − α�(x, y)} .
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As yα is such that

v(yα) − (u(xα) − �(xα, yα)) = inf
y

v(y) − (u(xα) − �(xα, y)) ,

and v is a super-solution, we obtain

H (yα,−α(∇�(xα, ·))(yα)) ≤ v(yα) − h(yα)

λ

As � is a good penalization function, we have −(∇�(xα, ·))(yα) = (∇�(·, yα))(xα). The
boundedness of v now implies

sup
α

H (yα, α(∇�(·, yα))(xα)) ≤ 1

λ
(v(yα) − h(yα)) ≤ ||v − h||

λ
< ∞.

��
4.1 One-Dimensional Ehrenfest Model

To single out the important aspects of the proof of the comparison principle for Eq. (2.5), we
start by proving it for the d = 1 case of Theorem 1.

Proposition 3 Let E = [−1, 1] and let

H(x, p) = v+(x)
[
e2p − 1

] + v−(x)
[
e−2p − 1

]
,

where v+, v− are continuous and satisfy the following properties:

(a) v+(x) = 0 for all x or v+ satisfies the following properties:

(i) v+(x) > 0 for x �= 1.
(ii) v+(1) = 0 and there exists a neighbourhood U1 of 1 on which there exists a decom-

position v+(x) = v+,†(x)v+,‡(x) such that v+,† is decreasing and where v+,‡ is
continuous and satisfies v+,‡(1) �= 0.

(b) v−(x) = 0 for all x or v− satisfies the following properties:

(i) v−(x) > 0 for x �= −1.
(ii) v+(−1) = 0 and there exists a neighbourhood U−1 of 1 on which there exists a

decomposition v−(x) = v−,†(x)v−,‡(x) such that v−,† is increasing and where v−,‡

is continuous and satisfies v−,‡(−1) �= 0.

Let λ > 0 and h ∈ C(E). Then the comparison principle holds for f (x)−λH(x,∇ f (x))−
h(x) = 0.

Proof Fix λ > 0, h ∈ C(E) and pick a sub- and super-solutions u and v to f (x) −
λH(x,∇ f (x)) − h(x) = 0. We check the condition for Proposition 2. We take the good
penalization function �(x, y) = 2−1(x − y)2 and let xα, yα satisfy

u(xα) − v(yα) − α

2
|xα − yα|2 = sup

x,y∈E

{
u(x) − v(y) − α

2
|x − y|2

}
.

We need to prove that

lim inf
α→∞ H(xα, α(xα − yα)) − H(yα, α(xα − yα)) ≤ 0. (4.4)

By Lemma 4, we know that α|xα − yα|2 → 0 as α → ∞ and any limit point of (xα, yα) is
of the form (z, z) for some z such that u(z)− v(z) = maxz′∈E u(z′)− v(z′). Restrict α to the
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sequenceα ∈ N and extract a subsequence, whichwewill also denote byα, such that α → ∞
xα and yα converge to some z. The rest of the proof depends on whether z = −1, z = 1 or
z ∈ (−1, 1).

First suppose that z ∈ (−1, 1). By Lemma 5, we have

sup
α

v+(yα)
[
e2α(xα−yα) − 1

]
+ v−(yα)

[
e−2α(xα−yα) − 1

]
< ∞.

As ec − 1 > −1, we see that the lim sup of both terms of the sum individually are bounded
as well. Using that yα → z ∈ (−1, 1), and the fact that v+, v− are bounded away from 0 on
a closed interval around z, we obtain from the first term that supα α(xα − yα) < ∞ and from
the second that supα α(yα − xα) < ∞. We conclude that α(xα − yα) is a bounded sequence.
Therefore, there exists a subsequence α(k) such that α(k)(xα(k) − yα(k)) converges to some
p0. We find that

lim inf
α→∞ H(xα, α(xα − yα)) − H(yα, α(xα − yα))

≤ lim
k→∞ H(xα(k), α(xα(k) − yα(k)) − H(yα(k), α(xα(k) − yα(k)))

= H(z, p0) − H(z, p0) = 0.

We proceed with the proof in the case that xα, yα → z = −1. The case where z = 1 is
proven similarly. Again by Lemma 5, we obtain the bounds

sup
α

v+(yα)
[
e2α(xα−yα) − 1

]
< ∞, sup

α
v−(yα)

[
e−2α(xα−yα) − 1

]
< ∞. (4.5)

As v+ is bounded away from 0 near−1, we obtain by the left hand bound that supα α(xα −
yα) < ∞. As in the proof above, it follows that if α|xα − yα| is bounded, we are done.
This leaves the case where there exists a subsequence of α, denoted by α(k), such that
α(k)(yα(k) − xα(k)) → ∞. Then clearly, e2α(k)(xα(k)−yα(k)) − 1 is bounded and contains a
converging subsequence. We obtain as in the proof where z ∈ (−1, 1) that

lim inf
α→∞ H(xα, α(xα − yα)) − H(yα, α(xα − yα))

= lim inf
α→∞

[
v+(xα) − v+(yα)

] [
e2α(xα−yα) − 1

]

+ [
v−(xα) − v−(yα)

] [
e2α(yα−xα) − 1

]

≤ lim inf
k→∞

[
v−(xα(k)) − v−(yα(k))

] [
e2α(k)(yα(k)−xα(k)) − 1

]
.

Note that as α(k)(yα(k) − xα(k)) → ∞, we have yα(k) > xα(k) ≥ −1, which implies
v−(yα(k)) > 0. Also for k sufficiently large, yα(k), xα(k) ∈ U−1. Thus, we can write

[
v−(xα(k)) − v−(yα(k))

] [
e2α(k)(yα(k)−xα(k)) − 1

]

=
[

v−,†(xα(k))

v−,†(yα(k))

v−,‡(xα(k))

v−,‡(yα(k))
− 1

]

v−(yα(k))
[
e2α(k)(yα(k)−xα(k)) − 1

]
.

By the bound in (4.5), and the obvious lower bound, we see that the non-negative sequence

uk := v−(yα(k))
[
e2α(k)(yα(k)−xα(k)) − 1

]
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contains a converging subsequence uk′ → c. As yα(k) > xα(k) and v−,† is increasing:

lim sup
k

v−,†(xα(k))

v−,†(yα(k))

v−,‡(xα(k))

v−,‡(yα(k))
≤

(

lim sup
k

v−,†(xα(k))

v−,†(yα(k))

)(

lim
k

v−,‡(xα(k))

v−,‡(yα(k))

)

≤ v−,‡(−1)

v−,‡(−1)
= 1.

As a consequence, we obtain

lim inf
k

[
v−(xα(k))

v−(yα(k))
− 1

]

v−(yα(k))
[
e2α(k)(yα(k)−xα(k)) − 1

]

≤
(

lim sup
k

[
v−,†(xα(k))

v−,†(yα(k))

v−,‡(xα(k))

v−,‡(yα(k))
− 1

]) (

lim inf
k′ uk′

)

≤ 0.

This concludes the proof of (4.4) for the case that z = −1. ��
4.2 Multi-dimensional Ehrenfest Model

Proof of Theorem 3 Let u be a subsolution and v a supersolution to f (x)−λH(x,∇ f (x))−
h(x) = 0. As in the proof of Proposition 3, we check the condition for Proposition 2. Again,
for α ∈ N let xα, yα satisfy

u(xα) − v(yα) − α

2
|xα − yα|2 = sup

x,y∈E

{
u(x) − v(y) − α

2
|x − y|2

}
.

and without loss of generality let z be such that xα, yα → z.
Denote with xα,i and yα,i the i th coordinate of xα respectively yα . We prove

lim inf
α→∞ H(xα, α(xα − yα)) − H(yα, α(xα − yα))

= lim inf
α→∞

∑

i

{ [
vi+(xα) − vi+(yα)

] [
eα(xα,i −yα,i ) − 1

]

+
[
vi−(xα) − vi−(yα)

] [
eα(yα,i −xα,i ) − 1

] }

≤ 0,

by constructing a subsequence α(n) → ∞ such that the first term in the sum converges to
0. From this sequence, we find a subsequence such that the second term converges to zero,
and so on.

Therefore, we will assume that we have a sequence α(n) → ∞ for which the first i − 1
terms of the difference of the two Hamiltonians vanishes and prove that we can find a
subsequence for which the i th term

[
vi+(xα) − vi+(yα)

] [
eα(xα,i −yα,i ) − 1

]
+

[
vi−(xα) − vi−(yα)

] [
eα(yα,i −xα,i ) − 1

]
(4.6)

vanishes. This follows directly as in the proof of Proposition 3, arguing depending on the
situation zi ∈ (−1, 1), zi = −1 or zi = −1. ��
4.3 Mean Field Markov Jump Processes on a Finite State Space

The proof of Theorem 4 follows along the lines of the proofs of Proposition 3 and Theorem
3. The proof however needs one important adaptation because of the appearance of the
difference pb − pa in the exponents of the Hamiltonian.
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Naively copying the proofs using the penalization function �(μ, ν) = 1
2

∑
a(μ(a) −

ν(a))2 one obtains by Lemma 5, for suitable sequences μα and να , that

sup
α

v(a, b, να)
[
eα((μα(b)−να(b))−(μα(a)−να(a))) − 1

]
< ∞.

One sees that the control on the sequences α(να(a) − μα(a)) obtained from this bound is
not very good, due to the compensating term α(μα(b) − να(b)).

The proof can be suitably adapted using a different penalization function. For x ∈ R, let
x− := x ∧ 0 and x+ = x ∨ 0. Define �(μ, ν) = 1

2

∑
a((μ(a) − ν(a))−)2 = 1

2

∑
a((ν(a) −

μ(a))+)2. Clearly, � is differentiable in both components and satisfies (∇�(·, ν))(μ) =
−(∇�(μ, ·))(ν). Finally, using the fact that

∑
i μ(i) = ∑

i ν(i) = 1, we find that�(μ, ν) =
0 implies that μ = ν. We conclude that � is a good penalization function.

The bound obtained from Lemma 5 using this � yields

sup
α

v(a, b, να)
[
eα((μα(b)−να(b))−−(μα(a)−να(a))−) − 1

]
< ∞.

We see that if (μα(b) − να(b))− − (μα(a) − να(a))− → ∞ it must be because α(να(a) −
μα(a)) → ∞. This puts us in the position to use the techniques from the previous proofs.

Proof of Theorem 4 Set �(μ, ν) = 1
2

∑
a((μ(a) − ν(a))−)2, as above. We already noted

that � is a good penalization function.
Let u be a subsolution and v be a supersolution to f (μ) − λH(μ,∇ f (μ)) − h(μ) = 0.

For α ∈ N, pick μα and να such that

u(μα) − v(να) − α�(μα, να) = sup
μ,ν∈E

{u(μ) − v(ν) − α�(μ, ν)}

Furthermore, assume without loss of generality that μα, να → z for some z such that u(z)−
v(z) = supz′∈E u(z′) − v(z′). By Proposition 2, we need to bound

H(μα, α(∇
(·, να))(μα)) − H(να, α(∇
(μα, ·))(μα))

=
∑

a,b

[v(a, b, μα) − v(a, b, να)]
[
eα((μα(b)−να(b))−−(μα(a)−να(a))−) − 1

]
. (4.7)

As in the proof of Theorem3,wewill show that each term in the sum above can be bounded
above by 0 separately. So pick some ordering of the ordered pairs (i, j), i, j ∈ {1, . . . , n}
and assume that we have some sequence α such that the lim infα→∞ of the first k terms in
Eq. (4.7) are bounded above by 0. Suppose that (i, j) is the pair corresponding to the k + 1th
term of the sum in (4.7).

Clearly, if v(i, j, π) = 0 for allπ thenwe are done. Therefore,we assume that v(i, j, π) �=
0 for all π such that π(i) > 0.

In the case thatμα, να → π∗, whereπ∗(i) > 0, we know byLemma 5, using that v(i, j, ·)
is bounded away from 0 on a neighbourhood of π∗, that

sup
α

eα((μα( j)−να( j))−−(μα(i)−να(i))−) − 1 < ∞.
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Picking a subsequenceα(n) such that this termabove converges andusing thatπ → v(i, j, π)

is uniformly continuous, we see

lim inf
α→∞ [v(i, j, μα) − v(i, j, να)]

[
eα((μα( j)−να( j))−−(μα(i)−να(i))−) − 1

]

= lim
n→∞

[
v(i, j, μα(n)) − v(i, j, να(n))

]

×
[

e
α(n)

(
(μα(n)( j)−να(n)( j))

−−(μα(n)(i)−να(n)(i))
−)

− 1

]

= 0

For the second case, suppose that μα(i), να(i) → 0. By Lemma 5, we get

sup
α

v(i, j, να)
[
eα((μα( j)−να( j))−−(μα(i)−να(i))−) − 1

]
< ∞. (4.8)

First of all, if supα α
(
(μα( j) − να( j))− − (μα(i) − να(i))−

)
< ∞, then the argument given

above also takes care of this situation. So suppose that this supremum is infinite. Clearly, the
contribution (μα( j) − να( j))− is negative, which implies that supα α (να(i) − μα(i))+ =
∞. This means that we can assume without loss of generality that

α (να(i) − μα(i)) → ∞, να(i) > μα(i). (4.9)

We rewrite the term a = i , b = j in Eq. (4.7) as
[

v(i, j, μα)

v(i, j, να)
− 1

]

v(i, j, να)
[
eα((μα( j)−να( j))−−(μα(i)−να(i))−) − 1

]
.

The right hand side is bounded above by (4.8) and bounded below by −1, so we take a
subsequence of α, also denoted by α, such that the right hand side converges. Also note that
for α large enough the right hand side is non-negative. Therefore, it suffices to show that

lim inf
α→∞

v(i, j, μα)

v(i, j, να)
≤ 1,

which follows as in the proof of Proposition 3. ��
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