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Abstract The provision of accurate methods for predicting the climate response to anthro-
pogenic andnatural forcings is a key contemporary scientific challenge.Using a simplified and
efficient open-source general circulation model of the atmosphere featuring O(105) degrees
of freedom, we show how it is possible to approach such a problem using nonequilibrium
statistical mechanics. Response theory allows one to practically compute the time-dependent
measure supported on the pullback attractor of the climate system, whose dynamics is non-
autonomous as a result of time-dependent forcings. We propose a simple yet efficient method
for predicting—at any lead time and in an ensemble sense—the change in climate properties
resulting from increase in the concentration of CO2 using test perturbation model runs. We
assess strengths and limitations of the response theory in predicting the changes in the glob-
ally averaged values of surface temperature and of the yearly total precipitation, as well as
in their spatial patterns. The quality of the predictions obtained for the surface temperature
fields is rather good, while in the case of precipitation a good skill is observed only for the
global average. We also show how it is possible to define accurately concepts like the inertia
of the climate system or to predict when climate change is detectable given a scenario of forc-
ing. Our analysis can be extended for dealing with more complex portfolios of forcings and
can be adapted to treat, in principle, any climate observable. Our conclusion is that climate
change is indeed a problem that can be effectively seen through a statistical mechanical lens,
and that there is great potential for optimizing the current coordinated modelling exercises
run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate
Change.
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1 Introduction

The climate is a forced and dissipative nonequilibrium chaotic systemwith a complex natural
variability resulting from the interplay of instabilities and re-equilibrating mechanisms, neg-
ative and positive feedbacks, all covering a very large range of spatial and temporal scales.
One of the outstanding scientific challenges of the last decades has been to attempt to provide
a comprehensive theory of climate, able to explain themain features of its dynamics, describe
its variability, and predict its response to a variety of forcings, both anthropogenic and natural
[1–3]. The study of the phenomenology of the climate system is commonly approached by
focusing on distinct aspects like:

• wave-like features such Rossby or equatorial waves, which have enormous importance
in terms of predictability and transport of, e.g., energy, momentum, and water vapour;

• particle-like features such as hurricanes, extratropical cyclones, or oceanic vortices,
which are of great relevance for the local properties of the climate system and its subdo-
mains;

• turbulent cascades, which determine, e.g., dissipation in the boundary layer and
development of large eddies through the mechanism of geostrophic turbulence.

While each of these points of view is useful and necessary, none is able to provide alone a
comprehensive understanding of the properties of the climate system; see also discussion in
[4].

On a macroscopic level, one can say that at zero order the climate is driven by differences
in the absorption of solar radiation across its domain. The prevalence of absorption at surface
and at the lower levels of the atmosphere leads, through a rich portfolio of processes, to
compensating vertical energy fluxes (most notably, convective motions in the atmosphere
and exchanges of infrared radiation), while the prevalence of absorption of solar radiation in
the low latitudes regions leads to the set up of the large scale circulation of the atmosphere
(with the hydrological cycle playing a key role), which allows for reducing the temperature
differences between tropics and polar regions with respect to what would be the case in
absence of horizontal energy transfers [5,6].

It is important to stress that such organized motions of the geophysical fluids, which act
as negative feedbacks but cannot be treated as diffusive Onsager-like processes, typically
result from the transformation of some sort of available potential into kinetic energy, which
is continuously dissipated through a variety of irreversible processes. See [7] for a detailed
analysis of the relationship between response, fluctuations, and dissipation at different scales.
Altogether, the climate can be seen as a thermal engine able to transform heat intomechanical
energy with a given efficiency, and featuring many different irreversible processes that make
it non-ideal [2,8,9].

Besides the strictly scientific aspect, much of the interest on climate research has been
driven in the past decades by the accumulated observational evidence of the human influence
on the climate system. In order to summarize and coordinate the research activities carried
on by the scientific community, the United Nations Environment Programme (UNEP) and
the World Meteorological Organization (WMO) established in 1988 the Intergovernmental
Panel on Climate Change (IPCC). The IPCC reports, issued periodically about every 5 years,
provide systematic reviews of the scientific literature on the topic of climate dynamics,
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with special focus on global warming and on the socio-economic impacts of anthropogenic
climate change [10–12]. Along with such a review effort, the IPCC defines standards for
the modellistic exercises to be performed by research groups in order to provide projections
of future climate change with numerical models of the climate system. A typical IPCC-like
climate change experiment consists in simulating the system in a reference state (a stationary
preindustrial state with fixed parameters, or a realistic simulation of the present-day climate),
raising the CO2 concentration (as well as, in general, the concentration of other greenhouse
gases such as methane) in the atmosphere following a certain time modulation within a given
time window, and then fixing the CO2 concentration to a final value, in order to observe
the relaxation of the system to a new stationary state. Each time-modulation of the CO2

forcing defines a scenario, and it is a representation of the expected change in the CO2

concentration resulting from a specific path of industrialization and change in land use. Note
that the attribution of unusual climatic conditions to specific climate forcing is far from being
a trivial matter [13,14].

While much progress has been achieved, we are still far from having a conclusive frame-
work of climate dynamics. One needs to consider that the study of climate faces, on top of
all the difficulties that are intrinsic to any nonequilibrium system, the following additional
aspects that make it especially hard to advance its understanding:

• the presence of well-defined subdomains—the atmosphere, the ocean, etc.—featuring
extremely different physical and chemical properties, dominating dynamical processes,
and characteristic time-scales;

• the complex processes coupling such subdomains;
• the presence of a continuously varying set of forcings resulting from, e.g., the fluctuations

in the incoming solar radiation and the processes—natural and anthropogenic—altering
the atmospheric composition;

• the lack of scale separation between different processes, which requires a profound revi-
sion of the standard methods for model reduction/projection to the slow manifold, and
calls for the unavoidable need of complex parametrization of subgrid scale processes in
numerical models;

• the impossibility to have detailed and homogeneous observations of the climatic fields
with extremely high-resolution in time and in space, and the need to integrate direct
and indirect measurements when trying to reconstruct the past climate state beyond the
industrial era;

• the fact that we can observe only one realization of the process.

Since the climate is a nonequilibrium system, it is far from trivial to derive its response to
forcings from the natural variability realized when no time-dependent forcings are applied.
This is the fundamental reason why the construction of a theory of the climate response
is so challenging [3]. As already noted by Lorenz [15], it is hard to construct a one-to-
one correspondence between forced and free fluctuations in a climatic context. Following
the pioneering contribution by Leith [16], previous attempts on predicting climate response
based broadly on applications of the fluctuation–dissipation theorem have had some degree
of success [17–21], but, in the deterministic case, the presence of correction terms due to the
singular nature of the invariant measure make such an approach potentially prone to errors
[22,23]. Adding noise in the equations in the form of stochastic forcing—as in the case of
using stochastic parametrizations [24] in multiscale system—provides a way to regularize
the problem, but it is not entirely clear how to treat the zero noise limit. Additionally, one
should provide a robust and meaningful derivation of the model to be used for constructing
the noise: a proposal in this direction is given in [2,25,26].
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In this paper we want to show how climate change is indeed a well-posed problem at
mathematical and physical level by presenting a theoretical analysis of how PLASIM [27], a
general circulationmodel of intermediate complexity, responds to changes in the atmospheric
composition mimicking increasing concentrations of greenhouse gases. We will frame the
problem of studying the statistical properties of a non-autonomous, forced and dissipative
complex system using the mathematical construction of the pullback attractor [28–30]—see
also the closely related concept of snapshot attractor [31–34]—and will use as theoretical
framework the Ruelle response theory [22,35] to compute the effect of small time-dependent
perturbations on the background state. We will stick to the linear approximation, which has
proved its effectiveness in various examples of geophysical interest [23,36]. The basic idea
is to use a set of probe perturbations to derive the Green function of the system, and be
then able to predict the response of the system to a large class of forcings having the same
spatial structure. In this way, the uncertainties associated to the application of the fluctuation–
dissipation theorem are absent and the theoretical framework is more robust. Note that, as
shown in [37], one can practically implement the response theory also to treat the nonlinear
effects of the forcing.

PLASIM has O(105) degrees of freedom and provides a flexible tool for performing
theoretical studies in climate dynamics. PLASIM is much faster (and indeed simpler) than
the state of the art climatemodels used in the IPCC reports, but provides a reasonably realistic
representation of atmospheric dynamics and of its interactions with the land surface and with
the mixed layer of the ocean. The model includes a suite of efficient parametrization of small
scale processes such as those relevant for describing radiative transfer, cloud formation, and
turbulent transport across the boundary layer. It is important to recall that in climate science it
is practically necessary and conceptually very sound to choose models belonging to different
levels of a hierarchy of complexity [38] depending on the specific problem to be studied: the
most physically comprehensive and computationally expensive model is not the best model
to be used for all purposes; see discussion in [39].

In a previous work [36] we focused on the analysis of a globally averaged observable, and
we considered amodel set-upwhere themeridional oceanic heat transportwas set to zero,with
no feedback from the climate state. Such a limitation resulted in an extremely high increase
of the globally averaged surface temperature resulting from higher CO2 concentrations. In
this paper we extend the previous analysis by using a better model set-up and by considering
a wider range of climate observables, able to provide a more complete picture of the climate
response to CO2 concentration. In particular, we wish to show to what extent response theory
is suited for performing projections of the spatial pattern of climate change.

The paper is organized as follows. In Sect. 2 we introduce the main concepts behind
the theoretical framework of our analysis. We briefly describe the basic properties of the
pullback attractor and explain its relevance in the context of climate dynamics. We then
discuss the relevance of response theory for studying situations where the non-autonomous
dynamics can be decomposed into a dominating autonomous component plus a small non-
autonomous correction. In Sect. 3 we introduce the climate model used in this study, discuss
the various numerical experiments and the climatic observables of our interest, and present
the data processing methods used for predicting the climate response to forcings. In Sect. 4
we present the main results of our work. We focus on two observables of great relevance,
namely the surface temperature and the yearly total precipitation, and investigate the skill of
response theory in predicting the change in their statistical properties, exploring both changes
in global quantities and spatial patterns of changes. We will also show how to flexibly use
response theory for assessing when climate change becomes statistically significant in a
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variety of scenarios. In Sect. 5 we summarize and discuss the main findings of this work. In
Sect. 6 we propose some ideas for potentially exciting future investigations.

2 Pullback Attractor and Climate Response

Since the climate system experiences forcings whose variations take place on many different
time scales [40], defining rigorously what climate response actually is requires some care. It
seems relevant to take first a step in the direction of considering the rather natural situation
where we want to estimate the statistical properties of complex non-autonomous dynamical
systems.

Let us then consider a continuous-time dynamical system

ẋ = F(x, t) (1)

on a compact manifold Y ⊂ R
d , where x(t) = φ(t, t0)x(t0), with x(t = t0) = xin ∈ Y

initial condition and φ(t, t0) is defined for all t ≥ t0 with φ(s, s) = 1. The two-time evolution
operator φ generates a two-parameter semi-group. In the autonomous case, the evolution
operator generates a one-parameter semigroup, because of time translational invariance, so
that φ(t, s) = φ(t − s) ∀t ≥ s. In the non-autonomous case, in other terms, there is an
absolute clock. We want to consider forced and dissipative systems such that with probability
one initial conditions in the infinite past are attracted at time t towardsA(t), a time-dependent
family of geometrical sets. In more formal terms, we say a family of objects ∪t∈RA(t) in
the finite-dimensional, complete metric phase space Y is a pullback attractor for the system
ẋ = F(x, t) if the following conditions are obeyed:

• ∀t ,A(t) is a compact subset ofY which is covariant with the dynamics, i.e.φ(s, t)A(t) =
A(s), s ≥ t .

• ∀t limt0→−∞ dY (φ(t, t0)B,A(t)) = 0 for a.e. measurable set B ⊂ Y .
where dY (P, Q) is the Hausdorff semi-distance between the P ⊂ Y and Q ⊂ Y . We have
that dY (P, Q) = supx∈P dY (x, Q), with dY (x, Q) = inf y∈Q dY (x, y). We have that, in
general, dY (P, Q) 	= dY (Q, P) and dY (P, Q) = 0 ⇒ P ⊂ Q. See a detailed discussion
of these concepts in, e.g., [28–30]. Note that a substantially similar construction, the snap-
shot attractor, has been proposed and fruitfully used to address a variety of time-dependent
problems, including some of climatic relevance [31–34].

In some cases, the geometrical setA(t) supports a useful measureμt (dx). Such a measure
can be obtained as evolution at time t through the Ruelle–Perron–Frobenius operator [41]
of the Lebesgue measure supported on B in the infinite past, as from the conditions above.
Proposing a minor generalization of the chaotic hypothesis [42], we assume that when con-
sidering sufficiently high-dimensional, chaotic and non-autonomous dissipative systems, at
all practical levels—i.e. when one considers macroscopic observables—the corresponding
measureμt (dx) constructed as above is of the SRB type. This amounts to the fact that we can
construct at all times t a meaningful (time-dependent) physics for the system. Obviously, in
the autonomous case, and under suitable conditions—e.g. in the case of of Axiom A system
or taking the point of view of the chaotic hypothesis—A(t) = � is the attractor of the system
(where the t-dependence is dropped), which supports the SRB invariant measure μ(dx).

Note that whenwe analyze the statistical properties of a numericalmodel describing a non-
autonomous forced and dissipative system, we often follow—sometimes inadvertently—a
protocol that mirrors precisely the definitions given above. We start many simulations in
the distant past with initial conditions chosen according to an a-priori distribution. After a
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sufficiently long time, related to the slowest time scale of the system, at each instant the
statistical properties of the ensemble of simulations do not depend anymore on the choice of
the initial conditions. A prominent example of this procedure is given by how simulations of
past and historical climate conditions are performed in the modeling exercises such as those
demanded by the IPCC [10–12], where time-dependent climate forcings due to changes in
greenhouse gases, volcanic eruptions, changes in the solar irradiance, and other astronomical
effects are taken into account for defining the radiative forcing to the system. Note that
future climate projections are always performed using as initial conditions the final states of
simulations of historical climate conditions, with the result that the covariance properties of
the A(t) set are maintained.

Computing the expectation value of measurable observables for the time dependent mea-
sure μt (dx) resulting from the evolution of the dynamical system given in Eq. 1 is in general
far from trivial and requires constructing a very large ensemble of initial conditions in the
Lebesgue measurable set B mentioned before. Moreover, from the theory of pullback attrac-
tors we have no real way to predict the sensitivity of the system to small changes in the
dynamics.

The response theory introduced by Ruelle [22,35] (see also extensions and a different
point of view summarized in, e.g. [43]) allows for computing the change in the measure of
an Axiom A system resulting from weak perturbations of intensity ε applied to the dynamics
in terms of the properties of the unperturbed system. The basic concept behind the Ruelle
response theory is that the invariant measure of the system, despite being supported on a
strange geometrical set, is differentiable with respect to ε. See [44] for a discussion on the
radius of convergence (in terms of ε) of the response theory.

In this case, instead, our focus is on saying that the Ruelle response theory allows for
constructing the time-dependent measure of the pullback attractor μt (dx) by computing the
time-dependent corrections of the measure with respect to a reference state. In particular, let
us assume that we can write

ẋ = F(x, t) = F(x) + εX (x, t) (2)

where |εX (x, t)| � |F(x)| ∀t ∈ R and ∀x ∈ Y , so that we can treat F(x) as the background
dynamics and εX (x, t) as a perturbation. Under appropriate mild regularity conditions, it
is possible to perform a Schauder decomposition [45] of the forcing, so that we express
X (x, t) = ∑∞

k=1 Xk(x)Tk(t). Therefore, we restrict our analysis without loss of generality
to the case where F(x, t) = F(x) + εX (x)T (t).

One can evaluate the expectation value of a measurable observable �(x) on the time
dependent measure μt (dx) of the system given in Eq. 1 as follows:

∫

μt (dx)�(x) = 〈�〉ε(t) = 〈�〉0 +
∞∑

j=1

ε j 〈�〉( j)0 (t), (3)

where 〈�〉0 = ∫
μ̄(dx)�(x) is the expectation value of � on the SRB invariant measure

μ̄(dx) of the dynamical system ẋ = F(x). Each term 〈�〉( j)0 (t) can be expressed as time-

convolution of the j th order Green function G( j)
� with the time modulation T (t):

〈�〉( j)0 (t) =
∫ ∞

−∞
dτ1 . . .

∫ ∞

−∞
dτnG

( j)
� (τ1, . . . , τ j )T (t − τ1) . . . T (t − τ j ). (4)
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At each order, the Green function can be written as:

G( j)
� (τ1, . . . , τ j ) =

∫

μ̄(dx)�(τ j − τ j−1) . . . �(τ1)�Sτ1
0 . . . S

τ j−1
0 �S

τ j
0 �(x), (5)

where �(•) = X · ∇(•) and St0(•) = exp(t F · ∇)(•) is the unperturbed evolution operator
while the Heaviside � terms enforce causality. In particular, the linear correction term can
be written as:

〈�〉(1)0 (t),=
∫

μ̄(dx)
∫ ∞

0
dτ�Sτ

0�(x)T (t − τ) =
∫ ∞

−∞
dτG(1)

� (τ )T (t − τ), (6)

while, considering the Fourier transform of Eq. 6, we have:

〈�〉(1)0 (ω) = χ
(1)
� (ω)T (ω), (7)

where we have introduced the susceptibility χ
(1)
� (ω) = F[G(1)

� ], defined as the Fourier

transform of the Green function G(1)
� (t). Under suitable integrability conditions, the fact

that the Green function G(t) is causal is equivalent to saying that its susceptibility obeys the
so-called Kramers–Kronig relations [23,46], which provide integral constraints linking its
real and imaginary part, so that χ(1)(ω) = iP(1/ω) � χ(1)(ω), where i = √−1, � indicates
the convolution product, and P indicates that integration by parts is considered. See also
extensions to the case of higher order susceptibilities in [37,47–49].

As discussed in [2,23,36], the Ruelle response theory provides a powerful language for
framing the problem of the response of the climate system to perturbations. Clearly, given
a vector flow F(x, t), it is possible to define different background states, corresponding to
different reference climate conditions, depending on how we break up F(x, t) into the two
contributions F(x) and εX (x, t) in the right hand side of Eq. 2. Nonetheless, as long as the
expansion is well defined, the sum given in Eq. 3 does not depend on the reference state. Of
course, a wise choice of the reference dynamics leads to faster convergence.

Note that once we define a background vector flow F(x) and approximate its invariant
measure μ̄(dx) by performing an ensemble of simulations, by usingEqs. 3–6we can construct
the time dependent measure μt (dx) for many different choices of the perturbation field
εX (x, t), as long aswe arewithin the radius of convergence of the response theory. Instead, in
order to construct the time dependentmeasure following directly the definition of the pullback
attractor, we need to construct a different ensemble of simulations for each choice of F(x, t).

One needs to note that constructing directly the response operator using the Ruelle for-
mula given in Eq. 6 is indeed challenging, because of the different difficulties associated
to the contribution coming from the unstable and stable directions [50]; nonetheless, recent
applications of adjoint approaches [51] seem quite promising [52].

Instead, starting from Eqs. 6 and 7, it is possible to provide a simple yet general method
for predicting the response the system for any observable � at any finite or infinite time
horizon t for any time modulation T (t) of the vector field X (x), if the corresponding Green
function or, equivalently, the susceptibility, is known. Moreover, given a specific choice of
T (t) and measuring 〈�〉(1)0 (t) from a set of experiments, the same equations allow one to
derive the Green function. Therefore, using the output of a specific set of experiments, we
achieve predictive power for any temporal pattern of the forcing X (x). In other terms, from
the knowledge of the time dependent measure of one specific pullback attractor, we can
derive the time dependent measures of a family of pullback attractors. We will follow this
approach in the analysis detailed below. While the methodology is almost trivial in the linear
case, it is in principle feasible also when higher order corrections are considered, as long as
the response theory is applicable [37,48,49].
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We remark that in some cases divergence in the response of a chaotic system can be
associated to the presence of slow decorrelation for the measurable observable in the back-
ground state, which, as discussed in e.g. [53], can be related to the presence of nearby critical
transitions. Indeed, we have recently investigated such an issue in [54], thus providing the
statistical mechanical embedding for the classical problem of multistability of the Earth’s
system, which had been previously studied using macroscopic thermodynamics in [55–57].

3 A Climate Model of Intermediate Complexity: The Planet
Simulator—PLASIM

The Planet Simulator (PLASIM) is a climate model of intermediate complexity, freely avail-
able upon request to the group of Theoretical Meteorology at the University of Hamburg
and includes a graphical user interface facilitating its use. By intermediate complexity we
mean that the model is gauged in such a way to be parsimonious in terms of computational
cost and flexible in terms of the possibility of exploring widely differing climatic regimes
[39]. Therefore, the most important climatic processes are indeed represented, and the model
is complex enough to feature essential characteristics of high-dimensional, dissipative, and
chaotic systems, as the existence of a limited horizon of predictability due to the presence
of instabilities in the flow. Nonetheless, one has to sacrifice the possibility of using the most
advanced parametrizations for subscale processes and cannot use high resolutions for the
vertical and horizontal directions in the representation of the geophysical fluids. Therefore,
we are talking of a modelling strategy that differs from the conventional approach aiming
at achieving the highest possible resolution in the fluid fields and the highest precision in
the parametrization of the highest possible variety of subgrid scale processes [12], but rather
focuses on trying to reduce the gap between the modelling and the understanding of the
dynamics of the geophysical flows [58].

The dynamical core of PLASIM is based on the Portable University Model of the
Atmosphere PUMA [59]. The atmospheric dynamics is modelled using the primitive equa-
tions formulated for vorticity, divergence, temperature and the logarithm of surface pressure.
Moisture is included by transport of water vapour (specific humidity). The governing equa-
tions are solved using the spectral transform method [60,61]. In the vertical, non-equally
spaced sigma (pressure divided by surface pressure) levels are used. The parametrization of
unresolved processes consists of long- [62] and short- [63] wave radiation, interactive clouds
[64–66], moist [67,68] and dry convection, large-scale precipitation, boundary layer fluxes
of latent and sensible heat and vertical and horizontal diffusion [69–72]. The land surface
scheme uses five diffusive layers for the temperature and a bucket model for the soil hydrol-
ogy. The oceanic part is a 50mmixed-layer (swamp) ocean, which includes a thermodynamic
sea ice model [73].

The horizontal transport of heat in the ocean can either be prescribed or parametrized by
horizontal diffusion. While in [36] the ocean transport was set to zero, in the experiments
performed here we choose the second option, because having even a severely simplified
representation of the feedbacks associated to the large scale heat transport performed by
the ocean improves the realism of the response of the system. We remind that the ocean
contributes to about 30% of the total meridional heat transport in the present climate [6,74,
75]. A detailed study of the impact of changing oceanic heat transports on the dynamics and
thermodynamics of the atmosphere can be found in [76].
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Fig. 1 Long-term climatology of the PLASIM model. Control run performed with background value of CO2
concentration set to 360 ppm and solar constant defined as S = 1365Wm−2: a Surface temperature 〈TS〉0 (in
K); b Yearly total precipitation 〈Py〉0 (in mm); c Zonally averaged values 〈[TS ]〉0 (red line and red y-axis)
and 〈[Py ]〉0 (blue line and blue y-axis) (Color figure online)

The model is run at T21 resolution (approximately 5.6◦ × 5.6◦) with 10 vertical levels.
While this resolution is relatively low, it is expected to be sufficient for obtaining a reasonable
description of the large scale properties of the atmospheric dynamics, which aremost relevant
for the global features we are interested in.We remark that previous analyses have shown that
using a spatial resolution approximately equivalent to T21 allows for obtaining an accurate
representation of the major large scale features of the climate system. PLASIM features O
(105) degrees of freedom, while state-of-the-art Earth System Models boast easily over 108

degrees of freedom.
While the lack of a dynamical ocean hinders the possibility of having a good representa-

tion of the climate variability on multidecadal or longer timescales, the climate simulated by
PLASIM is definitely Earth-like, featuring qualitatively correct large scale features and tur-
bulent atmospheric dynamics. Figure 1 provides an outlook of the climatology of the model
run with constant CO2 concentration of 360 ppm and solar constant set to S = 1365 Wm−2.
We show the long-term averages of the surface temperature TS (panel a) and of the yearly
total precipitation Py (panel b) fields, plus their zonal averages [TS] and [Py].1 Despite the
simplifications of the model, one finds substantial agreement with the main features of the
climatology obtained from observations and state-of-the-art model runs: the average temper-
aturemonotonically decreases as wemove poleward, while precipitation peaks at the equator,

1 We indicate with [A] the zonally averaged surface value of the quantity [A].
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as a result of the large scale convection corresponding to the intertropical convergence zone
(ICTZ), and features two secondary maxima at the mid latitudes of the two hemispheres, cor-
responding to the areas of the so-called storm tracks [6]. As a result of the lack of a realistic
oceanic heat transport and of too low resolution in the model, the position to the ICTZ is a
bit unrealistic as it is shifted southwards compared to the real world, with the precipitation
peaking just south of the equator instead of few degrees north of it.

Beside standard output, PLASIM provides comprehensive diagnostics for the nonequi-
librium thermodynamical properties of the climate system and in particular for local and
global energy and entropy budgets. PUMA and PLASIM have already been used for sev-
eral theoretical climate studies, including a variety of problems in climate response theory
[2,36], climate thermodynamics [77,78], analysis of climatic tipping points [54,55], and in
the dynamics of exoplanets [56,57].

3.1 Experimental Setting

We want to perform predictions on the climatic impact of different scenarios of increase in
the CO2 concentration with respect to a baseline value of 360 ppm, focusing on observables
� of obvious climatic interest such as, e.g. the globally averaged surface temperature TS . We
wish to emphasise that most state-of-the-art general circulation models feature an imperfect
closure of the global energy budget of the order of 1 Wm−2 for standard climate conditions,
due to inaccuracies in the treatment of the dissipation of kinetic energy and the hydrological
cycle [2,75,79,80]. Instead, PLASIM has been modified in such a way that a more accurate
representation of the energy budget is obtained, even in rather extreme climatic conditions
[55–57]. Therefore, we are confident of the thermodynamic consistency of our model, which
is crucial for evaluating correctly the climate response to radiative forcing resulting from
changes in the opacity of the atmosphere.

We proceed step-by-step as follows:

• We take as dynamical system ẋ = F(x) the spatially discretized version of the partial
differential equations describing the evolution of the climate variables in a baseline sce-
nario with set boundary conditions and set values for, e.g., the CO2 = 360 ppm baseline
concentration and the solar constant S = 1365 Wm−2. We assume, for simplicity, that
system does not feature daily or seasonal variations in the radiative input at the top of the
atmosphere. We run the model for 2400 years in order to construct a long control run.
Note that the model relaxes to its attractor with an approximate time scale of 20–30 years.

• We study the impact of perturbations using a specific test case. We run a first set of
N = 200 perturbed simulations, each lasting 200 years, and each initialized with the
state of the model at year 200 + 10k, k = 1, . . . , 200. We choose as perturbation field
X (x) the additional convergence of radiative fluxes due to changes in the atmospheric
CO2 concentration. Therefore, such a perturbation field has non-zero components only
for the variables directly affected by such forcings, i.e. the values of the temperatures at
the resolved grid points of the atmosphere and at the surface. In each of these simulation
we perturbed the vector flow by doubling instantaneously the CO2 concentration. This
corresponds to having ẋ = F(x) → ẋ = F(x) + ε�(t)X (x). Note that the forcing is
well known to scale proportionally to the logarithm of the CO2 concentration [6].

• By plugging T (t) = Ta(t) = �(t) into Eq. 6, we have that :

d

dt
〈�〉(1)0 (t) = εG(1)

� (t) (8)
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We estimate 〈�〉(1)0 (t) by taking the average of response of the system over a possibly
large number of ensemble members, and use the previous equation to derive our estimate
of G(1)

� (t), by assuming linearity in the response of the system. In what follows, we
present the results obtained using all the available N = 200 ensemble members, plus,
in some selected cases, showing the impact of having a smaller number (N = 20) of
ensemble members.
It is important to emphasize that framing the problem of climate change using the formal-
ism of response theory gives usways for providing simple yet useful formulas for defining
precisely the climate sensitivity �� for a general observable �, as �� = �{χ(1)

� (0)}.
Furthermore, if we consider perturbation modulated by a Heaviside distribution, we have
the additional simple and useful relation:

�� = 2

πε

∫

dω′�{〈�〉(1)0 (ω′)
}
, (9)

which relates climate response at all frequencies to its sensitivity, as resulting from the
validity of the Kramers–Kronig relations.
We remark that using a given set of forced experiments it is possible to derive information
on the climate response to the given forcing for as many climatic observables as desired.
It is important to note that, for a given finite intensity ε of the forcing, the accuracy
of the linear theory in describing the full response depends also on the observable of
interest. Moreover, the signal to noise ratio and, consequently, the time scales over which
predictive skill is good may change a lot from variable to variable.

• We want to be able to predict at finite and infinite time the response of the system to
some other pattern of CO2 forcing. Following [36], we choose as a pattern of forcing one
of the classic IPCC scenarios, namely a 1% yearly increase of the CO2 concentration
up to its doubling, and we perform a set of additional N = 200 perturbed simulations
performed according to such a protocol. Since, as mentioned above, the radiative forcing
is proportional to the logarithm of the CO2 concentration, this corresponds to choosing
a new time modulation that can be approximated as a linear ramp of the form

T τ
b (t) = εt/τ, 0 ≤ t ≤ τ, T τ

b (t) = 1, t > τ, (10)

where τ = 100 log(2) years∼ 70 years is the doubling time. Therefore, for each observ-
able � we compare the result of convoluting the estimate of the Green function obtained
in the previous step with time modulation Tb(t)with the ensemble average obtained from
the new set of simulations.

4 Results

The response theory sketched above allows us in principle to study the change in the statistical
properties of any well-behaved, smooth enough observable. Nonetheless, problems naturally
emerge when we consider finite time statistics, finite number of ensemble members, and
finite precision approximations of the response operators. The Green functions of interest are
derived using Eq. 8 as time derivative of the ensemble averaged time series of the observed
response to the probe forcing whose time modulation is given by the Heaviside distribution.
Clearly, the response is not smooth unless the ensemble size N → ∞. Therefore, taking
numerically the time derivative leads to having a very noisy estimate of the Green function,
which might also depend heavily on the specific procedure used for computing the discrete

123



Predicting Climate Change Using Response Theory: Global... 1047

derivative. This might suggest that the procedure is not robust. Instead, we need to keep
in mind that we aim at using the Green function exclusively as a tool for predicting the
climate response. Therefore, if we convolute with the Green function with a sufficiently
smooth modulating factor T (t) as in Eq. 6, the small time scales fluctuations of the Green
function, albeit large in size, become of no relevance, because they are averaged out. This is
further eased if, instead of looking for predictions valid for observables defined at the highest
possible time resolution of our model, we concentrate of suitably time averaged quantities.
Clearly, while it is in principle possible to define mathematically the climate response on the
time scale of, e.g., one second, this has no real physical relevance. Looking at the asymptotic
behaviour of the susceptibility χ

(1)
� (ω) for ω → ∞ it is possible to derive what is, depending

on the signal-to-noise ratio, the time scale over which we can expect to be able to perform
meaningful predictions; see discussion in [36].

In order to provide an overlook of the practical potential of the response theory in address-
ing the problem of climate change, we have decided to focus on two climatological quantities
of general interest, namely the yearly averaged surface temperature TS and the yearly total pre-
cipitation Py . Such quantities have obvious relevance for basically any possible impact study
of climate change, and, while there is muchmore in climate change than studying the changes
in TS and Py , these are indeed thefirst quantities one considerswhenbenchmarking the perfor-
mance of a climatemodel andwhen assessingwhether climate change signals can be detected.

Another issue one needs to address is the role of the spatial patterns of change in the
considered quantities. The change in the globally average surface temperature {TS}2 has
undoubtedly gained prominence in the climate change debate and in the IPCC negotiations
targets are tailored according to such an indicators.Nonetheless, the impacts of climate change
are in fact local and one needs to investigate the spatial patterns of the change signals [12].
Evidently, one expects that coarse grained (in space) quantities will have a better signal-to-
noise ratio and will allow for performing higher precision climate projection using response
theory. On the other side, the performance of linear response theory at local scale might
be hindered by the presence of local strongly nonlinear feedbacks, such as the ice-albedo
feedback, which have less relevance when spatial averaging is performed. In what follows,
we will consider observables constructed from the spatial fields of TS and Py by performing
different levels of coarse graining.Wewill begin by looking into globally averaged quantities,
and then address the problem of predicting the spatial patterns of climate change.

4.1 Globally Averaged Quantities

We begin our investigation by focusing on the globally averaged surface temperature {TS}
and the globally averaged yearly total precipitation {Py}. In what follows, we perform the
analysis using the model output at the highest available resolution (1 day) but present, for
sake of convenience and since we indeed focus on yearly quantities, data where a 1-year
band pass filtering is performed.

4.1.1 From Green Functions to Climate Predictions

Figure 2 shows the ensemble average performed over N = 200 members of the change of
〈{TS}〉 (panel a) and 〈{Py}〉 (panel b) as a result of the instantaneous doubling of the CO2

concentration described in the previous section. We find that the asymptotic change in the
surface temperature is given by the equilibrium climate sensitivity ECS = �{TS} ∼ 4.9

2 We indicate with {A} the globally averaged surface value of the quantity A.

123



1048 V. Lucarini et al.

Fig. 2 Climate response to instantaneous CO2 concentration doubling for a globally averaged mean annual
surface temperature 〈{TS}〉; and b the globally averaged annual total precipitation 〈{Py}〉 (b). The black line
shows the N = 200 ensemble averaged properties of the doubling CO2 experiments. The light red shading
indicates the variability as given by the 2σ of the ensemble members. In each panel, the inset portrays the
corresponding Green function (Color figure online)

K, which is just outside the likely range of values for the ECS elicited in [12]. Note that
the models discussed in [12] include more complex physical and chemical processes and
most notably a comprehensive representation of the dynamics of the ocean, plus featuring
a seasonal and daily cycle of radiation, so that the comparison is a bit unfair. Nonetheless,
we get the sense that PLASIM features an overall reasonable response to changes in the
CO2. This is confirmed by looking at the long terms response of 〈{Py}〉 to CO2 concentration
doubling, for which we find �{Py } ∼ 125 mm, which corresponds to about 11.6% of the
initial value. These figures are also in good agreement with what reported in [12]. We will
comment below on the relationship between the climate change signal for {TS} and for {Py}.

In each panel of Fig. 2 we show as inset the corresponding Green function computed
according to Eq. 8. We find that both Green functions have to first approximation an expo-
nential behaviour, even if one can expect also important deviations, as discussed in [36].
We will not elaborate on this. Instead we note that G(1)

{Py} is more noisy that G(1)
{TS}, as a

result of the fact that 〈{Py}〉(1)(t) has stronger high frequency contribution to its variability
than 〈{TS}〉(1)(t), i.e. 〈{Py}〉(1)(t) has, unsurprisingly, has a much shorter decorrelation time,
because it refers to the much faster hydrological cycle related processes.

Figure 3 provides a comparison between the statistics of 〈{TS}〉(t) and 〈{Py}〉(t) obtained
by performing N = 200 simulations where we increase the CO2 concentration by 1% per
year until doubling, and the prediction of the response theory derived by performing the
convolution of the Green functions shown in Fig. 2 with the ramp function given in Eq. 10.
We have that the prediction of the ensemble average 〈{TS}〉(1)0 and of the ensemble average

〈{Py}〉(1)0 (blue thick lines) obtained using N = 200 ensemble members for the doubling
CO2 experiments is in good agreement for both observables with the results of the direct
numerical integrations.

More precisely, we have that the prediction given by the climate response lies within the
variability of the N = 200 direct simulations for basically all time horizons. The range of
variability is depicted with a light red shade, centered on the ensemble mean represented
by the black line. Instead, within a time window of about 40–60 years, the response theory
slightly underestimates the true change in both {TS} and {PY }: we will investigate below the
reasons for this mismatch.
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Fig. 3 Climate change projections for a the globally averaged mean annual surface temperature 〈{TS}〉; and b
the globally averaged annual total precipitation 〈{Py}〉. The black line shows the N = 200 ensemble averaged
properties of the experiments where we have a 1% per year CO2 concentration increase up to doubling. The
light red shading indicates the variability as given by the 2σ of the ensemble members. The blue shading
indicates the interannual variability of the control run. The thick blue line is the projection obtained using the
Green functions derived using N = 200 ensemble members of the instantaneous CO2 concentration doubling
experiments. The dashed lines correspond to ten projections each obtained using Green functions derived
from N = 20 ensemble members of the instantaneous CO2 concentration doubling experiments (Color figure
online)

It is well known that it is hard to construct a very large set of ensemble members in the
case of state-of-the-art climate models, due to the exorbitant computing costs associated
with each individual run. Additionally, in general, in the modelling practise the continuous
growth in computing and storing resources is typically invested in increasing the resolution
and the complexity of climate models, rather than populating more attentively the statistics
of the run of a given version of a model. Therefore, even in coordinated modelling exercises
contributing to the latest IPCC report, the various modelling groups are requested to deliver
a number of ensemble member of the order of 10 [12].

In order to partially address the problem of assessing how the number of ensemble mem-
bers can affect our prediction, we present in Fig. 3 the result of the prediction of the climate
change signal for 〈{TS}〉 and 〈{Py}〉 obtained by constructing the Green function using only
N = 20 members of the ensemble of simulations of instantaneous CO2 concentration dou-
bling. Ten thin dashed blue lines represent in each panel the result of such predictions.
Interestingly, each of the prediction obtained with a reduced number of ensemble members
also agreeswith the direct numerical simulationswhenwe consider 〈{TS}〉, because the spread
around our best estimates obtained using the full set of ensemble members is minimal.

Instead, when looking at 〈{Py}〉, we have that only some of the predictions derived using
reduced ensemble sets lie within the variability of the direct numerical simulations, with a
much larger spread around the prediction obtained with the full ensemble set. This fact is
closely related to the fact that the corresponding Green function is noisier, see Fig. 2, and
suggests that in order to have good convergence of the statistical properties of the response
operator a better sampling of the attractor is needed.

We conclude that the computational requirements for having good skill in predicting the
changes in {Py} are harder than in the case of {TS}. Indeed, the surface temperature is a good
quantity in terms of our ability to predict it, and in terms of being a good indicator of climate
change, as it allows one to find clear evidence of the departure of the statistics from the
unperturbed climate conditions. This is in agreement with the actual practice of the climate
community [12].
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Fig. 4 Climate response at different time horizons. a Time needed for detecting climate climate change:
ensemble average of the response is outside the interannual variability with 95% statistical significance
(black line); no overlap between the 95% confidence intervals representing the interannual variability of the
control run and the ensemble variability of the projection (red line). b Transient climate sensitivity—TCS—as
measured by the ensemble average of the 〈TS〉 at time τ where doubling of the CO2 concentration is realized
following an exponential increase at rate of rτ = 100(2(1/τ) − 1) % per year, where τ is expressed in years.
The equilibrium climate sensitivity (ECS) is indicated (Color figure online)

4.1.2 Climate Change Detection and Climate Inertia

We dedicate some additional care in studying the climate response in terms of changes in
the globally averaged surface temperature. We wish to use the information gathered so far
for assessing some features of climate change in different scenarios of modulation of the
forcing. In particular, we focus on studying the properties of the following expression:

〈{TS}〉(1)0 (t, τ ) =
∫ ∞

0
dsG(1)

{TS}(t − s)T τ
b (s) (11)

when different values of the CO2 concentration doubling time τ are considered. This amounts
to performing a family of climate projections where the rate of increase of the CO2 concen-
tration is rτ = 100(2(1/τ) − 1) % per year (where τ is expressed in years). As limiting cases,
we have τ = 0 — instantaneous doubling, as in fact described by the probe scenario Ta(t),
and τ → ∞, which provides the adiabatic limit of infinitesimally slow changes.

We want to show how response theory — and, in particular, Eq. 11 — can be used for
providing a flexible tool in the problem of climate change detection. The definition of a
suitable probabilistic framework for assessing whether an observed climate fluctuations is
caused by a specific forcing is extremely relevant (including for legal and political reasons)
and is since the early 2000s the subject of an intense debate [13,14]. In this case, given our
overall goals, we provide a rather unsophisticated treatment of the problem. In Fig. 4a we
present our results, where different scenarios of forcings are considered. The black line tells
us what is the time it takes for the projected change in the ensemble average to lie outside
the 95% confidence interval of the statistics of the unperturbed control run, i.e. practically
being outside its range of interannual variability. More precisely, the black line portrays the
following escape time:

tτmin,2 = min
t

|〈{TS}〉(1)0 (t, τ ) ≥ 2σ({TS})0, (12)

where σ({TS})0 ∼ 0.24 K is the standard deviation of the yearly averaged time series of
{TS} in the control run.
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Nonetheless, we would like to be able to assess when not only the projected change in the
ensemble average is distinguishable from the statistics of the control run, but, rather, when
an actual individual simulation is incompatible with the statistics of the unperturbed climate,
because we live in one of such realizations, and not on any averaged quantity. Obviously, in
order to assess this, one would require performing an ensemble of direct simulations, thus
giving no scope to any application of the response theory. We can observe, though, from
Fig. 3a, that the interannual variability of the control run and the ensemble variability of the
perturbed run are rather similar (being the same if no perturbation is applied). Therefore,
we heuristically assume that the two confidence intervals have the same width. The red line
portrays the second escape time

tτmin,4 = min
t

|〈{TS}〉(1)0 (t, τ ) ≥ 4σ({TS})0, (13)

such that for t ≥ tτmin,4 it is extremely unlikely that any realization of the climate change
scenario due to a forcing of the form T τ

b perturbed run has statistics compatible with that of
the control run. In other terms, tτmin,4 provides a robust estimate of when detection of climate
change in virtually unavoidable from a single run, while tτmin,2 gives an estimate of the time
horizon after which it makes sense to talk about climate change. We would like to remark
that using the Green functions reconstructed from the reduced ensemble sets as shown in
Fig. 3, one obtains virtually indistinguishable estimates for t ≥ tτmin,2 and t ≥ tτmin,4 for all
values of τ . This suggests that these quantities are rather robust.

Wecandetect twoapproximate scaling regimes,with changeover takingplace for rτ ∼ 1%
per year.

• for large values of rτ (≥1% per year), we have that tτmin,2, t
τ
min,4 ∝ r−0.6

τ

• for moderate values of rτ (≤1% per year), we have that tτmin,2, t
τ
min,4 ∝ r−1

τ . The
latter corresponds to the quasi-adiabatic regime and one finds that, correspondingly,
tτmin,4, t

τ
min,2 ∝ τ .

A quantity that has attracted considerable interest in the climate community is the so-called
transient climate sensitivity (TCS), which, as opposed to the ECS, which looks at asymptotic
temperature changes, describes the change of {TS} at the moment of CO2 concentration
doubling following a 1% per year increase [81]. The difference between ECS and TSC gives
a measure of the inertia of the climate system in reaching the asymptotic increase of {TS}
realized with doubled CO2 concentration. Using response theory, we can extend the concept
of transient climate sensitivity by considering any rate of exponential increase of the CO2

concentration, as discussed in [36]. Using Eq. 11, we have that:

TCS(τ ) = 〈{TS}〉(1)0 (τ, τ ) (14)

describes the change in the expectation value of {TS} at the end of the ramp of increase of
CO2 concentration. As suggested by the argument proposed in [81], one expects that the TCS
is a monotonically increasing function of τ (see Fig. 4b), and that the difference between the
ECS and TCS becomes very small for large values of τ , because we enter the quasi-adiabatic
regime where the change in the CO2 is slower than the slowest internal time scale of the
system.

4.1.3 A Final Remark

Wewould like tomake afinal remarkof the properties of the response of the global observables
{TS} and {Py}. Looking at Figs. 2 and 3, one is unavoidably bound to observe that the
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temporal pattern of response of {TS} and {Py} are extremely similar. In agreement with [81]
(see also [12]), we find that to a very good approximation the following scaling applies for
all simulations:

〈{Py}〉(1)0 (t)

〈{Py}〉0 ∼ 0.025
〈{TS}〉(1)0 (t)

K
,

where K is one degree Kelvin. In other terms, the twoGreen functionsG(1)
{TS} andG

(1)
{Py} are, to

a very good approximation, proportional to each other when yearly averages are considered.
Note that this scaling relations does not agree with the naive scaling imposed by the

Clausius–Clapeyron relation controlling the partial pressure of saturated water vapour. In
fact, were the Clausius–Clapeyron scaling correct, one would have

δ〈{Py}〉(1)0 (t)

〈{Py}〉0 ∼ 0.07
δ〈{TS}〉(1)0 (t)

K
.

The reasons why a scaling between changes in {TS} and {Py} exists at all, and why it looks
like a modified version of a Clausius–Clapeyron-like law, are hotly debated in the literature
[82–84].

4.2 Predicting Spatial Patterns of Climate Change

While there is a very strong link between the change in the globally averaged precipitation
and of the globally averaged surface temperature, important differences emergewhen looking
at the spatial patterns of change of the two fields [83]. We will investigate the spatial features
of climate response in the next subsection.

Themethods of response theory allow us to treat seamlessly also the problem of predicting
the climate response for (spatially) local observables. It is enough to define appropriately the
observable � and repeat the procedure described in Sect. 3.1. As a first step in the direction
of assessing our ability to predict climate change at local scale, we concentrate the zonally
(longitudinally) averaged fields [TS](λ) and [Py](λ), where we have made explicit reference
to to the dependence on the latitude λ. Studying these fields is extremely relevant because it
allows us to look at the difference of the climate response at different latitudinal belts, which
are well known to have entirely different dynamical properties, and, in particular, to look at
equatorial-polar contrasts.

We show in Fig. 5 the long-term change in the climatology of the [TS], i.e., the climate
sensitivity for each latitudinal band. We have confirmation of well-established findings: the
response of the surface temperature ismuch stronger in the higher latitudes than in the tropical
regions, as a result of the local ice-albedo feedback and, secondarily, of the increased transport
resulting from changes in the circulation. Additionally, there is a clear asymmetry between
the two hemispheres, with the response in the northern hemisphere being notably larger, as
a result of the larger land masses [12]

In this case, we need first to construct a different Green function for each latitude from the
instantaneous CO2 doubling experiments. Then, we perform the convolution of the Green
functions with the same ramp function and obtaining the prediction of the response to the
1% per year increase in the CO2 concentration for each latitude.

Figure 6 shows the result of our application of the response theory for predicting the
response of the zonally averaged surface temperature to the considered forcing scenario:
panel a displays the projection performed using response theory, and panel b shows the
difference between the results obtained from the actual direct numerical simulations. We
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Fig. 5 Long-term climate
change for the zonal averages of
the surface temperature and of
the yearly total precipitation

Fig. 6 Patterns of climate response—surface temperature TS . a Projection of the change of [TS ]. The black
and red lines indicates the escape times as presented in Fig. 4 for τ = 70. b Difference between the ensemble
average of the direct numerical simulations and the predictions obtained using the response theory (Color
figure online)

first observe that the agreement is extremely good except for the time window 20–60 y
in the high latitudes of the Southern Hemisphere and 40–60 y in the high latitudes of the
Northern Hemisphere, where the response theory underestimates the true amount of surface
temperature increase.
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Fig. 7 Climate response at different time horizons for the TS spatial field. a Projection obtained using response
theory for a time horizon of 20 y. b Same as in a, but for 60 y. c Difference between the ensemble average of
the direct numerical simulations and the prediction of the response theory for a time horizon of 20 y. d Same
as in c, but for 60 y (Color figure online)

Something interesting happens when looking at the latitudinal profile of the time horizons
of escape from the statistics of the control run presented in Fig. 4a given by tτmin,2 and t

τ
min,4,

where τ is 70 y. Interestingly, we find that, while the climate response is weaker in the tropics,
one is able to detect climate change earlier than in the high latitude regions, the reason being
that the interannual variability of the tropical temperature is much lower. Therefore, the
signal-to-noise ratio is higher. We need to note that our model does not feature the processes
responsible for important tropical variability like El-Niño-Southern Oscillation (ENSO), so
this result might be not so realistic, yet it seems to have some conceptual merit.

It is also rather attractive the fact that we are now able to relate to specific region the cold
bias of the prediction for {TS} seen in Fig. 3. The reason for the presence of such discrepancies
concentrated in the high latitude regions is relatively easy to ascertain.We can in fact attribute
this to the inability of a linear method like the one used here to represent accurately the strong
nonlinear ice-albedo feedback, which dominates the climate response of the polar regions,
and especially over the sea areas.

This can be made even more clear by looking at the performance of the response theory
in predicting the 2D patterns of change of TS . This is shown in Fig. 7. where we see more
clearly the geographical features of the changes in TS described above, and find confirmation
that the sources of biases come exactly from the high-latitude sea-land margins, where sea
ice is present. We also note that while for the time horizon of 20 y the bias between the
simulations and the predictions of the response theory is comparable to the actual signal of
response, the situation greatly improves for the time horizon of 60 y. As we see here, there is
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good hope in being able to predict quite accurately the climate response also at local scale,
with no coarse graining involved, at least in the case of the TS field.

As a final step, wewish to discuss climate projections for the quantity [Py]. Figure 5 shows
that our model give a picture of long-term climate change that is overall compatible with the
findings of more complex and modern models: we foresee an increase of the precipitation
in the tropical belt and in the regions of the storm tracks in the mid-latitude of the two
hemispheres, whereas the change in small or negative in the remaining parts of the world.
In other terms the regions that get a lot of rain are going to get even more, while drier
regions do not benefit from the overall increase in the globally averaged precipitation. As
we see, there is basically no correspondence between the patterns of change of [Py] and
[TS] (despite the strong link between the response of the two globally averaged quantities)
because precipitation patterns change as a result of a complex interplay of small and large
scale processes, involving local thermodynamic exchanges, evaporation, as well as purely
dynamical processes [83].

Fig. 8 Patterns of climate response—yearly total precipitation Py . a Projection of the change of the zonal
average of Py for different time horizons. The black and red lines indicates the escape times as presented in
Fig. 4 for τ = 70. b Difference between the ensemble average of the direct numerical simulations and the
predictions obtained using the response theory (Color figure online)
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Panel a of Fig. 8 shows how response theory predicts the change in [Py] at different
time horizons. We note that climate change is basically detectable only in the regions where
strong increases of precipitation takes place, and the horizon of escape from the control is
much later in time compared to the case of [TS], the basic reason being that the variability
of precipitation is much higher.

Panel b of Fig. 8 shows the bias between the ensemble average of the numerical simulations
and the prediction of the response theory. We notice that such biases are much stronger than
in the case of [TS] (Fig. 6b). In particular, we find rather interesting features in the time
horizon of 20–60 y for basically all latitudes. As we know from Fig. 3b, the global average
of such biases is rather small, but they are quite large locally. The projections performed
using response theory underestimate the effects of some (relevant) nonlinear phenomena that
impact the latitudinal distribution of precipitation, such as:

• Change in the relative size and symmetry of the ascending and descending branches of
the Hadley cell, and in the position of its poleward extension: it is well known that strong
warming can lead to a shift in the ITCZ, where where strong convective rain occurs, and
to an extension of the dry areas of descending [85]. Correspondingly, the projections
performed using the response theory are biased dry in the equatorial belt and biased wet
in the subtropical band.

• Impact on the water budget of the mid-latitudes of the increased water transport from
the tropical regions taking place near the poleward extension of the Hadley cell, plus the
change in the position of the stork track [86]. As a result, the projection performed using
the response theory is biased dry compared to the actual simulations in the mid-latitudes.

Comparing Figs. 3a, b, 6b, and 8b makes it clear that the performance of methods based
on linear response theory depends strongly on the specific choice of the observable. In fact,
when we choose an observable whose properties are determined by processes that are rather
sensitive to the applied forcing, higher order corrections will be necessary to achieve a good
precision.

5 A Critical Summary of the Results

This paper has been devoted to providing a statistical mechanical conceptual framework for
studying the problem of climate change.We find it useful to construct the statistical properties
of an unavoidably non-autonomous system like the climate using the idea of the pullback
attractor and of the time-dependent measure supported on it. Response theory allows to
practically compute such a time-dependent measure starting from the invariant measure of a
suitably chosen reference autonomous dynamics.

Using a the general circulationmodel PLASIM, we have developed response operators for
predicting climate change resulting from an increase in the concentration of CO2. The model
features only O(105) degrees of freedom as opposed to O(108) or more of state-of-the-art
climatemodels [12], but, despite its simplicity, delivers a pretty good representation of Earth’s
climate and of its long-term response to CO2 increase. PLASIM provides a low-resolution
yet accurate representation of the dynamics of the atmosphere and of its coupling with the
land surface, the ocean and the sea ice; it uses simplified but effective parametrizations for
subscale processes including radiation, diffusion, dissipation, convection, clouds formation,
evaporation, and precipitation in liquid and solid form. The main advantage of PLASIM is
its flexibility and the relative low computer cost of launching a large ensemble of climate
simulations. The main disadvantage is the lack of a representation of a dynamic ocean, which
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implies that we have a cut-off at the low frequencies, because we miss the multidecadal and
centennial variability due to the ocean dynamics. We have decided to consider classic IPCC
scenarios of greenhouse forcing in order to make our results as relevant as possible in terms
of practical implications.

The construction of the time dependent measure resulting from varying concentrations of
CO2 has been achieved by first performing a first set of simulations where N = 200 ensemble
members sampled from a long control run undergo an instantaneous doubling of the initial
CO2 concentration. Through simple numerical manipulations, we have been able to derive
the linear Green function for any observable of interest, which makes it possible to perform
predictions of climate change to an arbitrary pattern of change of the CO2 concentration
using simple convolutions, under the hypothesis that linearity is obeyed to a good degree of
approximation.

We have studied the skill of the response theory in predicting the change in the globally
averaged quantities as well as the spatial patterns of change to a forcing scenario of 1%
per year increase of CO2 concentration up to doubling. We have focused on observables
describing the properties of two climatic quantities of great geophysical interest, namely
the surface temperature and the yearly total precipitation. The predictions of the response
theory have been compared to the results of additional N = 200 direct numerical simulations
performed according this second scenario of forcing.

The performance of response theory in predicting the change in the globally averaged
surface temperature and precipitation is rather good at all time horizons, with the predicted
response falling within the ensemble variability of the direct simulations for all time horizons
except for a minor discrepancy in the time window 40–60 y. Additionally, our results confirm
the presence of a strong linear link in the form of modified Clausius–Clapeyron relation
between changes in such quantities, as already discussed in the literature.

We have also studied how sensitive is the climate projection obtained using response
theory to the size of the ensemble used for constructing the Green function. This is a matter
of great practical relevance because it is extremely challenging to run a large number of
ensemble members for specific scenarios using state-of-the-art climate models, given their
extreme computational cost [12]. We have then tested the skill of projections of globally
averaged surface temperature and of globally averaged yearly total precipitation performed
using Green functions constructed using N = 20 ensemble members. We obtain that the
quality of the projection is only moderately affected, and especially so in the case of the
temperature observable.

By performing convolution of the Green function with various scenarios where the CO2

increases at different rates, we are able to study the problem of climate change detection,
associating to each rate of increase a time frame when climate change becomes statistically
significant. Another new aspect of climate response we are able to investigate thanks to
the methods developed here is the rigorous definition of transient climate sensitivity, which
basically measures how different is the actual climate response with respect to the case of
quasi-adiabatic forcings, and defines the thermal inertia of climate.

Building upon the ideas proposed in [36], we have shown that response theory allows to
put in a broader and well defined context concepts like climate sensitivity:

• we understand that the equilibrium climate sensitivity relates to the zero-frequency
response of the system to doubling of the CO2 concentration: it is then clear that if we are
not able to resolve the slowest time scales of the climate system, we will find so-called
state-dependency [87,88] when estimating equilibrium climate sensitivity on slow (but
not ultraslow) time scales, because we sample different regions of the climatic attractor;
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• we have that concepts like time-scale dependency [89] of the climate sensitivity are in fact
related to the concept of inertia of the climate response, which can be explored by gen-
eralizing the idea of transient climate sensitivity [81] to all time scales of perturbations;

• in the case of coupled atmosphere-ocean models, looking at the transient climate sensi-
tivity for different rates of CO2 concentration increase can be useful for understanding
their multiscale properties.

The analysis of the spatial pattern of climate change signal using response theory is entirely
new and never attempted before. Clearly, when going from the global to local scale we have
to expect lower signal-to-noise ration, as the variability is enhanced, and the possibility that
linearity is a worse approximation, as a result of powerful local nonlinear effects. Response
theory provides an excellent tool also for predicting the change in the zonalmeanof the surface
temperature, except for an underestimation of the warming in the very high latitude regions
in the time horizons of 40–60 y. This is, in fact, the reason for the small bias found already
when looking at the prediction of the globally averaged surface temperature. By looking at
the 2D spatial patterns, we can associate such bias to a misrepresentation of the warming in
the region where the presence of sea-ice is most sensitive to changing temperature patterns.
The fact that linear response theory has problems in capturing the local features of a strongly
nonlinear phenomenon like ice-albedo feedback makes perfect sense. It is remarkable that,
instead, response theory is able to predict accurately the change in the surface temperature
fields in most regions of the planet.

The prediction of the spatial patterns of change in the precipitation is much less successful,
as a result of the complex nonlinear processes controlling the structure of the precipitative
field. In particular, response theory is not able to deal effectively with describing the poleward
shift of the storm tracks, in the widening of the Hadley cell, and in the change of the ICTZ.

This paper provides a possibly convincing case for constructing climate change predictions
in comprehensive climate models using concepts and methods of nonequilibrium statistical
mechanics. The use of response theory potentially allows to reduce the need for runningmany
different scenarios of climate forcings as in [12], and to derive, instead, general tools for com-
puting climate change to any scenario of forcings from few, selected runs of a climate model.
Additionally, it is possible to deconstruct climate response to different sources of forcings
apart from increases in CO2 concentration, e.g. changes in CH4 and aerosols concentration,
in land surface cover, in solar irradiance—and recombine it to construct very general climate
change scenarios. While this operation is easier in a linear regime, it is potentially doable
also in the nonlinear case, see [49] for details.

6 Challenges and Future Perspectives

The limitations of this paper point at some potentially fascinating scientific challenges to be
undertaken. Let’s list some of them:

• A fundamental limitation of this study is the impossibility to resolve the centennial
oceanic time scales. It is of crucial importance to test whether response theory is able
to deal with prediction on a wider range of temporal scales, as required when ocean
dynamics is included. We foresee future applications using a fully coupled yet efficient
model like FAMOUS [90].

• One should perform a systematic investigation of how appropriate linear approximation is
in describing climate response to forcings, by computing estimates of the Green function
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using different level of CO2 increases and testing them against a wide range of time
modulating functions describing different scenarios of forcings.

• It is necessary to study in greater detail what is the minimum size of the ensemble needed
for achieving a good precision in the construction of the Green function; the requirement
depends on the specific choice of the observable, including how it is constructed in terms
of spatial and temporal averages of the actual climatic fields.

• It is crucial to look at the effect of considering multiple classes of forcings in the climate
change scenarios and test how suitable combination of the individual Green functions
associated to each separate forcing are able to predict climate response in general.

Different points of view on the problem of predicting climate response should as well
be followed. The ab-initio construction of the linear response operator has proved elusive
because of the difficulties associated with dealing effectively with both the unstable and
stable directions in the tangent space. It is promising to try to approach the problem by
using the formalism of covariant Lyapunov vectors (CLVs) [91–94] for having a convincing
representation of the tangent space able to separate effectively and in an ordered manner the
dynamics on the unstable and stable directions. CLVs have been recently shown to have great
potential for studying instabilities and fluctuations in simple yet relevant geophysical systems
[95]. By focusing on the contributions coming form the stable directions, one can also expect
that such an approach might allow for estimating the — otherwise hard to control — error in
the evaluation of the response operator introduced when applying the standard form of the
fluctuation–dissipation theorem in the context of nonequilibrium systems possessing singular
invariant measure. This would help understanding under which conditions climate-related
applications of the fluctuation–dissipation theorem [17–21] have hope of being successful.

One of the disadvantages of the CLVs is that constructing them is rather demanding in
terms of computing power and requires a global (in time) analysis of the dynamics of the
system, in order to ensure covariance, thus requiring relevant resources in terms of memory.
Additionally, one expects that all the CLVs of index up to approximately the Kaplan–Yorke
dimension of the attractor of the system are relevant for computing the response. Such a
number, albeit typically much lower than the number of degrees of freedom, can still be
extremely large for an intermediate complexity or, a fortiori, in a comprehensive climate
model.

At amore empirical level, a cheaper and effective alternativemay be provided by the use of
Bred vectors (BVs). See comprehensive presentations in [96,97]. BVs are finite-amplitude,
finite time vectors constructed as the difference between a background trajectory and a set of
perturbed trajectories, where the perturbations (initially chosen at random having a small, yet
finite norm) change following the nonlinear evolution of the trajectories, and are periodically
rescaled to the prescribed initial norm. BVs provide a very efficient method for describing the
main instabilities of the flow, taking into account nonlinear effects. In fact, what is extremely
interesting about BVs is that (a) their growth factors are strongly dependent on the region
of the phase space where the system is; and (b) the choice of the reference norm of the
perturbation and of the time interval between two successive renormalization procedures
(breeding period) effects strongly the properties of the dominant instabilities specifically
active on the chosen time scales. Clearly, in the limit of infinitesimally small reference norm
and infinitely long breeding time, all BVs converge to the first CLV. This is not the case
when finite size effects become relevant. Instead, by considering not too small perturbations
and a long enough time interval, the very fast instabilitities associated to the first CLVs are
washed away by the loss of correlation due to nonlinear effects. In many applications of
meteo-climatic relevance it has been shown that a relatively low number of BVs is extremely
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effective for reconstructing the properties of the unstable space, and that BVs contain useful
information on spatially localized features, so that it may be worth trying to construct an
approximation to the Ruelle response operator using the BVs. One may note that considering
different constructions of the BVs as discussed above might lead to the useful result of
underlining different processes contributing to the response of the system.

Another promising approach for studying climate response relies on reconstructing the
invariant measure of the unperturbed system using its unstable periodic orbits (UPOs) [98].
Unstable periodic orbits has been shown to be a useful tool for studying persistent patterns
and transitions in the context of simple atmospheric models [99–101]. Since resonances in
the susceptibility describing the frequency-dependent response of specific observables can
be associated to dominating UPOs (compare, e.g., [37,102]), one can hope to be able to
construct hierarchical approximations of the response operators by summing over larger and
larger set of UPOs.

Finally, it is worthmentioning that response theory can be approached in terms of studying
the properties of the Perron–Frobenius transfer operator and of its generator [103] of the
unperturbed and of perturbed system. In other terms, the focus is on studying directly how
the invariant measure changes as a result of the applied perturbation and the challenge is in
finding appropriate mathematical embedding in terms of suitable functional spaces [43,104–
106]. See [3] for a proposal going in the direction of studying climate change by looking
directly at measures rather than at observables, as instead done here.

While the practical application of such an approach in a very high-dimensional problem
like in the case of climate might in principle faces problems related to the curse of dimen-
sionality, it has been advocated that it could provide an excellent framework for studying
vicinity of the climate to critical transitions [53], i.e. anticipating where there is no smooth-
ness of the invariant measure with respect to perturbations. Such transitions are flagged by
presence of rough dependence of the system properties on the perturbation due to presence
of Ruelle–Pollicott resonances. This idea has been recently confirmed also analyzing long
simulations performed with PLASIM and constructing a reduced space from two carefully
selected observables [54].

Recently, a comprehensive response theory for Markov processes in a finite state space
has been presented in the literature. Such a theory provides explicit matricial expressions of
straightforward numerical implementation for constructing the linear and nonlinear response
operators, including estimates of the radius of convergence [44]. Using such results in a
reduced state space might provide a novel and effective method for approaching the problem
of climate response.
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