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Abstract We study three instances of log-correlated processes on the interval: the log-
arithm of the Gaussian unitary ensemble (GUE) characteristic polynomial, the Gaussian
log-correlated potential in presence of edge charges, and the Fractional Brownian motion
with Hurst index H → 0 (fBM0). In previous collaborations we obtained the probability
distribution function (PDF) of the value of the global minimum (equivalently maximum)
for the first two processes, using the freezing-duality conjecture (FDC). Here we study the
PDF of the position of the maximum xm through its moments. Using replica, this requires
calculating moments of the density of eigenvalues in the β-Jacobi ensemble. Using Jack
polynomials we obtain an exact and explicit expression for both positive and negative inte-
ger moments for arbitrary β > 0 and positive integer n in terms of sums over partitions.
For positive moments, this expression agrees with a very recent independent derivation by
Mezzadri and Reynolds. We check our results against a contour integral formula derived
recently by Borodin and Gorin (presented in the Appendix 1 from these authors). The duality
necessary for the FDC to work is proved, and on our expressions, found to correspond to
exchange of partitions with their dual. Performing the limit n → 0 and to negative Dyson
index β → −2, we obtain the moments of xm and give explicit expressions for the lowest
ones. Numerical checks for the GUE polynomials, performed independently by N. Simm,
indicate encouraging agreement. Some results are also obtained for moments in Laguerre,
Hermite-Gaussian, as well as circular and related ensembles. The correlations of the position
and the value of the field at the minimum are also analyzed.

With Appendix 1 written by Alexei Borodin and Vadim Gorin.
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1 Introduction

Logarithmically correlated Gaussian (LCG) random processes and fields attract growing
attention in mathematical physics and probability and play an important role in problems of
statistical mechanics, quantum gravity, turbulence, financial mathematics and randommatrix
theory, see e.g. recent papers [1–5] for introduction and some background references and
[6] for earlier review including condensed matter applications. A general lattice version of
logarithmically correlated Gaussian field is a collection of Gaussian variables VN ,x : x ∈ DN

attached to the sites of d−dimensional box DN of side length N (assuming lattice spacing
one) and characterized by the mean zero and the covariance structure

E{V 2
N ,x } = 2g2 log N + f (x), (1)

E{VN ,x , VN ,y} = 2g2 log+
N

|x − y| + ψ(x, y), for x �= y ∈ DN (2)

where ln+(w) = max (lnw, 0), g > 0 and both f (x) and ψ(x, y) are bounded function
far enough from the boundary of DN . One also can define the continuous versions V (x)
of LCG fields on various domains D ∈ R

d which is then necessarily a random generalized
function (“random distribution”), the most famous example being the Gaussian Free field in
d = 2, see [7] for a rigorous definition. For d = 1 the one-dimensional versions of LGC
processes are known under the name of 1/ f noises, see e.g. [8,9]. They appear frequently in
physics and engineering sciences, and also are rich and important mathematical objects of
interest on their own. Such processes emerge, for example, in constructions of conformally
invariant planar random curves [10] and are relevant in random matrix theory and studies of
the Riemann zeta-function on the critical line [2].

In particular, the problem of characterizing the distribution of the global maximum MN =
maxx∈DN VN ,x of LCGfields and processes (or their continuum analogues) recently attracted
a lot of interest, in physics, see [6,11–15] and mathematics, see [2,16–26]. The distribution
is proved to be given by the Gumbel distribution with random shift [20] and has a universal
tail predicted by renormalization group arguments in [6]. The detail of the full distribution
are not universal and depend on some details of the behaviour of the covariance (2) for global
|x − y| ∼ N scale as well as on the subleading term f (x) in the variance (1). The explicit
forms for the maximum distribution were conjectured in a few specific models of 1/ f noises
[2,11,12,21].

The goal of this paper is to provide some information about the distribution of the position
of the global minimum

xm =
{
x ∈ D : V (x) = min

y∈D V (y)

}
:= Arg minx∈DV (x) (3)

for some examples of 1-dimensional processes with logarithmic correlations, though depend-
ing on applications, one can be interested instead in a maximum. Statistical properties of the
value and position for maxima and minima are obviously trivially related in cases when
V (x) = −V (x) in law.

Our first example is the modulus of the characteristic polynomial of a randomGUEmatrix
over the interval [−1, 1] of the spectral parameter. As is well-known, in the limit of large
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192 Y. V. Fyodorov, P. L. Doussal

sizes of the matrix the logarithm of that modulus is very intimately related to 1/ f noises
[1,2,21,27,28]. In that example the interesting quantity is obviously the statistics of the
maximum, with minimum value being trivially zero at every characteristic root of the matrix.
The second example is a general two-parameter variant of a log-correlated process on the
interval with, in the language of Coulomb gases, endpoint charges, introduced and studied
in [12]. That case may include a non-random (logarithmic) background potential V0(x), so
that for the sum V0(x) + V (x) we have

min[V0(x) + V (x)] = −max[−V0(x) + V (x)], in law

Our last example is a regularized version of the fractional Brownian motion with zero Hurst
index, which is a bona fide (nonstationary) 1d LCG process [1]. Here statistics of maxima
and minima are trivially related by symmetry in law.

2 Models, Method and Main Results

We now define the three models to be considered. Although we did not yet succeed in
obtaining the full probability distribution function (PDF), P(xm), of the position of the
global minimum xm , we derive formulae for all positive integer moments of xm in terms of
sums over partitions. In this section we present explicit values for some low moments of xm ,
more results can be found in the remainder of the paper.

As is clear from [12] there is an intimate relation between statistics of extrema in log-
correlated fields on an interval and the β-Jacobi ensemble of random matrices [29,30]. In
the course of our calculation we present methods to calculate the moments of the eigenvalue
density of the Jacobi ensemble. In this section we provide a very explicit formula for these
moments derived in remainder of the paper. In particular our result is in agreement with
recent results byMezzadri and Reynolds [31].We check our results against a contour integral
representation derived recently byBorodin andGorin (presented in theAppendix 1 from these
authors) which, remarkably, also allows to calculate negative moments.

Finally we sketch the replicamethod and the application of the freezing-duality conjecture
to extract the moments of xm from the moments of the Jacobi ensemble.

2.1 Results for Log-Correlated Processes

2.1.1 GUE Characteristic Polynomials (GUE-CP)

Our first prediction is for the lowest moments of the position of the global maximum for the
the modulus of the characteristic polynomial pN (x) = det(x I − H) of the Hermitian N × N
matrix H sampled with the probability weight

P(H) ∝ exp(−2NTr(H2)) (4)

known as the Gaussian Unitary Ensemble (or GUE) [32–34]. Here the variance is chosen to
ensure that asymptotically for N → ∞, the limiting mean density of the GUE eigenvalues
is given by the Wigner semicircle law ρ(x) = (2/π)

√
1 − x2 supported in the interval

x ∈ [−1, 1]. Hence the object we want to study is log |pN (x)| = ∑
i ln |x − λi | where the

λi are the eigenvalues of the GUE matrix H . To study its fluctuations it turns out to be more
convenient to subtract its mean. This leads to the following
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Prediction 1 Define φN (x) = 2 log |pN (x)| − 2E(log |pN (x)|) and consider the random
variable

x (N )
m := Arg maxx∈[−1,1]φN (x) (5)

Then the lowest even integer moments of this random variable have the values

lim
N→∞E

{[
x (N )
m

]2} = 13

49
, lim

N→∞E

{[
x (N )
m

]4} = 20

147
(6)

whereas the odd integer moments vanish by symmetry.
In particular, the kurtosis of the distribution of x (N )

m in the large-N limit is given by

lim
N→∞

⎛
⎜⎜⎜⎝

E

{[
x (N )
m

]4}

E

{[
x (N )
m

]2}2 − 3

⎞
⎟⎟⎟⎠ = −541

507
≈ −1.067 . . . (7)

To make a contact between |pN (x)| and the LCG processes we refer to the paper [1]. That
work revealed that the natural large-N limit of φN (x) is given by the random Chebyshev–
Fourier series

F(x) = −2
∞∑
n=1

1√
n
an Tn(x), x ∈ (−1, 1), (8)

with Tn(x) = cos(n arccos(x)) being Chebyshev polynomials and real an being indepen-
dent standard Gaussian variables. A quick computation shows that the covariance structure
associated with the generalized process F(x) is given by an integral operator with kernel

E{F(x)F(y)} = 4
∞∑
n=1

1

n
Tn(x)Tn(y) = −2 log(2|x − y|), (9)

as long as x �= y. Such a limiting process F(x) is an example of an aperiodic 1/ f -noise.
Note however that the series (8) is formal and diverges with probability one. In fact it

should be understood as a random generalized function (distribution). Though there is no
sense in discussing the maxima and its position for generalized functions, the problem is
well-defined for the logmod of the characteristic polynomial log |pN (x)| for any finite N .
One therefore needs to find a tool to utilize its asymptotically Gaussian nature evident in
(8). It turns out that the latter is encapsulated in the following asymptotic formula due to
Krasovsky [35]1 which will be central for our considerations:

E

⎛
⎝ k∏

j=1

|pN (x j )|2δ j
⎞
⎠ =

k∏
j=1

C(δ j )(1 − x2j )
δ2j /2(N/2)δ

2
j e(2x2j−1−2 log(2))δ j N

× exp
[

−
∑

1≤i< j≤k

2δiδ j log |2(xi − x j )|
] [

1 + O

(
log N

N

)]

(10)

where C(δ) := 22δ
2 G(δ+1)2

G(2δ+1) , with G(z) being the Barnes G-function. In particular, differen-
tiating with respect to δ, we deduce that

E(2 log |pN (x)|) = N (2x2 − 1 − 2 log(2)) + C ′(0) + O(log(N )/N ). (11)

1 See also earlier works [36,37] where such formula was anticipated and proved for positive integer δ j .
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194 Y. V. Fyodorov, P. L. Doussal

The formula (10) suggests that, apart from the factorsC(δ j )which as we shall see play no
role in our calculations, the faithful descriptionof 2 log |pN (x j )| is that of the regularizedGLC
process with covariance (9), the position-dependent variance 2

(
ln N + ln

√
1 − x2 − ln 2

)
and the position-dependentmean N (2x2−1−2 log(2)). We find it convenient to subtract the
mean value and concentrate on the centered GLC φN (x) in Prediction 1. As to the position-

dependent logarithmic variance (stemming from the factors (1− x2j )
δ2j /2 in (10)) we shall see

that it does play a very essential role in statistics of the position of globalmaximumfor |pN (x)|
via giving rise to nontrivial “edge charges” in the corresponding Jacobi ensemble. This obser-
vation corroborates with the earlier mentioned fact that the subleading position-dependent
term f (x) in the variance of the LCG, see (1), may modify the extreme value statistics.

2.1.2 Log-Correlated Gaussian Random Potential (LCGP) with a background
potential:

An interesting question is to study the position of theminimum for the sum of a LCG random
potential and of a determistic background potential, i.e:

xm = Argminx∈D
(
V (x) + V0(x)

)
(12)

Here we obtain results when D is an interval, say x ∈ [0, 1]. The LCG random potential has
correlations:

E{V (x)V (x ′)} = Cε(x − x ′), lim
ε→0

Cε(x) = −2 ln |x | |x | > 0 (13)

and Cε(0) = 2 ln(1/ε) where ε is a small scale regularization. The background potential is
of the special logarithmic form:

V0(x) = −ā ln x − b̄ ln(1 − x) (14)

which we will often refer to, following the Coulomb gas language, as “edge charges” at the
boundary. We mainly focus on the case of repelling charges, ā, b̄ > 0, although both the
model, and some of our results, extend to some range of attractive charges. Some properties
of this model, such as the PDF of the value of the total potential at the minimum, were
studied in [12]. Here we obtain, for the two lowest moments of xm

Prediction 2

E {xm} − 1

2
= ā − b̄

2(ā + b̄ + 4)
(15)

E
{
x2m
}− (E {xm})2 = (ā + 2)(b̄ + 2)(2ā + 2b̄ + 9)

(ā + b̄ + 4)2(ā + b̄ + 5)2
(16)

Note that for the background potential V0(x) alone, i.e. in the absence of disorder, and for
ā, b̄ > 0, the minimum for the background potential V0(x) alone is at x0m = ā

ā+b̄
, that is

x0m − 1
2 = ā−b̄

2(ā+b̄)
. Hence the disorder brings the minumum closer in average to the midpoint

x = 1
2 .
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2.1.3 Fractional Brownian Motion with Hurst Index H = 0 (fBm0)

The fractional Brownian motion introduced by Kolmogorov in 1940 and rediscovered in the
seminal work by Mandelbrot & van Ness [38] is defined as the Gaussian process with zero
mean and with the covariance structure:

E {BH (x1)BH (x2)} = σ 2
H

2

(
|x1|2H + |x2|2H − |x1 − x2|2H

)
, (17)

where 0 < H < 1 and σ 2
H = Var{BH (1)}. The utility of these long-ranged correlated

processes is related to the properties of being self-similar and having stationary increments,
which characterize the corresponding family of Gaussian process uniquely. In particular, for
H = 1/2 the fBm B1/2(t) ≡ B(t) is the usual Brownianmotion (Wiener process). Note how-
ever that naively putting H = 0 in (17) does not yield awell-defined process. Nevertheless we
will see below that the limit H → 0 for fractional Brownian motion can be properly defined
after appropriate regularization and yields a Gaussian process with logarithmic correlations.

Consider a family of Gaussian processes depending on two parameters: 0 ≤ H < 1 and
a regularization η > 0 and given explicitly by the integral representation [1]

B(η)
H (x) = 1√

2

∫ ∞

0

e−ηs

s1/2+H

{[
e−i xs − 1

]
Bc(ds)/2 +

[
eixs − 1

]
Bc(ds)/2

}
. (18)

Here Bc(s) = BR(s) + i BI (s), with BR(s) and BI (s) being two independent copies of the
Wiener process B(t) (the standard Brownian motion) so that B(dt) is the corresponding
white noise measure, E {B(dt)} = 0 and E

{
B(dt)B(dt ′)

} = δ(t − t ′)dtdt ′.
The regularized process {B(η)

H (x) : x ∈ R} is Gaussian, has zeromean and is characterized
by the covariance structure

E

{
B(η)
H (x1)B

(η)
H (x2)

}
= φ

(η)
H (x1) + φ

(η)
H (x2) − φ

(η)
H (x1 − x2), (19)

where

φ
(η)
H (x) = 1

2

∫ ∞

0

e−2ηs

s1+2H (1 − cos (xs)) ds (20)

= 1

4H
�(1 − 2H)

[
(4η2 + x2)H cos

(
2H arctan

x

2η

)
− (2η)2H

]
. (21)

It is easy to verify that for any 0 < H < 1 one has limη→0 B
(η)
H (x) = BH (x) which is

precisely the fBm defined in (17).
As has been alreadymentioned the limit η → 0 for H = 0 does not yield any well-defined

process. At the same time taking the limit H → 0 at fixed η gives

lim
H→0

φ
(η)
H (x) = 1

4
log

x2 + 4η2

4η2
, (22)

ensuring that for any η > 0 the limit of B(η)
H (x) as H → 0 yields a well-defined Gaussian

process {B(η)
0 (x) : x ∈ R} with stationary increments and with the increment structure

function depending logarithmically on the time separation:

E

{[
B(η)
0 (x1) − B(η)

0 (x2)
]2} = 1

2
log

|x1 − x2|2 + 4η2

4η2
. (23)
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196 Y. V. Fyodorov, P. L. Doussal

Weconsider B(η)
0 (x) as themost natural extensionof the standard fBm to the case of zeroHurst

index H = 0. We will frequently refer to this process as fBm0. The process is regularized at
scales |x1 − x2| < 2η.

It is also worth pointing out that there exists an intimate relation between B(η)
0 (x) and the

behaviour of the (increments of) GUE characteristic polynomials, though at a different, so-
called “mesoscopic” spectral scales [1], negligible in comparision with the interval [−1, 1].
The mesoscopic intervals are defined as those typically containing in the limit N → ∞ a
number of eigenvalues growing with N , but representing still a vanishingly small fraction
of the total number N of all eigenvalues. In other words, fBM0 describes behaviour of the
(logarithm of) the ratio of the moduli of characteristic polynomial at mesoscopic difference
in spectral parameter. More precisely, B(η)

0 (x) is , in a suitable sense, given by N → ∞ limit
of the following object:

WN (x) = 1

2π

(
− log det

[(
x

dN
I − H

)2

+ η2

4d2N

]
+ log det

[
H2 + η2

4d2N

])
(24)

where H is an N × N random GUE matrix, parameter η > 0 is a regularisation ensuring
that the logarithms are well defined for real x and dN specifies the asymptotic scale of the
spectral axis of H as N → ∞ and is chosen to be mesoscopic 1  dN  N (say, dN = N γ

with 0 < γ < 1).
Applying our methods of dealing with LCG to fbM0 yields the following predictions for

a few lowest moments of the position of the global minimum for the process B(η)
0 (x) in the

interval 0, L:

Prediction 3 Define V (x) = 2B(η)
0 (x) and for η > 0 and L > 0 consider the random

variable

ym(η, L) := 1

L
Arg minx∈[0,L]V (x) (25)

Then the lowest even integer moments of this random variable have the values

lim
η→0

E
{
[ym(η, L)]2

} = 17

50
, lim

η→0
E
{
[ym(η, L)]4

} = 311

1470
(26)

whereas the odd integer moments can be found from the identities

lim
η→0

E

{[
ym(η, L) − 1

2

]2k+1
}

= 0, k = 0, 1, 2, . . . (27)

One should point out an interesting difference in application of our method to this case,
concerning the value of the minimum Vm = minx∈[0,1] V (x), which seems to be a direct
consequence of non-stationarity of the fBm0. Since the process is constrained to the value
V (0) = 2B(η)

0 (0) = 0 at zero, Vm is necessarily negative or zero, at variance with the other
cases studied here. As discussed in Appendix 7, this implies that the method of analytical
continuation in n of Ref. [12], which works nicely for the other cases, fails to predict the
PDF of Vm for the fBm0, and requires modifications which are left for future studies. We do
not believe that this problem bears consequence to the moments of xm , which enjoy a nice
and simple analytical continuation to n = 0. As we checked numerically up to large n, these
moments pass the standard tests (i.e. positivity of Hankel matrices) for existence of a positive
associated PDF. Conditional moments however, i.e. conditioned to an atypically high value
of Vm , would need a more careful study, beyond the scope of this paper.
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2.2 Moments of the Eigenvalue Density of the Jacobi Ensemble

Asmentioned above the statistics of extrema in log-correlated fields on an interval relate to the
β-Jacobi ensemble of random matrices. We denote y = (y1, . . . , yn) the set of eigenvalues,
with yi ∈ [0, 1], i = 1, . . . , n. The model can be defined [29,30] by the joint distribution of
eigenvalues2

PJ (y)dy = 1

Zn

n∏
i=1

dyi y
a
i (1 − yi )

b|�(y)|2κ , �(y) =
∏

1≤i< j≤n

(yi − y j ) (28)

where the normalization constant,Zn , is the famous Selberg integral [39] forwhich an explicit
formula exists for any positive integer n

Zn = Sln(κ, a, b) :=
∫

[0,1]n
|�(y)|2κ

n∏
i=1

yai (1 − yi )
bdyi (29)

=
n−1∏
j=0

� (a + 1 + κ j) � (b + 1 + κ j) � (1 + κ( j + 1))

� (a + b + 2 + κ(n + j − 1)) � (1 + κ)

In [12] we analytically continued this formula to complex n which allowed to obtain the
probability distribution of the height of the global minimum of the process (see also [40–
43]). In the present paper we advance this analysis much further in order to extract the
statistics of the position of the global minimum. As we will show this requires to obtain
some exact formula for the moments of the eigenvalue density for the β-Jacobi ensemble
for arbitrary positive integer n. Furthermore these should be explicit enough to allow for a
continuation to n = 0.

Let us define the average value < f (y) >J of any function f (y) over the Jacobi density
by the relation

< f (y) >J := [Sln(κ, a, b)]−1
∫

[0,1]n
f (y) |�(y)|2κ

n∏
i=1

yai (1 − yi )
bdyi (30)

In particular for any positive integer n the mean density of eigenvalues is defined as:

ρJ (y) =<
1

n

n∑
i=1

δ(yi − y) >J=< δ(y1 − y) >J (31)

where δ is the Dirac distribution. The moments studied here are then defined as:

M (J )
k =

∫ 1

0
dyykρJ (y) =< yk1 >J (32)

The problem of calculating these moments, for the β-Jacobi ensemble, has been already
addressed in the theoretical physics and mathematical literature, motivated by various appli-
cations. In full generality it turns out to be a hard problem, and only limited results were
available. One method is based on recursion on the order of the moment, as outlined in the

2 Note that we use 2κ for the Dyson index instead of β to avoid confusion with the inverse temperature, also
denoted β, associated to the study of the log-correlated process.
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198 Y. V. Fyodorov, P. L. Doussal

chapter 17 of Mehta’s book [33] and used in [44,45] in the context of conductance distri-
bution in chaotic transport through mesoscopic cavities. In that approach higher moments
calculations become technically unsurmountable. Another approach using Schuhr functions
was developed and gave very explicit results for these and other moments for β = 1, 2 [46]
(see also related work in [47] and [48]).

More recently, an interesting contour integral representation for thosemomentswas proved
by Borodin and Gorin, but remained unpublished. It is described in the Appendix 1 to the
present paper, provided by these authors. It allows a systematic calculation of the moments,
including negative ones. However evaluating these integrals becomes again a challenge for
higher moments.

In the present paper we give an explicit expression for all integer moments, positive and
negative, of the eigenvalue density for the β-Jacobi ensemble, based on a different approach,
in terms of sums over partitions.

Let us further denote λ = (λ1 ≥ λ2 ≥ · · · ≥ λ�(λ)) a partition of length �(λ) of the integer

k ≥ 0, with λi strictly positive integers such that |λ| = ∑�(λ)
i=1 λi = k. Then we obtain

〈
1

n

n∑
j=1

ykj

〉

J

=
∑

λ,|λ|=k

Aλa
+
λ ,

〈
1

n

n∑
j=1

y−k
j

〉

J

=
∑

λ,|λ|=k

Aλa
−
λ (33)

where the sum is over all partitions of k, and

Aλ = k(λ1 − 1)!
(κ(�(λ) − 1) + 1)λ1

�(λ)∏
i=2

(κ(1 − i))λi
(κ(�(λ) − i) + 1)λi

∏
1≤i< j≤�(λ)

κ( j − i) + λi − λ j

κ( j − i)

×1

n

�(λ)∏
i=1

(κ(n − i + 1))λi
(κ(�(λ) − i + 1))λi

∏
1≤i< j≤�(λ)

(κ( j − i + 1))λi−λ j

(κ( j − i − 1) + 1)λi−λ j

(34)

in terms of the Pochhammer symbol (x)n = x(x + 1) · · · (x + n − 1) = �(x + n)/�(x),
with for positive moments

a+
λ =

�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(a + b + 2 + κ(2n − i − 1))λi

(35)

while for negative moments

a−
λ =

�(λ)∏
i=1

(a + 1 + κ(i − 1))−λi

(a + b + 2 + κ(n + i − 2))−λi

(36)

This result as it stands was derived for n, k ∈ N and κ > 0, and in range of values of a, b
such that these moments exist. Later however we will study analytic continuations in these
parameters.

For positive moments, this very explicit formula is equivalent to a result by Mezzadri and
Reynolds, which appeared in [31] during the course of the present work. Our independent
derivation is relatively straightforward and will be given below for both positive and negative
moments.

One can check on the above expressions (33, 34), that in the limit κ → 0 partitions
contribute as∼ κ�(λ)−1, hence only the single partition λ = (k)with a single row contributes,
leading to the trivial limit for the moments:

123



On the Position of the Maximum of Log-Correlated Processes... 199

〈
1

n

n∑
j=1

ykj

〉

J,κ=0

= (a + 1)k
(a + b + 2)k

(37)

here for k of either sign, as expected, since in that limit the Jacobi measures decouples
PJ (y) = ∏n

i=1 P
0(yi ) where P0(y) = �(a+b+2)

�(a+1)�(b+1) y
a(1− y)b. Other general properties of

themoments, such as identity of moments of y and of 1− y for a = b, are less straightforward
to see on the above formula, and are explicitly checked below for low moments.

2.3 Replica Method and Freezing Duality Conjecture for Log-Correlated
Processes

Ourmethod of addressing statistics related to the globalminimum of random functions (which
can be trivially adapted for the global maximum with obvious modifications) is inspired by
statistical mechanics of disordered systems. Namely, we look at any random function V (x)
defined in an interval D ∈ R of the real axis as a one-dimensional random potential, with x
playing the role of spatial coordinate. To that endwe introduce for any β > 0 and any positive
β−independent weight functionμ(x) > 0 the associated Boltzmann-Gibbs-like equilibrium
measure by

pβ(x) = 1

Zβ

μ(x)e−βV (x) ≡ 1

Zβ

∫
D

δ(x − x1) e
−βV (x1)μ(x1) dx1, (38)

where we have defined the associated normalization function (the “partition function”)

Zβ =
∫
D
e−βV (x)μ(x) dx (39)

with β = 1/T playing the role of inverse temperature.
According to the basic principles of statistical mechanics in the limit of zero temperature

β → ∞ the Boltzmann-Gibbs measure must be dominated by the minimum of the random
potential Vm = minx∈D V (x) achieved at the point xm ∈ D. The latter is randomly fluctuat-
ing from one realization of the potential to another. The probability density for the position
of the minimum is defined asP(x) = δ(x − xm)where from now on we use the bar to denote
the expectation with respect to random process (“potential disorder”) realizations:

(. . .) ≡ E {(. . .)}
This leads to the fundamental relation

P(x) = lim
β→∞ pβ(x) (40)

Therefore, calculatingP(x) amounts to (i) performing the disorder average of theBoltzmann-
Gibbs measure (38) and (ii) evaluating its zero-temperature limit. The second step is highly
non-trivial, due to a phase transition occuring at some finite value β = βc. In our previous
work on decaying Burgers turbulence [49], which turns out to be a limiting case of the present
problem (see Sect. 4.3), we have already succeeded in implementing that program. Following
the same strategy, the step (i) is done using the replica method, a powerful (albeit not yet
mathematically rigorous) heuristic method of theoretical physics of disordered systems. It
amounts to representing Z−1

β = limn→0 Z
n−1
β which after assuming integer n > 1 results in

the formal identity

pβ(x) = lim
n→0

pβ,n(x) (41)

123



200 Y. V. Fyodorov, P. L. Doussal

where

pβ,n(x) = μ(x)e−βV (x)Zn−1
β =

∫
x1∈D

· · ·
∫
xn∈D

e−β
∑n

=1 V (xi ) δ(x − x1)
n∏

i=1

μ(xi ) dxi

(42)

Note that pβ,n(x) is not a probability distribution for general n, but becomes one for n = 0.
In the next section we will show how to calculate the moments Mk(β) = ∫

D pβ,n(x)xk dx
for positive integer k and any integer value n > 0 in the high temperature phase of the model
β < βc. Note that by a trivial rescaling of the potential one always can ensure βc = 1,
setting g = 1 in (1), and we assume such a rescaling henceforth. In the range β < 1 the
formulae we obtain for the moments turn out to be easy to continue to n = 0. This yields the
integer moments of the probability density pβ(x) in that phase. There still however remains
the task of finding a way to continue those expressions to β > 1 in order to compute the
limit β → ∞ and extract the information about the Argmin distribution P(x). To perform
the continuation, we rely on the freezing transition scenario for logarithmically correlated
random landscapes. The background idea goes back to [6] and was advanced further in [11]
leading to explicit predictions. In [12] it was discovered that the duality property appears
to play a crucial role, leading to the freezing-duality conjecture (FDC), which was further
utilized in [2,9,13,14,21,49]. In brief, the FDC predicts a phase transition at the critical value
β = 1 and amounts to the following principle:

Thermodynamic quantities which for β < 1 are duality-invariant functions of the
inverse temperature β, that is remain invariant under the transformation β → β−1,
“freeze” in the low temperature phase, that is retain for all β > 1 the value they
acquired at the point of self-duality β = 1.

Here, on our explicit formula, we will indeed be able to verify that every integer moment
Mk(β) = ∫

D pβ,n=0(x)xk dx of the probability density pβ(x) is duality-invariant in the
above sense, and hence can be continued to β > 1 using the FDC, yielding the moments of
the position of the global minimum. Another way of proof is based on the powerful contour
integral representation for the moments of Jacobi ensemble of random matrices provided by
Borodin and Gorin. We thus conjecture that not only all moments, but the whole disorder
averaged Gibbs measure pβ(x) freezes at β = 1, hence that the PDF of the position of the
minimum is determined as

P(x) = lim
β→1

pβ(x) (43)

similar to the conjecture in [49] in our study of the Burgers equation.
Although the FDC scenario is not yet proven mathematically in full generality and has

a status of a conjecture supported by physical arguments and available numerics, recently
a few nontrivial aspects of freezing were verified within rigorous probabilistic analysis, see
e.g. [20,22,23,50] for progress in that direction.3 However the role of duality has not yet
been verified rigorously. Interesting connections to duality in Liouville and conformal field
theory [51] remain to be clarified.

3 In [6,11,12] we predicted the freezing of the generating function gβ(y) := exp(−eβy zβ), where zβ is
a regularized version of the partition sum Zβ . It was proved in [23] (see corollary 2.3) in a more general

and rigorous setting. It tells about the free energy fβ = −β−1 ln zβ and the value of the minimum f∞.
Indeed, by construction 1 − gβ(y) is the cumulative distribution function of the random variable defined as

yβ := fβ −β−1G where G is a unit Gumbell random variable, independent from fβ . The PDF of yβ for any
β < βc , of yβc and of f∞ are thus identical. See the Appendix 8 for more details.
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In the rest of the paper we give a detailed derivation of the outlined steps of our procedure
and an analysis of the results.

3 Calculations Within the Replica Method

Our goal in this section is to develop the method of evaluating the required disorder average
and calculating the resulting integrals explicitly in some range of inverse temperatures β for
a few instances of the log-correlated random potentials V (x).

3.1 Connections to the β-Jacobi Ensemble

3.1.1 GUE Characteristic Polynomial

In that case we will follow the related earlier study in [21] and use the family of weight
factors μ(x) = ρ(x)q on the interval x ∈ [−1, 1], with ρ(x) = 2

π

√
1 − x2 and parameter

q > 0. Such a choice of the weight is justified a posteriori by the possibility to find within
this family a duality-invariant expression for the moments in the high-temperature phase
which is central for our method to work. Since here we are interested in the maximum of
the characteristic polynomial we will define the potential V (x) = −φN (x) where φN (x),
defined in Prediction 1, is not strictly a Gaussian field. Nevertheless due to the Krasovsky
formula (10) we can write asymptotically in the limit of large N � 1

e−β
∑n

a=1 V (xa) = eβ
∑n

a=1 φN (xa) =
n∏

a=1

|pN (xa)|2βe−2β
∑n

a=1 ln |pN (xa)| (44)

� An

n∏
a=1

(1 − x2a )
β2/2

∏
a<b

|xa − xb|−2β2
(45)

with An = [C(β)(N/2)β
2
e−βC ′(0)2−β2(n−1)]n .

3.1.2 General Scaled Model in [0, 1].
It is easy to see that by proper rescaling the evaluation of the function pβ,n(x) from (42)
amounts in the case of both characteristic GUE polynomials and the LCGP process to eval-
uating particular cases of the following multiple integral defined on the interval [0, 1]:

pβ,a,b,n(y) =
∫ 1

0
· · ·
∫ 1

0

n∏
i=1

dyi y
a
i (1 − yi )

b
∏

1≤i< j≤ j≤n

1

|yi − y j |2β2 δ(y − y1) (46)

which is formally the (un-normalized) density of eigenvalues of the β-Jacobi ensemble (28),
i.e. pβ,a,b,n(y) = ZnρJ (y), however with a negative value of the parameter κ = −β2. In
particular the normalisation factorZn is the Selberg integral (29). Note that both integrals are
well defined for β2 < 1 and positive integer n. They can also be defined for larger β, upon
introducing an implicit small scale cutoff which modifies the expressions for |yi − y j | < ε.
However we will use only the high temperature regime and will continue analytically our
moment formula to n = 0 and β = 1.

These integrals are associated to the statisticalmechanics of a random energymodel gener-
ated by a LCG field in the interval [0, 1] in presence of boundary charges of strength a and b.
More precisely, they appear in the study of the continuumpartition function introduced in [12]
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Zβ = εβ2
∫ 1

0
dyya(1 − y)be−βV (y) (47)

where the correlator of V (x) was defined in (13). Here a and b are the two parameters of the
model and the factor εβ2

ensures that the integer moments Zn
β are ε-independent in the high

temperature regime. There, these moments Zn
β = Zn are given by the Selberg integral (29).

Several aspects of this model, such as freezing, duality and obtaining the PDF of the value
of the minimum, were analyzed in [12]. Here we will focus instead on the calculation of the
moments of the position y. In each realization of the random potential V they are defined as

< yk >β,a,b=
∫ 1
0 dyyk ya(1 − y)be−βV (y)

∫ 1
0 dyya(1 − y)be−βV (y)

(48)

and we will be interested in calculating their disorder averages < yk >β,a,b.

3.1.3 Fractional Brownian Motion

For our fBm0 example we take the weight function μ(x) = 1 in (38, 39) on the interval
x ∈ [0, L], and use the rescaled fBmwith H = 0 as the randompotential: V (x) = 2gB(η)

0 (x).
Exploiting the Gaussian nature of fBm0 we can easily perform the required average using
(19) which yields

e−2βg
∑n

i=1 B
(η)
0 (xi ) = e

2(βg)2
{∑n

i=1

[
B(η)
0 (xi )

]2+2
∑n

i< j B
(η)
0 (xi )B

(η)
0 (x j )

}

(49)

= en(2βg)2
∑n

i=1 φ
(η)
0 (xi )−(2βg)2

∑n
i< j φ

(η)
0 (xi−x j ) (50)

Further using the definitions (22, 23) we arrive at

e−2βg
∑n

i=1 B
(η)
0 (xi ) =

n∏
i=1

[
x2i + 4η2

4η2

]a/2 n∏
i< j

[
(xi − x j )2 + 4η2

4η2

]−γ

(51)

a = 2nγ, γ = g2β2 (52)

Assuming that all xi > 0 we can write in the limit of vanishing regularization η → 0:

e−2βg
∑n

i=1 B
(η)
0 (xi ) ≈ (2η)n(γ (n−1)−a)

n∏
i=1

xai

n∏
i< j

|xi − x j |−2γ (53)

For convenience we will use the particular value g = 1 ensuring a posteriori the critical
temperature value βc = 1.

It is easy to see how our three examples can be studied within the framework of the model
(46):

• GUE characteristic polynomial. We define x = 1 − 2y, , with y ∈ [0, 1] and

pβ,n(x)dx = Cn pβ,a,a,n(y)dy, a = q + β2

2
(54)

Cn =
[( 2

π

)q
C(β)Nβ2

e−βC ′(0)21+q−2β2(n−1)
]n

(55)

• LCGP plus a background potential on interval [0, 1], defined in (13) and (14). One sees
that this model is obtained by choosing a = βā and b = βb̄.
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• fBm0: we define x = Ly, with y ∈ [0, 1] and:
pβ,n(x)dx = Ln(n+1)γ+n pβ,a=2nβ2,b=0,n(y)dy (56)

Although the explicit form of the density ρJ (y) of the β-Jacobi ensemble is not known
in a closed form for finite n, the formulae (33, 34) displayed in the introduction provide an
explicit expression for its integer moments

< yk >β,a,b,n := 1

Z n

∫ 1

0
dyyk pβ,a,b,n(y) (57)

for positive integers k, n and β2 < 0. The collection of indices β, a, b, n is now replacing
the index J , and some of them may be omitted below when no confusion is possible.

We will now derive the formulae (33, 34) using methods based on Jack polynomials. In
a second stage we will continue them analytically to arbitrary n, including n = 0, and to
0 < β2 ≤ 1, to obtain moments for the random model of interest as:

< yk >β,a,b = lim
n→0

< yk >β,a,b,n (58)

3.2 Derivation of the Moment Formula in Terms of Sums over Partitions

To calculate the moments, we now consider one of the most distinguished bases of symmetric
polynomials, the Jack polynomials, named after Henry Jack. They play a central role for our
study because their average with respect to the β-Jacobi measure is explicitly known, due to
Kadell [52] (see below). As discussed in the book [53] (see reprint of the original article) Jack
introduced a special set of symmetric polynomials of n variables y := (y1, . . . , yn) indexed
by integer partitions λ and dependent on a real parameter α. He called them Z(λ), which in
modern notations are denoted as J (α)

λ (y) following I. Macdonald who greatly developed the
theory of such and related objects in the book [54]. Another important source of information
is Stanley’s paper [55]. Inwhat followswe use notations and conventions from [54] and [55].4

Let us recall the definition of a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λ�(λ)) > 0) of the integer

k, of length �(λ), with λi strictly positive integers such that |λ| := ∑�(λ)
i=1 λi = k. It can be

written as

λ = {(i, j) ∈ Z
2; 1 ≤ i ≤ �(λ), 1 ≤ j ≤ λi } (59)

from which one usually draw the Young diagram representing the partition λ, as a collection
of unit area square boxes in the plane, centered at coordinates i along the (descending,
southbound) vertical, and j along the (eastbound) horizontal. The dual (or conjugate) λ′
of λ is the partition whose Young diagram is the transpose of λ, i.e. reflected along the
(descending) diagonal i = j . Hence λ′

i is the number of j such that λ j ≥ i . If s = (i, j)
stands for a square in the Young diagram, one defines the “arm length” aλ(s) = λi − j which
is equal to the number of squares to the east of square s and the “leg length” lλ(s) = λ′

j − i
as the number of squares to the south of the square s. One then defines the product

c(λ, α, t) :=
∏
s∈λ

(αaλ(s) + lλ(s) + t) =
�(λ)∏
i=1

λi∏
j=1

(α(λi − j) + λ′
j − i + t) (60)

which will be used later on.5

4 Note that other papers use different conventions. The reader is advised to check the conventions with care.
5 Note that c(λ, α, 1) = ∏

s∈λ hλ∗(s) and c(λ, α, α) = ∏
s∈λ h∗

λ(s) in terms of the notations of [55].
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Given a partition λ, one defines, in the theory of symmetric functions, the monomial sym-
metric functions mλ(y), over n variables y = {yr }, r = 1, , n as mλ(y) = ∑

σ

∏n
r=1 y

λi
σ(r)

where the summation is over all non-equivalent permutations of the variables. For example,
given a partition (211) of k = 4, m(211)(y) = y21 y2y3 + y1y22 y3 + y1y2y23 . Another useful
set of symmetric functions, of obvious importance for the calculation of moments, are the
power-sums:

pλ(y) =
�(λ)∏
i=1

n∑
r=1

yλi
r

which form a basis of the ring of symmetric functions.
Define the following scalar product, which depends on a real parameter α as

< pλ, pμ >= δλμzλα
�(λ), zλ = 1q12q2 · · · q1!q2! · · · (61)

where qi = qi (λ) is the number of rows in λ whose length are equal to i . Here and below
we suppress the arguments of all symmetric polynomials except when explicitly needed, for
example pλ(y) → pλ. The Jack functions J (α)

λ obey the following properties (i) orthogo-
nality with respect to the above scalar product (ii) fixed coefficient of highest degree in the
monomial basis6

< J (α)
λ , J (α)

μ >= c(λ, α, 1)c(λ, α, α)δλμ (62)

J (α)
λ = c(λ, α, 1)mλ +

∑
ν<λ

uλνmν (63)

We can go from the basis of power sums to the Jack polynomial basis by the following
linear transformations:

J (α)
λ =

∑
ν

θλ
ν (α)pν, pν =

∑
λ

γ λ
ν (α)J (α)

λ (64)

where the coefficients are in general complicated. Note that the k-th moment that we are
interested in is precisely the Jacobi ensemble average

<

n∑
r=1

ykr >J=< p(k)(y) >J (65)

where (k) denotes the partition with only one row of length k. Hence we need only the
coefficient γ λ

ν=(k). As we now show one can express this coefficient in terms of θλ
ν=(k).

Indeed, one can write in two ways the following scalar product, first as

< J (α)
λ , pμ >=

∑
ν

θλ
ν (α) < pν, pμ >= θλ

μ(α)zμα�(μ) (66)

and also as

< J (α)
λ , pμ >=

∑
τ

γ τ
μ(α) < J (α)

λ , J (α)
τ >= γ λ

μ(α)c(λ, α, 1)c(λ, α, α) (67)

Hence, comparing we obtain

γ λ
μ(α) = θλ

μ(α)zμα�(μ)

c(λ, α, 1)c(λ, α, α)
(68)

valid for arbitrary partitions μ and λ, which we apply to μ = (k).

6 see theorems 5.6 and 5.8 in [55] and (i) p 377 (ii) (10.13-10.22) in [54].
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Now it turns out that θλ
(k)(α) is known to to be equal to:

θλ
(k)(α) =

∏
s−{1,1}

(αa′
λ(s) − l ′λ(s)) (69)

if |λ| = k and zero otherwise, (see p 383Ex. 1 (b) in [54] and (19) in [56]),wherea′
λ(s) = j−1

and l ′λ(s) = i − 1 are respectively called the co-arm and co-leg lengths of the partition λ,
and the product does not include the box s = (1, 1).

Positive moments: this leads to the explicit result for the positive k-th moment in terms of
an average of the Jack polynomial associated to the partition (k):

<

n∑
r=1

ykr >J=< p(k)(y) >J=
∑

λ,|λ|=k

γ λ
(k)(α) < J (α)

λ (y) >J (70)

γ λ
(k)(α) = kα

c(λ, α, 1)c(λ, α, α)

∏
s−{1,1}

(αa′
λ(s) − l ′λ(s)) (71)

(see Appendix 6 for an alternative rewriting of this formula).
The problem therefore amounts to evaluating the Jacobi average of J (α)

λ (y). Such averages
where evaluated for a general partition λ, for a differently normalized set of Jack polynomials,
denoted by Macdonald as P(α)

λ (y), related to the J (α)
λ (y) as follows

J (α)
λ (y) = c(λ, α, 1)P(α)

λ (y) (72)

Namely, as was conjectured by Macdonald in [54], and proved by Kadell [52], there exists a
closed form expression for P(α)

λ (y) integrated with the (unnormalized) Jacobi density over
the hypercube y ∈ [0, 1]n with the correspondence

α = 1/κ (73)

It is given by
∫

[0,1]n
P(1/κ)

λ (y)|�(y)|2κ
n∏

i=1

yai (1 − yi )
bdyi (74)

= n!vλ(κ)

n∏
i=1

� (λi + a + 1 + κ(n − i)) � (b + 1 + κ(n − i))

� (λi + a + b + 2 + κ(2n − i − 1))

where

vλ(κ) =
∏

1≤i< j≤n

�
(
λi − λ j + κ( j − i + 1)

)
�
(
λi − λ j + κ( j − i)

) (75)

For the empty partition λ = (0) we have P(1/κ)

(0) (y) = 1 and the above integral reduces to the
Selberg integral (29).

Recalling the definition of the Jacobi ensemble average (30) and taking the ratio of (74) to
(29), we obtain the average of the P(1/κ)(y) polynomial and from it, the average of J (1/κ)(y).
The calculation is detailed in the Appendix 5 and the final result is simple and explicit for
arbitrary partition λ

〈
J 1/κλ (y)

〉
J

= κ−|λ|
�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(a + b + 2 + κ(2n − i − 1))λi

(κ(n − i + 1))λi (76)
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Putting together Eqs. (70, 71) and (76) we obtain the k-th moment as〈
1

n

n∑
r=1

ykr

〉

J

=
∑

λ,|λ|=k

kα

c(λ, α, 1)c(λ, α, α)

∏
s−{1,1}

(αa′
λ(s) − l ′λ(s)) (77)

× 1

nκk

�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(a + b + 2 + κ(2n − i − 1))λi

(κ(n − i + 1))λi (78)

where α should be replaced by 1/κ according to (73). Using the explicit expressions for
the normalization constants (211) and (212) in Appendix 4 and the above definitions of the
co-arm and co-leg, one obtains the formula (33, 34, 35), for the positive moments given in
Sect. 2.2.7

We have also used:

∏
s−{1,1}

(αa′
λ(s) − l ′λ(s)) = αk−1

�(λ)∏
i=1

λi ′∏
j=1

( j − 1 − κ(i − 1))

= αk−1(λ1 − 1)!
�(λ)∏
i=2

(−κ(i − 1))λi (79)

where the prime indicates that i = j = 1 is excluded from the product.
Equivalently, we can rewrite the expression (77) for the moments in a “geometric” form

which involves only products over boxes in the Young diagrams, see (91, 92) below.
Negative moments: Negative moments can be obtained by applying (70) to the inverse

variable, here before averaging (with k ≥ 0)

n∑
r=1

y−k
r =

∑
λ,|λ|=k

γ λ
(k)(α)J (α)

λ (
1

y
) (80)

where we denote ( 1y ) ≡ ( 1
y1

, · · · 1
yn

). We now use the following relation between Jack poly-
nomials, for n ≥ �(λ)

P(α)
λ

(
1

y

)
= y−l

1 · · · y−l
n P(α)

(ln−λ)+(y) (81)

see [30] p. 643, where l is (a priori) any integer l ≥ λ1 and one denotes

(ln − λ)+ = {l, . . . , l − λ1, . . . , l − λ�(λ)} (82)

the partition of length n. Using (72) in (80), inserting (81), using again (72), one can now
average over the Jacobi measure as follows〈

n∑
r=1

y−k
r

〉

J

=
∑

λ,|λ|=k

γ λ
(k)(α)

c(λ, α, 1)

c((ln − λ)+, α, 1)

〈
J (α)

(ln−λ)+(y)
〉
J,a→a−l

Sln(κ, a − l, b)

Sln(κ, a, b)

(83)

where the average on the right is over a shifted Jacobi measure with parameter a − l, b, κ to
account for the prefactor in (81). For the same reason the ratio of Selberg integrals appear,
since it is the normalization of the Jacobi measure. We can now use the explicit expressions

7 Note that a textbook treatment of the material discussed in this section is given in [30]. The formula for the
positive moments does not appear there explicitly, but can be recovered by integrating (12.145) using (12.143).

123



On the Position of the Maximum of Log-Correlated Processes... 207

(29) and (76). One finds, after a tedious calculation, similar in spirit to the one described
above for the positive moments, the formula (33), (34) for the negative moments given in
Sect. 2.2 with

a−
λ =

�(λ)∏
i=1

(a − l + 1 + κ(i − 1))l−λi

(a − l + b + 2 + κ(n + i − 2))l−λi

(a − l + b + 2 + κ(n + i − 2))l
(a − l + 1 + κ(i − 1))l

(84)

where a priori l is an integer sufficiently large. In practice we found that for generic values of
κ the final result is independent of the choice of l (for each partition), hence we chose l = 0
which leads to the simplest expression (36) given in in Sect. 2.2.

We now discuss an interesting alternative and useful representation for the (positive and
negative) integer moments in terms of contour integrals.

3.3 Borodin-Gorin Contour Integral Representation of the Moments

3.3.1 Positive Moments

Recently Borodin and Gorin proved integral representations for the moments of the Jacobi
β-ensemble. We refer to the Appendix 1 for derivation and present here a summary of results
in our notation. They call these moments 1

N Mk(θ, N , M, α) and the correspondence from
their four parameters to ours is:

θ → −β2 N → n θα − 1 → a, θ(M − N + 1) − 1 → b (85)

which leads to the correspondence

< yk >β,a,b,n= 1

n
Mk(−β2, n, n − 1 − 1 + b

β2 ,−1 + a

β2 ) (86)

Translated in our parameters their moment formula for positive integer n reads:

< yk >β,a,b,n = 1

nβ2

∫ k∏
i=1

dui
2iπ

∏
1≤i< j≤k

u j − ui
(u j − ui + β2)(u j − ui + 1)

(87)

×
∏

1≤i+1< j≤k

(u j − ui + 1 + β2)

k∏
i=1

ui + β2

ui + β2(1 − n)

× ui − 1 − a

ui − 2 − a − b − β2(1 − n)
(88)

which must be supplemented with the conditions, let us call them C1: |u1|  |u2| 
|u3| · · ·  |uk | and C2: all the contours enclose the singularities at ui = −(1 − n)b2 and
not at ui = 2 + a + b + β2(1 − n). These conditions imply that one can first perform the
integral on u1 and only around the pole u1 = −(1− n)β2 and then iteratively on u2, u3, . . .
and so on.

We will investigate below the properties of this representation in the context of the models
we study here.
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3.3.2 Negative Moments

Remarkably, Borodin andGorin also proved a contour integral formula for negativemoments,
whenever they exist. In our notations, for k ≥ 1, it reads

< y−k >β,a,b,n= −1

nβ2

∫ k∏
i=1

dui
2iπ

∏
1≤i< j≤k

u j − ui
(u j − ui − β2)(u j − ui − 1)

×
∏

1≤i+1< j≤k

(u j − ui − 1 − β2)

k∏
i=1

ui − nβ2

ui
× ui − 1 − a − b − β2(1 − n)

ui − a
(89)

which must be supplemented with the conditions, (i) C1: |u1|  |u2|  |u3|  |uk | and
(ii) C2: all the contours enclose the singularities at 0 and not at a.

3.4 Duality

Let us now discuss an important property of these moment, the duality.

3.4.1 Statement of the Duality on the Moments

For clarity let us first recall the property of duality-invariance unveiled in [12]. Consider
first a thermodynamic quantity Oβ obtained in the replica formalism in the limit n = 0. This
quantity is said to be duality-invariant if it is well defined in the high temperature regionβ < 1
and its temperature dependence is given by a function f (β) which is known analytically,
and satifies f (β ′ = 1/β) = f (β). The simplest example of such quantities is the mean free
energy for Gaussian log-correlated models for which f (x) = x + 1/x . More complicated
examples are presented in [12], see e.g. (13, 14) there. Note that it does not imply anything
on the behaviour of Oβ for β > 1, hence it is strictly a property of the high temperature
phase. However the property of duality invariance is not restricted to the replica limit n = 0.
In [12] by considering the generating functions for the moments of the partition function,
one notices that duality invariance can be extended to finite n by further requiring n′β ′ = nβ
(see (25) there where s should be identified as −nβ).

In the present model, there are more parameters and we can formulate the duality-
invariance property for the moments as follows:

Duality-invariance property

< yk >β,a,b,n=< yk >β ′,a′,b′,n′ β ′ = 1/β n′ = β2n a′ = a/β2 b′ = b/β2 (90)

which, again, should be understood in the sense of analytical continuation (i.e. it does not
provide a mapping from the high to low temperature region as discussed above).

3.4.2 Checking and Proving Duality for Moments

The duality property (90) can be checked on the explicit formula (33–35), derived in this
paper. Here we focus on positive moments, but similar considerations hold for negative ones,
when they exist. To see it explicitly it is convenient to rewrite that formula in a “geometric”
form involving only products over boxes in the Young diagrams, as

123



On the Position of the Maximum of Log-Correlated Processes... 209

< yk >β,a,b,n :=
〈
1

n

n∑
r=1

ykr

〉

J

∣∣∣∣∣
κ=−β2

=
∑

λ,|λ|=k

lim
ε→0

k

nε

∏
s=(i, j)∈λ

Bε
λ(s)

∣∣∣∣∣∣
κ=−β2

(91)

where

Bε
λ(s) = ( j − 1 − (i − 1)κ + ε)(a + κ(n − i) + j)(κ(n − i + 1) + j − 1)

(aλ(s) + lλ(s)κ + 1)(aλ(s) + lλ(s)κ + κ)(a + b + 1 + κ(2n − i − 1) + j)
(92)

where ε has been introduced only to remove box (1,1) from one of the products and the limit
ε → 0 is trivial. For application to the present purpose we need to set κ = −β2.

The duality is easy to check on that formula and corresponds to the exchange of the
partition λ with its dual λ′. Indeed it is easy to check that

Bε
λ(s)

∣∣
κ=−β2

∣∣∣
β,n,a,b

= Bε
λ′(s′)

∣∣
κ=−β ′2

∣∣∣
β ′,n′,a′,b′ (93)

where s′ = ( j, i) is the box in the dual diagram conjugate to s = (i, j), which implies
that arm lengths and leg lengths are also exchanged under duality. A similar observation over
duality-invariant sum over partitions was reported very recently in [14] for a related problem,
about the value at the minimum of a log-correlated field.

Another proof of the duality invariance property for the moments was provided in the
recent work Borodin and Gorin (BG). They proved that these moments are rational functions
of their four arguments, and that the corresponding analytical continuation in these arguments
satisfies an invariance property, which is equivalent to the above duality-invariance (90) under
the correspondence (86).

3.4.3 Consequence of the Duality-Invariance: Freezing

Let us now examine the implications of the relation (90) for the three examples studied in
this paper, showing that a freezing transition at β = 1 is expected in all cases.

For the GUE problem a = b = q+β2

2 and one finds that the duality invariance in terms of
the parameter q can be written as:

q ′ = 1 + q − 1

β2 (94)

The choice q = 1 thus ensures duality-invariance of the moments for arbitrary β < 1 and
again implies freezing at β = 1.

More generally, starting from Jacobi ensemble measure (28) one can ask how to choose
a and b so that the model exhibits the duality-invariance. Consider two (otherwise arbitrary)
duality-invariant functions of β, ā(β) and b̄(β), i.e. satisfying ā(1/β) = ā(β) and b̄(1/β) =
b̄(β), and choose:

a = βā(β), b = βb̄(β) (95)

Then the moments are self-dual. Our second example Eqs. (13) and (14) of a log-correlated
potential in presence of a background potential, corresponds to the case of temperature
independent constants ā and b̄ and its moments are thus duality-invariant.

Finally, for the fBm0 the parameter a = 2nβ2 and b = 0. One checks from (90) that
the fBm0 satisfies duality invariance for arbitrary n. In the replica limit n = 0 we must set
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a = b = 0, which is a self-dual point, hence for this model the moments obey the following
duality-invariance for β < 1

< yk >β=< yk >1/β (96)

so that according to the FDC, one should expect them to exhibit freezing at β = 1.

3.5 n = 0 Limit of the Moments Formula

The moment formula obtained above, as well as their contour integral representation are
explicit enough to allow for analytic continuation to n = 0.

3.5.1 Replica limit of sums over partitions.

Consider the formula (33, 34) inserting κ = −β2. The limit n → 0 is straightforward, except
for one of the factors in the second line for which we use:

(−β2n)λ1 = −β2n(1 − β2n)λ1−1 �n→0 −β2n(λ1 − 1)! (97)

This leads to the following formula for the disorder averages of the moments (48) of the
general scaled disordered statistical mechanics model (47)

< yk >β,a,b =
∑

λ,|λ|=r

C1
λC

2
λ (98)

with

C1
λ = −β2k[(λ1 − 1)!]2

�(λ)∏
i=2

[(β2(i − 1))λi ]2
�(λ)∏
i=1

(a + 1 + β2i)λi
(a + b + 2 + β2(i + 1))λi

×
∏

1≤i< j≤�(λ)

λi − λ j + β2(i − j)

β2(i − j)
(99)

C2
λ =

�(λ)∏
i=1

1

(1 + β2(i − �(λ)))λi (β
2(i − �(λ) − 1))λi

∏
1≤i< j≤�(λ)

(β2(i − j − 1))λi−λ j

(1 + β2(i + 1 − j))λi−λ j

(100)

This formula is valid in the higher temperature phase of the model, β < 1, where all the
factors are clearly finite and non-zero. We will study explicitly below a few moments and
their temperature dependence. Note that in the limit β → 0 one recovers the moments (37)
(i.e. with the weight P0(y)).

The moments of the position of the scaled minimum of the potential as discussed above
are recovered in the zero temperature limit β = +∞ of the statistical mechanics model.
According to the FDC (see section) these moments are equal to their value at the freezing
transition β = 1. Hence they can be obtained by taking as limits

(ym)k = lim
β→1− < yk >β,a,b (101)

of the above expression (98–100).However in this expressionone easily sees that the factorCλ
2

has poles for β = 1, while Cλ
1 is regular and has a finite limit. Examination of low moments,

detailed below, show massive cancellations of these poles leading to a well defined finite
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limit. As shown below, using the contour integral representation, this limit is indeed finite
for any moment. Note that the poles in the limit β → 1 are also present for n > 0, so
consideration of finite n does not help to handle these cancellations.

The formula (101) together with formula (98–100) thus gives arbitrary positive integer
moments of the position of the global minimum of the log-correlated process and as such is
a main result of our paper. They can be used to generate these moments to a very high degree
on the computer.

3.5.2 Contour Integral Representation of Moments for n = 0.

(i) positive moments To take the limit n = 0 in the contour integral formula (87) we rewrite

1

nβ2

k∏
i=1

ui + β2

ui + β2(1 − n)
= 1

nβ2

k∏
i=1

(
1 + nβ2

ui + β2(1 − n)

)
= 1

nβ2 +
k∑

i=1

1

ui + β2 + O(n)

Inserting the first term in the contour integral gives zero. Next, it is easy to see that only the
pole in u1 gives non zero residue. Hence we can insert only this term in the integral (87),
where we can now safely take n = 0 leading to the following representation for the disorder
average:

< yk >β,a,b =
∫ k∏

i=1

dui
2iπ

∏
1≤i< j≤k

u j − ui
(u j − ui + β2)(u j − ui + 1)

(102)

×
∏

1≤i+1< j≤k

(u j − ui + 1 + β2)
1

u1
×

k∏
i=1

ui − 1 − a − β2

ui − 2 − a − b − 2β2 (103)

where we have shifted ui → ui −β2 for convenience. This again must be supplemented with
the condition (i) C1 : |u1|  |u2|  |u3| · · ·  |u p| and (ii) C2: all the contours enclose
the singularities at u1 = 0 but not at ui = 2 + a + b + 2β2. In practice the contours will
run (and close) in the negative half plane Re(ui ) < 0 and pick up residues from poles on
the negative real line. We note that one needs the condition 2+ a + b + 2β2 > 0 which, for
a = b is precisely the one found in [12] corresponding to a binding transition to the edge
(for a < −1 − β2). We will thus assume that the condition is fulfilled, which is the case for
all three examples considered here.

The limit β → 1 can be performed explicitly leading to a contour integral representation
for the positive integer moments of the position of the global extremum of the log-correlated
field

ykm =
∫ k∏

i=1

dui
2iπ

∏
1≤i< j≤k

u j − ui
(u j − ui + 1)2

∏
1≤i+1< j≤k

(u j − ui + 2)
1

u1

k∏
i=1

ui − 2 − a

ui − 4 − a − b

(104)

with the same contour conditions C1 and C2. This formula should thus be equivalent to our
main result (98–101), which we have checked for a few low order moments.

(i) negativemomentsThe samemanipulation as above in the limit n → 0 gives the disorder
averaged moments for k ≥ 1:
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< y−k >β,a,b =
∫ k∏

i=1

dui
2iπ

∏
1≤i< j≤k

u j − ui
(u j − ui − β2)(u j − ui − 1)

×
∏

1≤i+1< j≤k

(u j − ui − 1 − β2)
1

u1
×

k∏
i=1

ui − 1 − a − b − β2

ui − a
(105)

provided these moment exist. Taking again the limit β → 1 one obtains the negative integer
moments of the position of the global extremum of the log-correlated field as

y−k
m =

∫ k∏
i=1

dui
2iπ

∏
1≤i< j≤k

u j − ui
(u j − ui − 1)2

∏
1≤i+1< j≤k

(u j − ui − 2)
1

u1

×
k∏

i=1

ui − 2 − a − b

ui − a
(106)

for k positive integer, provided they exist. In both integrals the contours obey the two con-
ditions (i) C1: |u1|  |u2|  |u3| · · ·  |uk | and (ii) C2: all the contours enclose the
singularities at 0 and not at a. At present there is no equivalent formula in terms of sums over
partitions, hence the above formula is an important result of the paper.

We now turn to explicit study of the low moments

3.6 Calculation and Results for the First Moment

Let us illustrate the calculation using the contour integral (87) on the simplest example of
the first moment k = 1

< y >β,a,b,n = 1

nβ2

∫
du1
2iπ

u1 + β2

u1 + β2(1 − n)

u1 − 1 − a

u1 − 2 − a − b − β2(1 − n)

= 1 + a − β2(n − 1)

2 + a + b − 2β2(n − 1)
(107)

which is equal to the residue at u1 = −(1 − n)β2. In terms of partitions only the partition
λ = (1) contributes, so it is easy to see on (33, 34), and even more immediate on (91, 92)
[using i = j = 1, aλ = �λ = 0], that it reproduces (71). One can explicitly verify on this
result that the first moment is invariant by the duality transformation (90).

The n = 0 limit yields the disorder averaged first moment

< y >β,a,b = 1 + a + β2

2 + a + b + 2β2 (108)

For the symmetric situation a = b, which is the case both for the fBm a = b = 0 and for the

GUE characteristic polynomial a = b = 1+β2

2 the first moment is thus simply

< y >β = 1

2
(109)

In the second example of the LCGP with edge charges one obtains:

< y >β = 1 + āβ + β2

2 + (ā + b̄)β + 2β2
(110)
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The duality-freezing conjecture then leads to the the first moment of the position of the
minimum

ym = 2 + ā

4 + ā + b̄
, ym − 1

2
= ā − b̄

2(ā + b̄ + 4)
(111)

which is Eq. (15) in Prediction 2.
These results can be compared to the first moment in absence of the random potential and

at finite inverse temperature β, i.e. from the measure P0(y)|a=βā,b=βb̄

< y >P0 −1

2
= β(ā − b̄)

2(2 + β(ā + b̄))
(112)

which reproduces the absolute minimum y0m = ā/(ā + b̄) in the absence of disorder for
β = +∞. Comparing with (111) shows that even at the freezing temperature β = 1,
disorder brings the average position closer to the midpoint y = 1

2 .

3.7 Results for Second, Third and Fourth Moments

The calculation of the second moment by the contour integral method is relatively simple,
and sketched in the Appendix 2 Sect. 1 for n = 0. It leads to the disorder average:

< y2 >β,a,b =
(
a + β2 + 1

) (
β2(4a + 2b + 9) + (a + 2)(a + b + 2) + 4β4

)
(
a + 2β2 + b + 2

) (
a + 2β2 + b + 3

) (
a + 3β2 + b + 2

) (113)

This expression is also easily recovered from the sum (33, 34), or (91, 92) involving now the
two partitions (2) and (1, 1). For β = 0 it reproduces (37), i.e. the trivial average with respect
to the weight P0(y) ∼ ya(1 − y)b. The expression (113) is duality-invariant and we expect
that it freezes at β = 1 leading to the predictions for the second moment of the position of
the extremum.

Let us now detail the results for each example separately, including moments up to k = 4
when space permits, more detailed derivations and results being displayed in the Appendix 2.

3.7.1 Log-Correlated Potential with Edge Charges ā, b̄.

The second moment of the position of the global minimum is obtained from above as8

y2m = (ā + 2)(ā(ā + b̄ + 8) + 4b̄ + 17)

(ā + b̄ + 4)(ā + b̄ + 5)2
(114)

This leads to the variance (16) in Prediction 2, replacing there x → y. Expressions for
higher moments for general ā, b̄ are too bulky to present here, and we only display the third
moment in (192) and the skewness in (193).

Two special cases are of interest:

(i) only one edge charge, at y = 0: One sets b̄ = 0. Let us give here the skewness in that
case

Sk := (ym − ym)3

(ym − ym)2
3
2

= − ā(ā + 5)(ā(7ā + 68) + 164)√
2
√
ā + 2(ā + 6)2(2ā + 9)3/2

(115)

8 One sees on this expression that binding to the edge ym → 0+ (resp. ym → 1−) occurs when a → −2+
(resp. b̄ → −2) so one may surmise that the result is valid as long as −2 < ā, b̄.
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which is negative. It can be compared with the skewness associated to the measure∼ yā ,
which is

Sk0 = − 2ā
√
ā + 3√

ā + 1(ā + 4)
(116)

One finds that Sk decreases from 0 to −7/4 as ā increases, while Sk0 decreases from 0
to −2, hence they are quite distinct.

(ii) symmetric case ā = b̄. The variance is obtained as:

y2m − ym
2 = 4ā + 9

4(2ā + 5)2
(117)

where we recall, ym = 1
2 , and we checked explicity that the moment formulae lead to

(
ym − 1

2

)3

= 0 (118)

as expected by symmetry y → 1 − y. The fourth moment and kurtosis are obtained as

y4m = 4a5 + 84a4 + 663a3 + 2488a2 + 4478a + 3110

4(a + 3)(2a + 5)2(2a + 7)2
(119)

Ku = −2
(
8a5 + 248a4 + 2054a3 + 7328a2 + 12053a + 7523

)
(a + 3)(2a + 7)2(4a + 9)2

(120)

The kurtosis can be compared to the one of the measure yā(1 − y)ā which is:

κ0 = − 6

5 + 2a
(121)

Note that when ā increases, Ku → −1/4 while Ku0 → 0.

3.7.2 GUE Characteristic Polynomial

For theGUE-CPwemust inserta = b = 1+β2

2 , in (92). The secondmoment for the associated
statistical mechanics model in the high temperature phase β < 1, and for the position of the
global minimum (obtained by setting β = 1) are then found to be:

< y2 >β = 15β4 + 32β2 + 15

4
(
3β2 + 4

) (
4β2 + 3

) , y2m = 31

98
(122)

For completeness the expression at finite n is given in (191). In the original variable x ∈
[−1, 1], i.e. the support of the semi-circle, using x = 1 − 2y and the result for the first
moment we obtain:

< x2 >β = 3 + 7β2 + 3β4

(4 + 3β2)(3 + 4β2)
, x2m = 13

49
= 0.265306 . . . (123)

where we expect now the PDF of the position of the maximum, P(x), to be centered and
symmetric around x = 0 (which was checked explicitly up to fifth moment).

We give directly the fourth moment of the position of the maximum (see 1 for finite
temperature expressions)

y4m = 401

2352
, x4m = 20

147
= 0.136054 . . . (124)
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which leads to the fourth cumulant and kurtosis as:

x4m
c = − 541

7203
, Ku = −541

507
= −1.06706 . . . (125)

These moments can be compared with the ones of the semi-circle density

< xk >ρ :=
∫ 1

−1
dxxkρ(x), ρ(x) = 2

π

√
1 − x2 (126)

which are:

< x2 >ρ= 1

4
, < x4 >ρ= 1

8
= 0.125, Ku = −1 (127)

and are found quite close, suggesting that P(x) is distinct from, but numerically close, to the
semi-circle density.

3.7.3 Fractional Brownian Motion

For the fBm0 we should set a = b = 0 in (113) leading to the following disorder average of
the associated statistical mechanics model in the high temperature phase:

< y2 >β = 4β4 + 9β2 + 4

2
(
2β2 + 3

) (
3β2 + 2

) , < y2 >β − < y >β
2 =

(
β2 + 2

) (
2β2 + 1

)
4
(
2β2 + 3

) (
3β2 + 2

)
(128)

which is manifestly duality-invariant (see (190) for the n-dependence). The second moment
of the position of the global minimum of the fBm0 is thus predicted to be

y2m = 17

50
, y2m − ym

2 = 9

100
(129)

as displayed in Prediction 3. This is distinct, but numerically not very different, from what
is obtained from a uniform distribution P0(y) = 1 on [0, 1], namely < y2 >P0= 1

3 and
< (y − 1

2 )
2 >P0= 1

12 .
All odd moments centered around y = 1

2 are predicted to vanish, as in (118). Although
we explicitly checked up to fifth it should be a general property. The asymmetry induced by
fixing one point of the fBm0 at x = 0 and letting the one at x = 1 free, does not manifest
itself in the moments of the minimum (or at any temperature in the statistical mechanics
model). It does arise however to first order in n (as seen e.g. from (71)) and is detectable in
the joint distribution of values and positions of the minimum (see below).

From the formula (119) specialized to a = 0 we obtain respectively the fourth moment,
the fourth cumulant and the kurtosis κ for the position of the minimum of the fBm0:

y4m = 311

1470
, y4m

c :=
(
ym − 1

2

)4

− 3

(
ym − 1

2

)2
2

= −7523

735000
(130)

κ := y4m
c

y2m
2 = −15046

11907
= −1.26363 . . . (131)

These three numbers are respectively 1
5 , − 1

120 and −1.2 for a uniform distribution of [0.1],
hence a difference of a few percent.
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3.8 Results for Negative Moments

The negative moments lead interesting additional information on the three problems under
study. Let us present the (short) calculation of the first negative moment, and also give the
expression for the second. Equation (89) for k = 1 yields

< y−1 >β,a,b,n = −1

nβ2

∫
du1
2iπ

u1 − nβ2

u1
× u1 − 1 − a − b − β2(1 − n)

u1 − a
(132)

= 1 + a + b + β2(1 − n)

a
(133)

The continuation to n = 0 of this formula, and of the one for the second negative moment
(calculated in Appendix 2, Sect. 1 ) leads to the following disorder averages in the statistical
mechanics model for β2 < 1

< y−1 >β = 1 + a + b + β2

a
, < y−2 >β =

(
a + β2 + b + 1

) (
a(a + b) + β2

)
(a − 1)a

(
a − β2

)
(134)

Obviously the same formula exist hold exchanging y → 1 − y and a → b. One can check
that these formula coincide with the ones obtained from the general result (34–36).

One can check that for β = 0 and a, b fixed, i.e. in the absence of the random potential,
these formula agree with the same averages over the deterministic measure P0(y) ∼ ya(1−
y)b, i.e. Eq. (37) setting k = −1,−2 there. The effect of the disorder is thus to increase
the values of the inverse moments, presumably from the events when favorable regions in
the random potential appear near the edges. We see that a > 0 (repulsive charge at y = 0)
is required for the finiteness of the first inverse moment, and a > 1 for the finiteness of
the second. In addition, since y ∈ [0, 1], one must have < y−1 >β ≥ 1. Hence a binding
transition at y = 1must occurwhen the charge becomes too attractive, for b ≤ bc = −1−β2.
Symmetric conditions hold under exchanges of y → 1 − y and (a, b) → (b, a).

These moments give some information about the disorder-averaged Gibbs measure: if we
assume a power law behavior near the edge, pβ(y) ∼y→0 yc, the exponent c = c(a, b, β)

must be such that c > 0 whenever a > 0, and c > 1 whenever a > 1. From the divergence
of the inverse moments when a reaches these values, we can surmise that c also vanishes at
a = 0 and equals 1 at a = 1. The simplest possible scenario then is that c = a, but it remains
to be confirmed.

The effect of disorder saturates at β = 1 where we predict freezing in these negative
moments, which, as can be checked on (134) using (90) are duality-invariant. As discussed
above we predict that the full PDF pβ(y) freezes, i.e. P(ym) = pβ=1(y). Let us now discuss
consequences for our three examples.

(i) For the GUE-CP, one must set a = b = 1+β2

2 . One sees that the first inverse moment
exist, but not the second, so the exponent 0 < c < 1. One finds that the first inverse
moment is temperature independent:

< y−1 >β = 4, 0 ≤ β ≤ 1 (135)

which leads to the following predictions for the position of the maximum

y−1
m = 4, (1 − xm)−1 = 2 (136)
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Remarkably, this is also exactly the value of the same average with respect to the semi-
circle density

<
1

1 − x
>ρ= 2 (137)

This suggests that the two distributions, P(x) ands ρ(x), although distinct, are very
similar near the edges.

(ii) LCP with edge charges, one must set a = βā, b = βb̄. The prediction for the first two
inverse moments of the position of the global minimum is:

y−1
m = 2 + ā + b̄

ā
, y−2

m =
(
ā + b̄ + 2

) (
ā(ā + b̄) + 1

)
ā(ā − 1)2

(138)

where domain of existence has been discussed above. It would be interesting to see
whether the simplest scenario for the edge behavior, i.e. that P(ym) ∼ yam near y = 0,
and by symmetry P(ym) ∼ ybm near y = 1 can be confirmed (or infirmed) in future
studies.

(iii) For the fBm0 one must set a = b = 0 (for n = 0), and neither of these moments exist.
Hence the edge exponent of P(y) ∼ yc is such that c ≤ 0 (and probably c = 0).

3.9 Correlation Between Position and Value of the Minimum

Until now we used only the values of the moments at n = 0. However they do exhibit a
non-trivial dependence in the number of replica n. One may thus ask what is the information
encoded in that dependence.

The detailed analysis is performed in footnote 9 The answer is that the knowledge of
the n-dependence of all moments allows in principle to reconstruct the joint distribution,
P(xm, Vm), of the position and value of the extremum. This is an ambitious task which is
far from completed. However in footnote 9 we give a general formula for the conditional
moments, i.e the moments of xm conditioned to a particular value of Vm .

Here we display the results for the simplest cross-correlations in the LCGP model with
edge charges, the derivation and more results are given in footnote 9. We find

ymVm − ym Vm = b̄ − ā

(ā + b̄ + 4)2
(139)

(ym − ym)(Vm − Vm)2 = 4(ā − b̄)

(ā + b̄ + 4)3
(140)

In the case ā = b̄ these two correlations of the first moment vanish, and so do higher
ones: one shows (from the general formula in footnote 9) that the first conditional moment,
E(ym |Vm) = 1

2 independently of Vm . Continuing with the case ā = b̄ we further obtain

(ym − 1

2
)Vm = 0 (141)

(y2m − y2m)(Vm − Vm) = (ā + 2)(2ā + 1)

2(2ā + 5)3
(142)

(y2m − y2m)(Vm − Vm)2 = −4ā2 + 8ā + 1

(2ā + 5)4
(143)

9 See Appendix 8 of the ArXiv version of the present paper: http://arxiv.org/abs/1511.04258.
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Setting ā = 1 leads to the prediction for the GUE-CP as

xm(Vm − Vm) = 0, xm(Vm − Vm)2 = 0 (144)

(y2m − y2m)(Vm − Vm) = 9

686
, (x2m − x2m)(Vm − Vm) = 18

343
(145)

(x2m − x2m)(Vm − Vm)2 = − 52

2401
(146)

and we recall that xm = 1 − 2ym with ym = 1
2 for the GUE-CP and in fact, as discussed

above the first conditional moment E(xm |Vm) = 0 vanishes for any Vm .
The fBm0, as we defined it with the value fixed at y = 0, provides an interesting example

of a process with non-trivial correlation. Indeed the above formula must be modified since
a = 2β2n for the fBm0. As discussed in Appendix 7, that leads to difficulties in the method
for the determining the PDF of Vm . One should thus be careful in assessing the validity of
the following results for the case of the fBm0. They read

(ym − ym)(Vm − Vm) = −1

4
(147)

(ym − ym)(Vm − Vm)2 = 0 (148)

(y2m − y2m)(Vm − Vm) = − 21

100
(149)

(y2m − y2m)(Vm − Vm)2 = 2

25
(150)

and we recall ym = 1
2 for the fBm. The negative value obtained for the first correlation (first

line) is a reflection of the boundary condition chosen, namely pinning of B(η)
0 (y = 0) = 0

and free boundary condition at y = 1, which allows for lower values of the minimum near
the right edge. The vanishing of the second line follows from the discussion in footnote 9.

4 Other Ensembles

4.1 General Considerations

Once the moments for the Jacobi ensemble are known, one can obtain moments in a few
other ensembles. Define the generic measure

PA(y)dy = 1

Z A
n

n∏
i=1

dyiμA(yi )
∏

1≤i< j≤n

|yi − y j |2κ (151)

with, for Jacobi, μA(y) = μJ (y) := ya(1 − y)bθ(0 < y < 1). The main other ensembles
differ only by the choice of the weight function μA(y).

(i) Laguerre ensemble Define yi = zi/b and take the limit b → +∞. Then

lim
b→+∞PJ (y)dy = PL(z)dz, μA(z) = zae−zθ(z) (152)

where ZL
n = limb→+∞ ba+n+κn(n−1)/2Z J

n = ∏n
j=1

�(1+a+( j−1)κ)�(1+ jκ)
�(1+κ)

.
Hence the moments in Laguerre ensemble are obtained as:

< zk >L= lim
b→∞ bk < yk >J (153)
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However in our statistical mechanics model, for instance the LCG random potential with
an external background, we need to define z slightly differently, i.e. z = b

β
y = b̄y.

This ensures duality invariance of the problem, and the Laguerre weight can now be
interpreted as a bona-fide external background potential:

V0(z) = −ā ln z + z (154)

which confines the particle near the edge z = 0 (for ā > 0).
(ii) Gaussian–Hermite ensembleDefine yi = 1

2+(zi/
√
8a) and take the limita = b → +∞.

Then

lim
a=b→+∞PJ (y)dy = PG(z)dz, μG(z) = e−z2/2 (155)

where ZG
n = lima=b→+∞ 4an(8a)n/2+κn(n−1)/2Z J

n = (2π)n/2∏n
j=1

�(1+ jκ)
�(1+κ)

is the
Mehta integral. Similarly below we will introduce a factor of β in the definition, see
next section.

(iii) Inverse-Jacobi weights Define yi = 1/zi Then

PJ (y)dy = PL(z)dz, μA(z) = z−2−a−b−2(n−1)κ (z − 1)bθ(z − 1)

where Z I
n = Z J

n

There is a second set of models, for which the correspondence is less direct. We will
follow the arguments of [39] to surmise a relation between moments. As in that work, one
starts with the simple identity, for k ∈ Z, a ∈ R

∫ π

−π

dθeiθ(a+1+k) = 2 sin((1 + a + k)π)

1 + a + k
= 2(−1)k sin((1 + a)π)

∫ 1

0
dt ta+k (156)

valid whenever the last integral converge. That leads to the multiple-integral version

n∏
j=1

∫ π

−π

dθ j e
iθ j (a+1) f (−eiθ1 , . . . − eiθn ) = [2 sin((1 + a)π)]n

n∏
j=1

∫ 1

0
dt j t

a
j f (t1, ..tn)

for any Laurent polynomial f . From this one conjectures interesting relations between quan-
tities in the circular and Jacobi ensembles, see (1.15–1.17) in [39] as well as Proposition
13.1.4 in Chap.13 of [30]. Further elaborations of these relations lead us to the following
conjectures for the moments:

(i) Circular ensemble with weight. Consider the CUE with weight, defined by the joint
probability

1

ZC
n

n∏
i=1

dθi

2π
|1 + eiθi |2μ

∏
1≤i< j≤n

|eiθi − eiθ j |2κ (157)

for the variables θi ∈ [−π, π[. Then we conjecture that
< cos(kθ) >circular= (−1)k < yk >κ,a,b,n |a=−μ−1−κ(n−1),b=2μ (158)

(ii) Cauchy-β ensemble. Following (1.19) in [39] and using the stereographic projection from
the circle to the real axis, eiθ = (i − z)/(i + z) we obtain the Cauchy-β ensemble which
has weight on the whole real axis z ∈ R

μC (z) = 1

(1 + z2)ρ
, ρ = 1 + μ + (n − 1)κ (159)
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For this ensemble, the conjecture then becomes

< Re[( i − z

i + z
)k] >Cauchy= (−1)k < yk >κ,a,b,n |a=−ρ,b=2ρ−2−2(n−1)κ (160)

which we checked is obeyed for κ = 0, in which case one has < yk >J,κ=0=
(1 − ρ)k/(ρ)k . Note that interesting integrable generalization of Cauchy ensemble was
proposed in [57].

Let us now study the two following examples in more details

4.2 Moments for the Laguerre Ensemble

4.2.1 General Formula

From (33–35), performing the limit (153) we obtain the general positive moments of the
Laguerre ensemble as10 〈

1

n

n∑
j=1

ykj

〉

L

=
∑

λ,|λ|=k

Aλa
+
λ (161)

where the sum is over all partitions of k, and

Aλa
+
λ = k(λ1 − 1)!

(κ(�(λ) − 1) + 1)λ1

�(λ)∏
i=2

(κ(1 − i))λi
(κ(�(λ) − i) + 1)λi

∏
1≤i< j≤�(λ)

κ( j − i) + λi − λ j

κ( j − i)

×1

n

�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(κ(n−i+1))λi

(κ(�(λ)−i+1))λi

∏
1≤i< j≤�(λ)

(κ( j−i+1))λi−λ j

(κ( j−i−1) + 1)λi−λ j

(162)

i.e. a single factor has disappeared. It turns out that these sums are polynomials, although it
may not be easy to see on this expression.

Let us give the first two moments:

< z >L= 1 + a + κ(n − 1) (163)

< z2 >L= (1 + a + κ(n − 1))(2 + a + 2κ(n − 1)) (164)

higher moments become more complicated polynomials. Formula for negative moments can
also be obtained from (33–36) performing the same limit.

4.2.2 Random Statistical Mechanics Model Associated to Laguerre Ensemble

In the corresponding disordered model, LCRG with a background confining potential (154)
we find

< z >β = 1

β
+ ā + β (165)

< z2 >β − < z >2 =
(
1

β
+ β

)(
1

β
+ β + ā

)
(166)

10 Note that positive moments for the Laguerre ensemble were also presented in [31] in an equivalent, but
less explicit form.
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Freezing of these manifestly duality invariant expressions lead to

zm = 2 + ā, z2m − zm
2 = 2(2 + ā) (167)

In the absence of disorder the absolute minimum is at z0m = ā, hence the random potential
now tends to push the minimum towards the larger positive z (i.e. to unbind the particle).
One finds a few higher moments

z3m = (2 + a)(23 + a(10 + a)), z4m = (2 + a)(168 + a(99 + a(18 + a))) (168)

whose associated cumulants have simpler expressions

z3m
c = 7(2 + ā), z4m

c = (ā − 32)(2 + ā) (169)

z5m
c = 4(2 + ā)(42 − 5ā), z6m

c = 2(2 + ā)(458 + ā(−147 + 2ā)) (170)

4.3 Gaussian–Hermite Ensemble

Let us now turn to the Gaussian ensemble. This model is of great interest as its disordered
statistical mechanics is associated to the solution of the one-dimensional decaying Burgers
equation with a random initial condition and of viscosity ∼ 1/β. The velocity is the gradient
of a potential, and the initial condition is chosen to correspond to a log-correlated random
potential. The one-space point statistics of the velocity at any later time is then exactly
associated to the statistical model of the Gaussian ensemble, as we showed in [49]. The
freezing transition at β = 1 corresponds to a transition in the Burgers dynamics from a
Gaussian phase, to a shock-dominated phase. Formore details on the correspondence between
the two problems, we refer the reader to [49] where the model is introduced and analyzed.
We use the same conventions as in that work. Defining the new variable z:

z = √
8ā

(
y − 1

2

)
, a = βā (171)

in terms of the Jacobi variable y ∈ [0, 1], we obtain the moments of the Gaussian ensemble
by taking b = a → +∞ in the general formula (33–34). This limit is not simple. First,
raising (171) to the power zk requires adding contributions of various moments < y p > of
degree p ≤ k. Second, in each such moment there is no obvious term by term simplification
in the large a = b limit. As one sees on (33–34), each term Aλ is superficially of order one,
hence multiple cancellations do occur in the sum so that the end result is of order 1/ak/2 at
large a. The calculation is thus handled using Mathematica, which allows to obtain moments
to high degrees.

Setting n = 0, we then obtain the first non-trivial cumulants of pβ(z). Note that the weight

factor is now e−βz2/2 hence the disordered model corresponds to a particle in a LCGP in
presence of a quadratic confining background potential V0(z) = z2/2 at inverse temperature
β. We obtain

< z2 >β = β + β−1 (172)

< z4 >β

c = < z4 >β − 3< z2 >β

2 = −1 (173)

and we list here the next three ones i.e. < zk >β

c
for k = 6, 8, 10

{
2
(
β + β−1) ,−2

(
3β2 + 13 + 3β−2) , 12 (β + β−1) (2β2 + 23 + 2β−2)} (174)
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These expressions are identical to the ones calculated in [49] using there a much more
painstaking method. They are manifestly duality-invariant and freeze at β = 1, from which
one can read the expressions for the corresponding moments of the position of the minimum
zm (which we do not write here in detail). Since, as discussed there, the Burgers velocity
v in the inviscid limit is equal to the position of the minimum v ≡ zm in the Gaussian
ensemble problem, this leads to non-trivial predictions for the moments of the PDF of these
two quantities, some of which were numerically checked there.

5 Discussion and Conclusions

5.1 Numerical Verification

We now compare our predictions for the position xm of the maximum of the GUE-CP with
the results of direct numerical simulations of GUE polynomials for matrices of growing size
N , performed by Nick Simm, who we also thank for the detailed analysis of the data.

In Fig. 1 we show the histogram of the full PDF of the position xm . For the sake of compar-
ison we also plotted the semi-circle density of eigenvalues, which as discussed above, has the
same first negative moment. The data suggest that, although the distribution of the maximum
if clearly not given by the semi-circular law, the edge behaviors of the two distributions are
numerically close.

Next, in Figs. 2 and 3 we are plotting the values of the second moment and of the kurtosis
as compared to the Prediction 1. While the detailed analysis of finite size effects is left for
the future, we plotted the data against the finite size scale 1/[10(ln N )3], which we found
appropriate.

We see a rather good agreement for the extrapolated values of the second moment, and
still reasonable agreement for the kurtosis. In Fig. 4, we also plot the first inverse moment,
which shows rather good convergence to the predicted value 2. The second inverse moment,
predicted to diverge, is also shown in Fig. 5.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1 Histogram of values xm for the position of the maximum of the characteristic polynomial for size
N = 3000 GUE matrices with 250, 000 realizations. We use the numerical method described in Section 3 of
[21]. The curve fitting the histogram (red) differs from the semi-circular density (green) at most by 0.099
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Fig. 2 Variance of the position of the maximum of the characteristic polynomial for 20 equally spaced data
points corresponding to size N = 150 up to size N = 3000 GUE matrices with 250, 000 realizations. The x
axis has been chosen as 1/[10(ln N )3]. The blue point is the prediction (123)
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Fig. 3 Kurtosis of the position of the maximum of the characteristic polynomial, same samples and x axis
scale as in Fig.2. The blue point is the Prediction 1
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Fig. 4 Inverse moment of the position of the maximum of the characteristic polynomial, same samples and
x axis scale as in Fig.2. The blue point is the prediction (136)
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Fig. 5 Inverse moment of the position of the maximum of the characteristic polynomial, same samples and
x axis scale as in Fig.2. The prediction is a divergence of the moment as N → +∞

In conclusion the agreement with the predictions is reasonable, and for some observables,
excellent. We hope that increasing both the number of realizations and the value of the
parameter N should lead to further improvement, but such a programme is challenging
computationally and is left for future research.
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5.2 Conclusions

In this paper we developed a systematic approach to investigating statistical properties of the
position xm of the global extremum (maximum or minimum) for appropriately regularized
logarithmically-correlated gaussian (LCG) processes in an interval. We explicitly treat three
processes of that kind: the logarithm of the Gaussian unitary ensemble (GUE) characteristic
polynomial, the log-correlated potential in presence of edge charges, and the Fractional
BrownianmotionwithHurst index H → 0, The distribution of xm is characterized through its
positive integermomentsE

{
[xm]k

}
forwhichweprovided an explicit, closed formexpression

in terms of a sum over partitions of the integer k. Our approach is based on the idea of
interpreting LCGs as a random potential so that the associated Boltzmann-Gibbs measure
in the limit of zero temperature T → 0 concentrates around the coordinates of the global
minimum for the potential. Our main technical instrument of analysis is then combining the
replica trick representation for the Boltzmann-Gibbs average of [xm]k with the possibility of
exact evaluation of that average bymapping it to themoment problem forβ−Jacobi ensemble
of random matrices. To perform the latter we used a method based on Jack polynomials
expansion andMacdonald-Kadell integral, with alternative routes possible viaBorodin-Gorin
moment formula. The latter appproach provides also some expressions for negative integer
moments. Our calculations yield explicit formulae for the moments in the high-temperature
phase T > Tc, which can be further continued to T < Tc by exploiting the Freezing-
Duality Conjecture, and in this way provide for T → 0 the sought for expressions for
E
{
[xm]k

}
. Although any integer moment of xm can be with due effort calculated in that way,

it remains a challenge to convert such information into the appropriate generating function
for the distribution of xm . Doing this would allows to understand, e.g., far tails of the latter
distribution, and we leave that and other interesting question for the future work. Note that we
have also provided results about correlations between position and value of the maximum,
and a general method to calculate conditional moments. The determination of the full the
joint probability is also left for the future. We also used the numerical data provided by Nick
Simm to test our predictions for the moments of the position for the maximum in GUE case.
The agreement with our theory is reasonable, and for some observables, excellent.

The application of our method to a non-stationary process, the fBm0, poses several ques-
tions. While the analytical continuation to n = 0 seems to be benign for the moments of xm ,
and leads to the interesting Prediction 3, extension to determine the PDF of the global min-
imum seems to fail, as discussed in the Appendix 7. It would thus be desirable in near future
to find a way around this problem, as well as to check the predictions for the moments against
numerical simulations of the process B(η)

0 (x). Unfortunately generating many instances with
reliable precision seems to be extremely time-demanding. To this end recall that there exists
an intimate relation between B(η)

0 (x) and the behaviour of the (increments of) GUE character-
istic polynomials, though at a different, so-called “mesoscopic” spectral scales [1], negligible
in comparision with the interval [−1, 1]. Clearly, such restriction makes the problem chal-
lenging and we leave numerical verification/falsification of the Prediction 3 for the future.

We believe that our analysis of β−Jacobi ensemble is interesting in its own right and
complements one that has appeared in the very recent work by Mezzadri and Reynolds [31].
We have also presented conjectures for moments in related ensemble.

Acknowledgments The authors are very grateful to Nick Simm for kindly providing numerical data on
argmax of GUE, as well as to Alexei Borodin and Vadim Gorin for bringing their methods to our attention,
for writing the Appendix 1 in the present paper, and for indicating relevant references to us. We would like to
warmly thank the anonymous referee for suggesting to use formulas (80,81) for obtaining an explicit expression

123



On the Position of the Maximum of Log-Correlated Processes... 225

for the negative moments, Alberto Rosso for a lively discussions at the early stage of the project, and Dima
Savin for guiding us to the literature on the moments of Jacobi density. We also thank F. Mezzadri and A.
Reynolds for informing us on their moment formulae prior to publication. Kind hospitality of the Newton
Institute, Cambridge during the program “Random Geometry” as well as of the Simon Center for Geometry
and Physics in Stony Brook, where this research was completed, is acknowledged with thanks. YF was
supported by EPSRC Grants EP/J002763/1 “Insights into Disordered Landscapes via RandomMatrix Theory
and Statistical Mechanics” and EP/N009436/1 “The many faces of random characteristic polynomials”. PLD
was supported by PSL Grant ANR-10-IDEX-0001- 02-PSL.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Contour Integral Formulas for Jacobi Ensemble

Consider the N–particle Jacobi ensemble, which is a probability distribution on N–tuples of
reals 0 ≤ r1 ≤ r2 ≤ · · · ≤ rN ≤ 1 with density

P
α,M,θ (r ∈ [h, h + dh]) = const ·

∏
1≤i< j≤N

(h j − hi )
2θ

N∏
i=1

hθα−1
i (1 − hi )

θ(M−N+1)−1dhi ,

(175)

where M ≥ N is an integer, and α > 0, θ > 0 are two real parameters. 2θ is customary
called β in the random matrix theory.

Theorem 1 For k = 1, 2, . . . the expectation of
∑N

i=1(ri )
k with respect to the measure

(175) is given by

(−θ)−1

(2π i)k

∮
. . .

∮
1

(u2 − u1 + 1 − θ) · · · (uk − uk−1 + 1 − θ)

×
∏
i< j

(
u j − ui

) (
u j − ui + 1 − θ

)
(
u j − ui − θ

) (
u j − ui + 1

)
(

k∏
i=1

ui − θ

ui + (N − 1)θ
· ui − θα

ui − θα − θM
dui

)
,

(176)

where all the contours enclose singularities at (1−N )θ and not at θα +θM, |u1|  |u2| 
· · ·  |uk |.
Theorem 2 For any positive integer k < θα the expectation of

∑N
i=1(ri )

−k with respect to
the measure (175) is given by

θ−1

(2π i)k

∮
. . .

∮
1

(u2 − u1 − 1 + θ) · · · (uk − uk−1 − 1 + θ)

×
∏
i< j

(
u j − ui

) (
u j − ui − 1 + θ

)
(
u j − ui + θ

) (
u j − ui − 1

)
(

k∏
i=1

ui + Nθ

ui
· ui + 1 − θα − Mθ

ui + 1 − θα
dui

)
, (177)

where all the contours enclose singularities at 0 and not at θα−1, |u1|  |u2|  · · ·  |uk |.
Remark 3 There exist similar contour integral formulas for the expectations of the powers
(
∑N

i=1(ri )
k)m with m = 1, 2, . . . and k being both positive and negative integers. They are

obtained by iterating the results of Propositions 6, 7 below.
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In the rest of this section we prove Theorems 1 and 2.
The starting point of our proof is a formula from [58] which we now present. Let � be

the algebra of symmetric polynomials in infinitely many variables x1, x2, . . . . This algebra
is naturally identified with polynomial algebra C[p1, p2, . . . ], where pk are Newton power
sums:

pk = xk1 + xk2 + xk3 + . . . , k = 1, 2, . . . .

We also need a distinguished linear basis in � consisting of Macdonald polynomials
Pλ(·; q, t), which depend on two parameters q and t ; here and below we use the notations of
[54] and λ = λ1 ≥ λ2 ≥ · · · ≥ 0 is a Young diagram.

Proposition 4 Define a differential operator Dn acting in � via

Dn = (−1)n−1

(2π i)n

∮
. . .

∮ ∑n
i=1

zn
zi (t/q)n−i(

1 − qz2
t z1

)
· · ·
(
1 − qzn

tzn−1

) ∏
i< j

(
1 − zi

z j

) (
1 − t zi

qz j

)
(
1 − t ziz j

) (
1 − q−1 zi

z j

)

× exp

( ∞∑
k=1

q−k(1 − tk)
z−k
1 + · · · + z−k

n

k
pk

)
exp

( ∞∑
k=1

zk1 + · · · + zkn
k

(1 − qk)
∂

∂pk

)

×dz1
z1

· · · dzn
zn

, (178)

where the contours are circles around 0 satisfying |z1|  |z2|  · · ·  |zn |, and pk means
the operator of multiplication by pk . ThenMacdonald polynomials are eigenfunctions ofDn,
i.e.

Dn Pλ(·; q, t) = (1 − tn)
∞∑
i=1

(q−λi t i−1)n Pλ(·; q, t).

Proof In slightly different notations this is [58, Theorem 1.2]. ��
Next, we set xN+1, xN+2, . . . equal to 0 and apply the above operators to an N–variable

product function f (x1) · · · f (xN ) (which belongs to the space of symmetric power series in
x1, . . . , xN ). Then we get

Dn

N∏
i=1

f (xi ) =
(

N∏
i=1

f (xi )

)
(−1)n−1

(2π i)n

∮
. . .

∮ ∑n
i=1

zn
zi (t/q)n−i(

1 − qz2
t z1

)
· · ·
(
1 − qzn

tzn−1

)

×
∏
i< j

(
1 − zi

z j

) (
1 − t zi

qz j

)
(
1 − t ziz j

) (
1 − q−1 zi

z j

)
(

n∏
i=1

N∏
a=1

zi − tq−1xa
zi − q−1xa

)
n∏

i=1

f (zi )

f (qzi )

dzi
zi

. (179)

In the last formula the contours are large circles (this is because the integrand needs to be
decomposable into a symmetric power series in the variables xi to justify the computation).

At this point we can pass from formal point of view based on the algebra� to the analytic
one and view q , t and xi as real (or complex) numbers. Our next step is the following limit
transition:

ε → 0, q = exp(−ε), t = qθ , zi = exp(εui ), xi = exp(εyi ), λi = ε−1ri .

(180)
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The Macdonald polynomials Pλ are shown in [59] to converge to the Heckman–Opdam
hypergeometric functions HOr (y1, . . . , yN ; θ) in this limit regime:

lim
ε→0

Pλ(x1, . . . , xN ; q, t) = HOr (y1, . . . , yN ; θ). (181)

In order to pass to the limit ε → 0 in the operators Dn we need to deform the integration
contours so that they enclose the singularities in q−1xi but not 0. Due to the ordering of the
contours we should do this one after another: first deform the z1 contour, then deform the z2
contour, etc. In principle, in this process we get 2n terms obtained by taking the residues at
0 in a subset of variables z1, . . . , zn .

Lemma 5 Only subsets of the form zk, zk+1, . . . , z�, 0 ≤ k <≤ l ≤ n give non-zero residues
in (179).

Proof Recall that we should compute the residues sequentially, from z1 to zn . Suppose that
we started from zk . Then the residue is n − 1 dimensional integral, in which the factors in
the second line of (179) are still the same (with additional prefactor t N ), while the factor in
the first line transforms into

(−1)

zn
zk+1(t/q)n−k−1(

1 − qz2
t z1

)
· · ·
(
1 − qzk−1

t zk−2

) (
1 − qzk+2

t zk+1

)
· · ·
(
1 − qzn

tzn−1

) (182)

Note that if at the next step we do not take the residue in zk+1, then all further residues in zi ,
i > k + 1 will be zero — the integrand will simply have no poles at 0 in these variables. If
we take the residue in zk+1, then we get

(−1)2
zn

zk+2(t/q)n−k−2(
1 − qz2

t z1

)
· · ·
(
1 − qzk−1

t zk−2

) (
1 − qzk+3

t zk+2

)
· · ·
(
1 − qzn

tzn−1

) (183)

which still has the same form and, thus, we can continue in the same way. ��
In particular, if we take the residue at 0 with respect to all variables z1, . . . , zn , then we

get

(−1)n−1t Nn .

Note that (−1)n−1 cancels out with the integral prefactor. Let us pass to the operator

Dn − t Nn

On one hand, this operator is given by the expansion into n(n + 1)/2 integrals of various
dimensions integrated around q−1xi but not 0. On the other hand, its eigenvalues on Mac-
donald polynomials in N variables are

(1 − tn)

(
N∑
i=1

(q−λi t i−1)n +
N∑

i=N+1

(t i−1)n

)
− t Nn = (1 − tn)

N∑
i=1

(q−λi t i−1)n

The eigenvalues of ε−1(Dn − t Nn) converge in the limit regime (180) to

θn
N∑
i=1

exp(nri ).

Thus, taking into account (181), we conclude that integral representation for ε−1(Dn − t Nn)

should also converge. The n–dimensional integral here converges to
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(
N∏
i=1

f (yi )

)
(−1)n−1

(2π i)n

∮ ∮
n

(u1 − u2 + 1 − θ) · · · (un−1 − un + 1 − θ)

×
∏
i< j

(
u j − ui

) (
u j − ui − 1 + θ

)
(
u j − ui + θ

) (
u j − ui − 1

)
(

n∏
i=1

N∏
a=1

ui − ya + θ − 1

ui − ya − 1

)
n∏

i=1

f (ui )

f (ui − 1)
dui ,

(184)

where all the contours enclose singularities at ya + 1 and |u1|  |u2|  · · ·  |un |.
Note that is was important to have n − 1 factors in the first line. Indeed, each such factor

produced ε−1. On the other hand, εn was produced by the change of variables. Together with
additional ε−1 in the definition of our limit transition this gave precisely the constant order as
ε → 0. Now note that when we computed the residues as in Lemma 5, then when 1 < k < n,
the m–dimensional integral would come with less than m − 1 factors in the first line. Indeed,
this is clearly visible in (182), (183). If follows that such terms vanish in our limit transition.
Therefore, only terms with k = 1 or k = n survive. A general term is obtained either by
taking the residue in variables

z1, . . . , z�, � = 1, . . . , n − 1

as in Lemma 5 and then sending ε → 0. As a result, we get n − � dimensional integral

(
N∏
i=1

f (yi )

)
(−1)n−1−�

(2π i)n−�

∮ ∮
1

(u�+1 − u�+2 + 1 − θ) · · · (un−1 − un + 1 − θ)

×
∏
i< j

(
u j − ui

) (
u j − ui − 1 + θ

)
(
u j − ui + θ

) (
u j − ui − 1

)
(

n∏
i=�+1

N∏
a=1

ui − ya + θ − 1

ui − ya − 1

)
n∏

i=�+1

f (ui )

f (ui − 1)
dui ,

(185)

Or we can take the residue in variables

zk, . . . , zn, , n = 1, . . . , n − 1

as in Lemma 5 and then send ε → 0. Note that under the identification k = n + 1 − �, the
integrals have the same integrand. However, the signs appearing when we take residues are
different. Namely, when we take residues in z1, . . . , z� we get the sign (−1)�. On the other
hand, when we take residues in zn+1−�, . . . , zn the sign is (−1)�−1, since we do not get (−1)
factor at the very last step. As a conclusion, two such terms precisely cancel out.

Shifting the variables u �→ u + 1 and dividing by θn we write the final formula.

Proposition 6 The action of the operatorPn := 1
θn limε→0 ε−1(Dn−t Nn)with eigenvalues

PnHOr (y1, . . . , yN ; θ) =
N∑
i=1

exp(nri )HOr (y1, . . . , yN ; θ),

on a function f (y1) · · · f (yN ) can be computed via
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Pn
∏N

i=1 f (yi )∏N
i=1 f (yi )

= θ−1

(2π i)n

∮
. . .

∮
1

(u2 − u1 − 1 + θ) · · · (un − un−1 − 1 + θ)

×
∏
i< j

(
u j − ui

) (
u j − ui − 1 + θ

)
(
u j − ui + θ

) (
u j − ui − 1

)
(

n∏
i=1

N∏
a=1

ui − ya + θ

ui − ya

)

×
n∏

i=1

f (ui + 1)

f (ui )
dui (186)

where all the contours enclose singularities at ya, f (u + 1)/ f (u) is analytic inside the
contours and |u1|  |u2|  · · ·  |un |.

Further, note that in the operator Dn − t Nn we can freely invert the variables (q, t) �→
(q−1, t−1). Since, theMacdonald polynomials are invariant under this change (cf. [54]), they
are still eigenfunctions. Moreover, since we never used the fact 0 < t, q < 1 in the proofs,
all the integral representations are still valid. Thus, we arrive at:

Proposition 7 The action of the operator P̂n with eigenvalues

P̂nHOr (y1, . . . , yN ; θ) =
N∑
i=1

exp(−nri )HOr (y1, . . . , yN ; θ),

on a function f (y1) · · · f (yN ) can be computed via

Pn
∏N

i=1 f (yi )∏N
i=1 f (yi )

= (−θ)−1

(2π i)n

∮
. . .

∮
1

(u2 − u1 + 1 − θ) · · · (un − un−1 + 1 − θ)

×
∏
i< j

(
u j − ui

) (
u j − ui + 1 − θ

)
(
u j − ui − θ

) (
u j − ui + 1

)
(

n∏
i=1

N∏
a=1

ui − ya − θ

ui − ya

)

×
n∏

i=1

f (ui − 1)

f (ui )
dui

where all the contours enclose singularities at ya, f (u − 1)/ f (u) is analytic inside the
contours and |u1|  |u2|  · · ·  |un |.

Now we are ready to prove the contour integral formulas for the Jacobi ensemble.

Proof of Theorem 2 This is essentially a corollary of Proposition 6 and the results of [59] and
below we sketch the proof omitting some technical details, cf. [59, Section 2.3] for similar
arguments.

The Cauchy identity for the Macdonald polynomials yields for M ≥ N

∑
λ=(λ1≥λ2≥···≥λN≥0)

Pλ(x1, . . . , xN ; q, t)Pλ(x̂1, . . . , x̂M ; q, t)

〈Pλ, Pλ〉 =
N∏
i=1

M∏
j=1

(t xi x̂ j ; q)∞
(xi x̂ j ; q)∞

,

(187)

where (a; q)∞ is the q–Pochhammer symbol, (a; q)∞ = ∏∞
�=0(1 − aq�), and 〈Pλ, Pλ〉 are

certain explicit constants, which can be found e.g. in [54, Chapter VI]. We further do the
following three steps:

(i) Apply ε−1(Dk − t Nk) to both sides of (187) and then divide them by∏N
i=1

∏M
j=1

(t xi x̂ j ;q)∞
(xi x̂ j ;q)∞ .
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(ii) Set xi = t i−1 and x̂ j = tαt j−1 and send ε → 0 in the limit regime (180).
(iii) Evaluate the ε → 0 limit of both sides using Proposition 6.

We claim that the resulting identity is precisely the statement of Theorem 2. Indeed, it is
shown in [59, Theorem 2.8] that as ε → 0,

⎛
⎝ N∏

i=1

M∏
j=1

(t xi x̂ j ; q)∞
(xi x̂ j ; q)∞

⎞
⎠

−1
Pλ(x1, . . . , xN ; q, t)Pλ(x̂1, . . . , x̂M ; q, t)

〈Pλ, Pλ〉

converges to the density of the Jacobi ensemble (175) in variables ri = exp(−ri ). Together
with the eigenrelation for Pn of Proposition 6 this implies that the left–hand side of the
identity is the expectation of

∑N
i=1(ri )

−k . For the right–hand side we use the convergence
of the q–Pochhammer symbols to the Gamma function as q → 1 to get the expression of the
form (186) with

f (y) = �(−y + θα)

�(−y + θα + θM)
,

which is precisely (177). ��
Theorem 1 is proven in the same way as Theorem 2, but using Proposition 7 instead of

Proposition 6.

Appendix 2: Calculation of Contour Integrals and More Results for
Moments

In this Appendix we give some details of the contour integral calculations, as well as some
additional explicit results. All formula presented here have also been obtained our expressions
of moments in terms of partitions.

Second Moment

Consider (102) for k = 2. One first perform the contour integral over u1 on a small circle
around 0. The poles in u1 are at u1 = 0, 2 + a + b + 2β2, 1 + u2, β2 + u2. Because of
condition C1 the last two poles are not encountered. Because of C2 neither is the second
pole. Hence only the pole in u1 = 0 is picked up and from its residue one gets the remaining
integral:

< y2 >β,a,b,n=0=
(
a + β2 + 1

)
(
a + 2β2 + b + 2

)
∫

du2
2iπ

u2
(
u2 − (a + β2 + 1)

)
(u2 + 1)

(
u2 + β2

) (
u2 − (a + 2β2 + 2)

)
(188)

From the prescription C2 only the poles at u2 = −1 and u2 = −β2 contribute and, summing
their residues one obtains (113) in the text.

For completeness we now give the complete n dependence of several results in the text.
For the LCP with edge charges in the case b = a one finds:

< y2 >β,a,a,n= 2a2 + a
(
β2(6 − 5n) + 6

)+ β4(n − 1)(3n − 4) + β2(9 − 7n) + 4

2
(
2a + β2(3 − 2n) + 2

) (
2a − 2β2(n − 1) + 3

)
(189)
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For the fBm, with a = 2nβ2, b = 0 one has

< y2 >β,n=
(
β2(n + 1) + 1

) (
β4
(
n2 + n + 4

)+ β2(n + 9) + 4
)

2
(
6β6 + 19β4 + 19β2 + 6

) (190)

For the GUE-CP, setting a = b = 1+β2

2 , one finds:

< y2 >β,n= β4(2n − 3)(3n − 5) + β2(32 − 19n) + 15

4
(
2β2(n − 2) − 3

) (
β2(2n − 3) − 4

) (191)

Third Moment

Consider (102) for k = 3.We take successively the residue at u1 = 0, then at u2 = −1,−β2,
which produces two terms, then at u3 = −2,−β2 for the first term, and at u3 = −1,−2β2

for the second term. The final result for arbitrary a, b, β is too heavy to reproduce here. We
give here:

• the third cumulant for arbitrary a, b, which is slightly simpler:

(
ym − 〈ym〉

)3

= − (a + 2)(b + 2)(a − b)
(
7a2 + 2a(7b + 34) + b(7b + 68) + 164

)
(a + b + 4)3(a + b + 5)2(a + b + 6)2

(192)

and of course vanishes in the case a = b. The associated skewness is

Sk = (b − a)(a + b + 5)
(
7a2 + 2a(7b + 34) + b(7b + 68) + 164

)
√
a + 2

√
b + 2(a + b + 6)2(2a + 2b + 9)3/2

(193)

to be compared with the skewness for the measure ya(1 − y)b, which is

Sk0 = − 2(a − b)
√
a + b + 3√

a + 1
√
b + 1(a + b + 4)

(194)

• we have checked that the result for the third moment for a = b, and arbitrary β, n

<

(
y − 1

2

)3

>β,a,a,n= 0 (195)

is consistent with the symmetry y → 1 − y.

Fourth Moment

Consider now (102) for k = 4. The sequence of poles is the same as for k = 3 for u1, u2, u3,
except for the u4 integrationwhich contains now four terms and picks poles at u4 = −3,−β2;
u4 = −2,−2β2,−1 − β2 (twice) and u4 = −1,−3β2. Clearly this is a simple regular
structure which carries on to higher moments. While the pole structure is simple, we were
not able to find a systematics for the residue valid to any order.

Again, the final result for arbitrary a, b, β is too heavy to reproduce here. We give:

• the fourth moment, cumulant and kurtosis for the GUE-CP associated statistical model
with b = a = 1+β2

2 , at arbitrary β ≤ 1:

< y4 >β = 252β8 + 1195β6 + 1918β4 + 1195β2 + 252

64
(
β2 + 2

) (
2β2 + 1

) (
3β2 + 4

) (
4β2 + 3

) (196)
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< x4 >β = 12β8 + 59β6 + 98β4 + 59β2 + 12

4
(
β2 + 2

) (
2β2 + 1

) (
3β2 + 4

) (
4β2 + 3

) (197)

< x4 >β − 3< x2 >β

2

= −72β12 + 540β10 + 1549β8 + 2170β6 + 1549β4 + 540β2 + 72

4
(
β2 + 2

) (
2β2 + 1

) (
3β2 + 4

)2 (4β2 + 3
)2

Ku = −72β12 + 540β10 + 1549β8 + 2170β6 + 1549β4 + 540β2 + 72

4
(
β2 + 2

) (
2β2 + 1

) (
3β4 + 7β2 + 3

)2 (198)

Setting β = 1, this leads to the predictions given in the text for the maximum of the
GUE-CP.

• the fourth moment and cumulants for the statistical model associated to the fBm b =
a = 0 at arbitrary β ≤ 1:

< y4 >β = 72β8 + 382β6 + 647β4 + 382β2 + 72

6
(
2β2 + 3

) (
2β2 + 5

) (
3β2 + 2

) (
5β2 + 2

) (199)

and the fourth cumulant:
〈(

y − 1

2

)4
〉

β

− 3

〈(
y − 1

2

)2
〉

β

2

(200)

= −72β12 + 588β10 + 1802β8 + 2599β6 + 1802β4 + 588β2 + 72

24
(
2β2 + 3

)2 (2β2 + 5
) (
3β2 + 2

)2 (5β2 + 2
) (201)

Setting β = 1, this leads to the predictions for the minimum of the fBm given in the text.

Second Negative Moment

In Eq. (89) for k = 2, the u1 integration gives again the residue at u1 = 0, then the u2
integration picks two poles at u2 = 1 and u2 = β2. Since one must avoids the pole at u2 = a
we need the condition a > max(1, β2) for the existence of the moment, in which case we
find:

< y−2 >β,a,b,n

=
(
a + β2 + b + β2(−n) + 1

) (
a2 − β2n

(
a + β2 + b + 1

)+ ab + β2 + β4n2
)

(a − 1)a
(
a − β2

)
leading, for n = 0, to the expression given in the text. We have checked that the same
expression is obtained from the formula (33–36).

Appendix 3: Numerical Values of Higher Moments

For completeness, we display values of higher moments for two of our examples.

fBm0

Let us give the list of even moments ykm , k = 6, 8, 14:
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{
100691

648270
,
774289013

6275253600
,
130667513591

1272621430080
,
3027227918327

34360778612160
,
13262063040175909

171651723898374720

}

(202)

and a longer list of numerical values for ykm , k = 6, 8, 20:

{0.155323, 0.123388, 0.102676, 0.0881013, 0.0772615, 0.0688694, 0.0621715, 0.0566963}
Taking the ratio with 1/(1 + k), the moments of the uniform distribution, we obtain

{1.08726, 1.11049, 1.12943, 1.14532, 1.15892, 1.17078, 1.18126, 1.19062} (203)

so they decay slightly slower, meaning more weight near the edges.

The cumulants ykm
c
, k = 4, 6, ..12 are given here, together with their numerical value:

{
− 7523

735000
,

4426903

810337500
,− 125514889189

19610167500000
,
128185912543691

9885864269531250
,

− 57847493772231002501

1438689827144882812500

}

{−0.0102354, 0.00546304,−0.0064005, 0.0129666,−0.0402085} (204)

as well as the ratio to the corresponding cumulants for the uniform distribution

{1.22824, 1.37669, 1.53612, 1.71159, 1.90626} (205)

showing again a steady growth.

GUE-CP

Let us give the list of even moments ykm , k = 6, 8, ..14:
{
731327

6586272
,
61661759

772972200
,
31888748599

523765962720
,
10558018750567

218042523218520
,
2969274186629889449

74826879182092612575

}

(206)

and a longer list of numerical values for ykm , k = 6, 8, ..20:

{0.111038, 0.0797723, 0.0608836, 0.0484218, 0.0396819,
0.0332698, 0.0283998, 0.024598}

Taking the ratio with the moments of the semi-circle distribution ρ(x), we obtain

1.06017, 1.07527, 1.08599, 1.09353, 1.09873, 1.10219, 1.10432, 1.10543 (207)

which grow but seem to saturate.

The cumulants ykm
c
, k = 4, 6, ..12 are given here, together with their numerical value:

{
− 541

115248
,

5665234

3459233547
,− 33307238400767

26190549031046400
,

6658506099368911

3882094130126852640
,

− 122275968148461510151943659

34483421254841283626472130560

}
(208)

−0.00469422, 0.00163771,−0.00127173, 0.00171518,−0.00354593 (209)

123



234 Y. V. Fyodorov, P. L. Doussal

as well as the ratio to the corresponding cumulants for the semi-circle distribution

{1.20172, 1.34162, 1.48828, 1.64698, 1.82096} (210)

which reveal some difference between the two distributions.

Appendix 4: Normalization of Jack Polynomials

Recalling that κ = 1/α and k = ∑�(λ)
i=1 λi one finds that the function defined in the text in

(60) takes the explicit form, in the two (dual) cases t = 1 and t = α:

c(λ, α, 1) = αk
�(λ)∏
i=1

(κ(�(λ) − i + 1))λi
∏

1≤i< j≤�(λ)

(κ( j − i))λi−λ j

(κ( j − i + 1))λi−λ j

(211)

and also

c(λ, α, α) = αk
�(λ)∏
i=1

(κ(�(λ) − i) + 1)λi
∏

1≤i< j≤�(λ)

(κ( j − i − 1) + 1)λi−λ j

(κ( j − i) + 1)λi−λ j

(212)

The product of these two factors being equal to the square of the norm of the Jack polynomial
J (α)
λ .

Appendix 5: Averages over Jacobi Measure

Recalling the definition of the Jacobi ensemble average (30) and taking the ratio of (74) to
(29), we obtain the average of the P(1/κ)(y) polynomial. We want to cancel common factors
and reorder to remove the n dependence from the bounds on the product, and make it more
explicit. Using the Pochhammer symbols, one obtains

〈
P1/κ

λ (y)
〉
J

=
�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(a + b + 2 + κ(2n − i − 1))λi

(213)

×
∏

1≤i< j≤�(λ)

(κ( j − i + 1))λi−λ j

(κ( j − i))λi−λ j

∏
1≤i≤�(λ)< j≤n

(κ( j − i + 1))λi
(κ( j − i))λi

(214)

Clearly the last term can be rewritten as

〈
P1/κ

λ (y)
〉
J

=
�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(a + b + 2 + κ(2n − i − 1))λi

(215)

×
∏

1≤i< j≤�(λ)

(κ( j − i + 1))λi−λ j

(κ( j − i))λi−λ j

∏
1≤i≤�(λ)

(κ(n − i + 1))λi
(κ(�(λ) + 1 − i))λi

(216)

Using the identity (211) this simplifies into:

〈
P1/κ

λ (y)
〉
J

= αk

c(λ, α, 1)

�(λ)∏
i=1

(a + 1 + κ(n − i))λi
(a + b + 2 + κ(2n − i − 1))λi

(κ(n − i + 1))λi (217)

which using the relation (72) between the different Jack polynomials, gives the formula (76)
in the text.
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Appendix 6: Remark on Moment Formula

It is interesting to note that the formula (71, 70) can be rewritten as:

p(k)(y) = kα lim
p→0

∑
λ,|λ|=k

J (α)
λ (1p)J

(α)
λ (y)

< J (α)
λ , J (α)

λ >
(218)

using that J (α)
λ (1p) = ∏

s∈λ(p − l ′λ(s) + αa′
λ(s)) see Theorem 5.4 in [55] and (10.25) in

[54]. This may be compared to the Cauchy identity [55]

∑
λ

q |λ| J
(α)
λ (y)J (α)

λ (x)

< Jλ, Jλ >
=
∏
i, j

(1 − qxi y j )
−1/α (219)

where the sum is over all partitions. Another important identity is based on the so-called
binomial formula [30], and is quoted and used in [31]. It reads

∑
λ

q |λ|∏
s∈λ

(aα − l ′λ(s) + αa′
λ(s))

J (α)
λ (x)

< Jλ, Jλ >
=

n∏
i=1

(1 − qxi )
−a (220)

and agrees with Cauchy formula setting a = n/α and all yi = 1.
Finally let us note an alternative way to recover themoment formula (33, 34), starting from

Equation (2.11)-(2.12) in [60]11 and performing some manipulations. One first sets w = 0
which selects positive signatures, i.e. usual partitions λ. Next, one applies the relation to n
variables ui in [0, 1] rather than on the unit circle, and one applies the identities for n < �(λ)

( �(λ) is called N there), i.e. we set the remaining variables to zero. Next, one transforms
ui → qui and use homogeneity of Macdonald polynomials. One further expands at small z
and consider the O(z) term, which is then averaged over the Jacobi measure using the Kadell
integral. As we have checked explicitly, this leads, after some algebra, to (33, 34).

Appendix 7: Distribution of the Value of the Minimum

It is useful to recall the analysis of [12] for the PDF of the value of the maximum, but in a
much more concise form, and further elaborate to the present cases. We will not attempt at
rigor and refer the reader to [40–43] for steps in that direction.

Main Result

Let us first present the quick and dirty version, directly at β = 1 and give later a better
justification starting from β < 1 and using duality. The positive integer moments of the
reduced partition sum zβ = �(1 − β2)Zβ of the model (47) on the interval are given by the
Selberg integral (29)

znβ = Sln(κ, a, b)|κ=−β2 (221)

which is Eq. (7) in [12]. Let us use the identity
n∏
j=1

�(z − j) = G(z)

G(z − n)
(222)

11 we thank A. Borodin for pointing out this reference and useful comments about this formula.
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in terms of the Barnes function G(x), valid for positive integer n and complex z. Brutally
replace in the Selberg integral setting β = 1. For definiteness the argument in the last
�-function in (29) may be slighlty shifted before the replacement, and taken back to zero
afterwards. This leads to

zn1 = e−n f1 = S(n) = G(1)G(2 + a)G(2 + b)G(4 + a + b − 2n)

G(1 − n)G(2 + a − n)G(2 + b − n)G(4 + a + b − n)
(223)

which is now continued to complex n, with Re(n) < 1. Here a, b denote the value of the
(possibly temperature-dependent) parameters at β = 1. Note that a, b may also depend on
n, e.g. see below the fBm example.

Freezing (see below) states that the PDF of the random variable

yβ = fβ − G/β (224)

where G is a unit Gumbel random variable, independent of fβ , is independent of β for all
β ≥ 1. This implies12

Vm =in law f1 − G (225)

hence the PDF of Vm , can be obtained by inverse Laplace transform of (236) convoluted with
Gumbel, i.e.

e−nVm = �(1 − n)S(n) (226)

Q(Vm) = LT−1
n→Vm

�(1 − n)S(n) (227)

Using that:

∂z lnG(z) = 1

2
(1 + ln(2π)) − z + (z − 1)ψ(z) (228)

One easily obtain the cumulants of Vm . One must distinguish two cases according to whether
the Jacobi variables a, b (at β = 1) depend on n or not (and similarly when performing the
inverse Laplace transform).

In the case where a, b are n-independent (LCGP with edge charges, and GUE-CP) one
finds, for p ≥ 1

V p
m
c = (2p − 1)φp(4 + a + b) − φp(2 + a) − φp(2 + b) + γp (229)

where

φp(z) = (p − 1)ψp−2(z) + (z − 1)ψp−1(z) (230)

γp = (−1)p(p − 1)!(ζ(p) + ζ(p − 1)), p ≥ 3 (231)

γ2 = γE + π2

6
, γ1 = −γE − ln 2π (232)

where we used, for p ≥ 2, ψp(1) = (−1)p+1ζ(p + 1)p!, and the cumulants of the Gumbel
distribution, < Gp >c= (p − 1)!ζ(p). The results for the LCGP with edge charges are then
obtained by setting a = ā, b = b̄, and for the GUE-CP a = b = 1. In this case the domain
of parameters where (227) yields a bona-fide, i.e. positive and well defined PDF, has been
discussed in [12]. For the GUE-CP one finds

V 2
m
c = −629

48
+ 2π2 = 6.63504 (233)

12 We thank X. Cao for a stimulating discussion on this point. Note that this is equivalent to the relation
between cumulants given in (24) of [12].
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V 3
m
c = −64ζ(3) + 50549

864
+ 4π2

3
= −5.26638 (234)

V 4
m
c = −72ζ(3) − 423301

1152
+ 24π4

5
= 13.5668 (235)

in agreement with the study [21].13

For the second case let us discuss the fBm0, where a = 2β2n → 2n should be inserted.
This problem ismuchmore delicate. Indeed for a sufficiently negativewe know that a binding
transition occurs at the boundary [12]. The naive application of the method would yield, for
the Laplace transform of the PDF of the value of the minimum Vm

e−nVm = �[1 − n] G(1)G(2 + 2n)G(2)G(4)

G(1 − n)G(2 + n)G(2 − n)G(4 + n)
(236)

where G(1) = G(2) = 1 and G(4) = 2. This however cannot be the LT of a positive
probability, since it vanishes at n = −1 and convexity is violated around n < −.22 . . ..
Worse, we find that the Taylor coefficient of n4 is −0.116681, thus cumulants cannot be
obtained. The origin of this problem is clear. Contrarily to the other cases the value of the
potential is fixed at x = 0, V (0) = 0. Hence Vm cannot be positive, it is either Vm < 0
or pinned at Vm = 0 in which case xm = 0. When n is negative, the moment (236) gives
a lot of weight to higher (less negative values) of Vm , and eventually it reaches Vm = 0
corresponding to the above mentioned “binding transition”. This explains why the analytical
structure of (236) is badly behaved on the negative n side, and cannot be the proper analytical
continuation in that region. At the minimum one needs to better take into account a possible
delta-function weight at Vm = 0. Fixing this problem, and finding the correct analytical
continuation for this case, seems challenging and is left for future studies.14

Duality and Freezing

Let us now consider β < 1 where analytical continuation can be studied with more care.
There exists a function G̃β(x) (see15) such that (222) generalizes to

n∏
j=1

�(βz − jβ2) = G̃β(z)

G̃β(z − nβ)
(237)

where G̃β(z) = Az,βGβ(z) and Gβ(z) is the function introduced in [12] which satisfies the
duality invariance Gβ(z) = G1/β(z), and G1(z) = G(z), Az,1 = 1. The precise value of

Az,β = β
z2
2 − z

2 (β+ 1
β

)
(2π)

z( 1
2β − 1

2 ). Using this formula with a = βā and b = βb̄ we obtain

13 The analogous formula for the Laplace transform there contains an additional global prefactor

π−2n28n−2n2 , which we have neglected here—as it is immaterial for the moments of the position of the
maximum—but needs to be restored for comparison with the value of the maximum in the GUE-CP problem).
It shifts the value of the second cumulant by −4 ln 2 as compared to (233), but leaves the higher cumulants
unchanged. We thank Nick Simm for help in clarifying this point.
14 Note also the regularization dependent factor ηβ2n2 in the formula (53) for the moments, omitted here,
but which, when reintroduced, helps cure the convexity problem mentioned here. Whether this allows a full
solution of the problem (in particular whether the cumulants of order larger than 2 are correctly predicted by
(236), is presently unclear and left for future study. We thank D. Ostrovsky for a discussion about these issues.
15 Note that the function G̃β(x) is related to the Alexeiewsky-Barnes G function noted G(z|τ) defined in Eq.

(8) of [41] (and studied there) as follows G̃β(βx)/G̃β(β) = G(x |τ)|τ=1/β2 .
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from the Selberg integral (29)

znβ = e−nβ fβ = Sβ(n)

= G̃β( 1
β
)G̃β( 1

β
+ β + ā)G̃β( 1

β
+ β + b̄)G̃β( 2

β
+ 2β + ā + b̄ − 2βn)

G̃β( 1
β

− βn)G̃β( 1
β

+ β + ā − βn)G̃β( 1
β

+ β + b̄ − βn)G̃β( 2
β

+ 2β + ā + b̄ − βn)

(238)

which is now legitimate for β small enough at fixed n. Now, using that G̃β(z) = G̃β(z +
β)/�(βz), and upon a trivial shift z = z̃(2π)1−β (and further ignoring the tilde) we note
that it can be rewritten as

znβ = e−nβ fβ = �(1 − β2n)S̄β(βn) (239)

where

S̄β(βn)

= Gβ(β + 1
β
)Gβ( 1

β
+ β + ā)Gβ( 1

β
+ β + b̄)Gβ( 2

β
+ 2β + ā + b̄ − 2βn)

Gβ(β + 1
β

− βn)Gβ( 1
β

+ β + ā − βn)Gβ( 1
β

+ β + b̄ − βn)Gβ( 2
β

+ 2β + ā + b̄ − βn)

is a fully duality invariant function Sβ(x) = S1/β(x). Here we are using the same definition
of duality invariance as in (90), i.e. the combination βn is duality invariant (since n′ =
nβ2 = nβ/β ′). We note that the factor �(1 − β2n) corresponds exactly to the moments of
the (simpler) log-circular ensemble [11], in other words in that case the factor S̄(βn) = 1.

Sowe see from (239), and sincenβ is duality invariant, that the free energy randomvariable
is not duality invariant.However it is now trivial to see what one must do to make (239) fully
duality invariant, namely multiply it by �(1 − n), which is the image of �(1 − nβ2) under
duality. And this amounts precisely to a convolution by an independent Gumbel variable.
Hence defining the random variable

yβ = fβ − G/β (240)

we have that

e−nβyβ = �(1 − n)e−nβ fβ = �(1 − n)�(1 − nβ2)S̄(βn) (241)

and the random variable yβ is fully duality invariant (meaning all its exponential moments
are). Now the freezing duality conjecture states that the PDF of the variable yβ freezes at
β = 1, leading to the results for the PDF of the minimum Vm , displayed in the previous
subsection (since G1(z) = G̃1(z) = G(z) all formula trivially match). Note that the CDF of

yβ is 1− gβ(y) where gβ(y) = e−eβ(y− fβ )

, hence duality invariance and freezing of (240) is
equivalent to stating that the full function gβ(y) is duality invariant and freezes.

Finally note that all which is needed for duality invariance and freezing in this class of
models, is that, as discussed in (95), ā and b̄ are duality invariant functions of β and (when
it happens) of βn, which is the case for all three examples studied here.
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