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Abstract The Wiener Sausage, the volume traced out by a sphere attached to a Brownian
particle, is a classical problem in statistics and mathematical physics. Initially motivated by
a range of field-theoretic, technical questions, we present a single loop renormalised pertur-
bation theory of a stochastic process closely related to the Wiener Sausage, which, however,
proves to be exact for the exponents and some amplitudes. The field-theoretic approach is
particularly elegant and very enjoyable to see at work on such a classic problem. While we
recover a number of known, classical results, the field-theoretic techniques deployed provide
a particularly versatile framework, which allows easy calculation with different boundary
conditions even of higher momenta and more complicated correlation functions. At the same
time, we provide a highly instructive, non-trivial example for some of the technical partic-
ularities of the field-theoretic description of stochastic processes, such as excluded volume,
lack of translational invariance and immobile particles. The aim of the present work is not
to improve upon the well-established results for the Wiener Sausage, but to provide a field-
theoretic approach to it, in order to gain a better understanding of the field-theoretic obstacles
to overcome.

Keywords Wiener Sausage problem · Field theory · Random walks

1 Introduction

The Wiener Sausage problem [15] is concerned with determining the volume traced out (the
sausage) by a d-dimensional sphere attached to a Brownian particle in d dimensions. The
problem is illustrated in Fig. 1 in dimension d = 2. It has been studied extensively in the
literature [2,9,14,16,20,23,24,26,30,32] from a probabilistic point of view and has a very
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A Field-Theoretic Approach to the Wiener Sausage 605

Fig. 1 Example of the Wiener
Sausage problem in two
dimensions. The blue area has
been traced out by the Brownian
particle attached to a disc shown
in red (Color figure online)

wide range of applications, such as medical physics [6, for example], chemical engineering
[11, for example] or ecology [33, for example]. On the lattice, the volume of the Sausage
translates to the number of distinct sites visited [29]. In this work, we present an alternative,
field-theoretic approach which is particularly flexible with respect to boundary conditions
and observables with the aim to characterise and resolve the technical challenges in such an
undertaking, not with the aim to improve upon the existing theory of the Wiener Sausage.

The approach has the additional appeal that, somewhat similar to percolation [25] where
all non-trivial features are due to the imposed definition of clusters as being composed of
occupied sites connected via open bonds between nearest neighbours, the “interaction” in the
present case is one imposed in retrospect. After all, the Brownian particle studied is free and
not affected by any form of interaction. Yet, the observable requires us to discount returns, i.e.
loops in the trajectory of the particle, thereby inducing an interaction between the particle’s
past and present.

Before describing the process to be analysed in further detail, we want to point out
that some of the questions pursued in the following are common to the field-theoretic re-
formulation of stochastic processes [4,5,8,21,27,28]. Against the background of a field
theory of the Manna Model [7,19] one of us recently developed, the features we wanted to
understand were: (1) “Fermionic”, “excluded volume” or “hard-core interaction” processes
[13, for example], i.e. processes where lattice sites have a certain carrying capacity (unity in
the present case) that cannot be exceeded. (2) Systems with boundaries, i.e. lack of momen-
tum conservation in the vertices. (2’) Related to that, how different modes couple in finite,
but translationally invariant systems (periodic boundary conditions). (3) The special char-
acteristics of the propagator of the immobile species. (4) Observables that are spatial or
spatio-temporal integrals of densities.

The Wiener Sausage incorporates all of the above and because it is exactly solvable or
has been characterised by very different means [2,9,15,31], it also gives access to a better
understanding of the renormalisation process itself. In the following section we will describe
the process we are investigating and contrast it with the original Wiener Sausage. In Sect. 3
we will introduce the field-theoretic description up to tree level, which is complemented by
Sect. 4, where we perform a one-loop renormalisation procedure. It will turn out that there
are no further corrections beyond one loop and our perturbative results may thus be regarded
as exhaustive. Sections 4.3 and 4.4 are dedicated to calculations in finite systems. Section 5
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contains a discussion of the results mostly from a field-theoretic point of view, with Sect. 5.1
however focusing on a summary of this work with regard to the original Wiener Sausage
problem.

2 Model

Originally, the Wiener Sausage is concerned with the moments or generally statistical prop-
erties as a function of time of the volume traced out by a sphere of fixed given (say, unit)
radius, which is attached to a Brownian particle. This volume is thus the set of point within a
certain distance to the particle’s trajectory. Our field-theoretic approach will not recover that
process, but one that can reasonably be assumed to reside in the same universality class. One
may take the view that the field-theoretic description is merely a different view on the same
phenomenon, namely the Wiener Sausage.

To motivate the field theory and link it to the original problem, we will distinguish three
different models: (i) The originalWiener Sausage in terms of a sphere dragged by a Brownian
particle [15], (ii) a discrete time randomwalker on a lattice,where the Sausage becomes the set
of distinct sites visited [29], (iii) a Brownian particle in the continuum that spawns immobile
offspring with a finite rate and subject to a finite carrying capacity. In the following, we will
first describe how the phenomenon on the lattice, (ii), relates to the original Wiener Sausage,
(i), and then how the field theory, (iii), relates to the lattice model, (ii).

The asymptote in long times t of the number of distinct sites visited by a discrete time
random walker on a lattice ((ii) above) is expected to converge to that of the volume V (t)
over the volume V0 of the sphere in the original process ((i) above), provided the walker
returns repeatedly, so that the shape of the sphere and the structure of the lattice respectively
do not enter into the shape and size of the volume visited. Frequent returns are realised in
the limit of long times and below d = 2 dimensions. In that case, the walker on the lattice
becomes a discretised version of the original Wiener Sausage, as the particle drags a sphere
that is small compared to the volume traced out. Indeed, in one dimension, d = 1, the
expected volume of the Wiener Sausage in units of the volume of the sphere is dominated by
V (t)/V0 ∼ √4t D/(πb2), where t is the time, D is the diffusion constant and b the radius of
the sphere, whereas the expected number of distinct sites visited by a random walker after n
steps is dominated

√
8n/π [29]. The two expressions are identical for t = n and D = 2b2, the

effective diffusion constant of a random walker taking one step of distance 2b in one of the 2
directions in each time step. Above d = 2 dimensions, the walker is free, i.e. self-intersection
of the trace becomes irrelevant on larger time scales. The number of distinct sites visited and
the Wiener Sausage volume therefore both scale linearly in t and n respectively. However,
the (non-universal) proportionality factor, e.g. limt→∞ V (t)/(V0t) for the original Wiener
Sausage, is affected by the microscopic details such as the self-intersection of the sphere or
the lattice structure of the random walker.

We proceed to relate the process on the lattice (ii) to a Brownian particle spawning immo-
bile offspring (iii). To this end, we first describe (ii) in the language of reaction and diffusion.
In (ii), an “active” particle (species “A”, the active species) performs a random walk on a
lattice. Simultaneously, the particle spawns immobile offspring particles (species “B”, the
blue ink traces of A shown in Fig. 1, below sometimes referred to as a “substrate particle”)
at every site visited, provided that the site is not already occupied by an immobile B particle.
In other words, A spawns exactly one B at every newly visited site, so that the number of B
particles deposited becomes a proxy for the number of distinct sites visited. In dimensions
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less than 2 the A particle will return to every site visited arbitrarily often in the limit of long
times. A finite spawning probabilitywill therefore change the number of B particles deposited
only at the fringes of the set of sites visited, without, however, changing the asymptotics of
the number of B particles in the system as a function of time. If nB(x, t) is the number of
B particles at position x on the lattice and time t , the probability with which B particles are
spawned by an A particle may be written as γ (1 − nB(x, t)), so that deposition occurs with
probability γ if no B particle is present and not at all otherwise.

At this stage, we may introduce a carrying capacity n0, which determines the maximum
number of B particles deposited on any site, by making the spawning probability drop from
γ to 0 linearly in the particle number nB(x, t), i.e. like

γ
n0 − nB(x, t)

n0
. (1)

In the process (ii) discussed so far, n0 is unity, but from what has been discussed above,
n0 > 1 will result in each (frequently) revisited site carrying n0 immobile B particles. The
meaning of the carrying capacity in relation to the field theory is further discussed in Sect. 2.2.

To see the relation between the third process, (iii) and the discrete time, discrete space
process (ii), we first introduce continuous time in the latter. Random hopping which used to
occur once in every time step now becomes a Poisson process with a certain rate, say H , as
does the spawning of immobile offspring, with now takes placewith rate γ (n0−nB(x, t))/n0.
In the limit of γ � H all distinct sites visited will carry n0 immobile offspring. However, in
dimensions d < 2 sites are visited repeatedly, so that even a finite deposition (attempt) rate
γ yields the same asymptotic occupation. In dimensions d > 2 the number of B particles
deposited will, on the other hand, be proportional to the rate γ .

The expression γ (n0 − nB(x, t))/n0 may be written as γ − κnB(x, t) where κ = γ /n0
is a discount rate. In this interpretation (the view adopted in the perturbation theory below),
deposition takes place unhindered with rate γ while unlimited (and thus supposedly sup-
pressed) deposition is discounted by κnB(x, t), i.e. with a rate proportional to the occupation
and inversely proportional to the carrying capacity.

It remains to take the continuum (space) limit to arrive at process (iii) to bewritten as a field
theory, where occupation numbers nB(x, t) and nA(x, t) for B and A particles respectively
turn into occupationdensities, i.e. fields, namelynB(x, t) andnA(x, t).Moreover, the carrying
capacity n0 turns into a carrying density capacity, n0, so that the discount mentioned above
is now parameterised by κ = γ /n0 (a rate per density). The deposition thus occurs with rate

γ

(
1 − nB(x, t)

n0

)
= γ − κnB(x, t) . (2)

The random movement of the A particle is now parameterised by the diffusion constant D,
which may be obtained as the hopping rate H over the squared lattice spacing in the limit of
the latter going to 0.

2.1 Intermediate Summary

The long-winded discussion above serves as a justification as to why we expect the field
theory of (iii) to produce a phenomenon in the same universality class as the original Wiener
Sausage. Starting from the original Wiener Sausage (i), we have motivated why the process
on the lattice, (ii), can be regarded as a discretised version of (i) and introduced (iii) as
its continuum approximation. In the course of the justification, we made use of some of
the details of the processes involved, such as repeated returns to sites in process (ii). The
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field theoretic description of the universality class of the Wiener Sausage, however, may be
derived without recourse to these details, simply by observing that the volume traced out
by the sausage is proportional to the length of the trajectory with multiple visits discounted,
corresponding to the number of immobile B particles deposited by a Brownian particle (of
species A), if its spawning rate is moderated down in the presence of B particles.

To summarise, process (iii), to be cast in a Liouvillian and thus a field theory below, is
defined as follows: The Brownian particle A freely diffuses with diffusion constant D and
possibly subject to boundary conditions. While diffusing, the particle can spawn offspring
with Poissonian rate γ which, however, belong to an immobile second species B. If nB(x, t)
is the density of these particles, the deposition is linearly regulated down in their presence,
according to γ − κnB(x, t) with κ = γ /n0. Here, γ is the deposition rate and n0 is the
carrying (density) capacity.

It is convenient in the field theory to allow for spontaneous extinction with rate (or “mass”)
r . Ignoring boundary conditions, the propagator of the Brownian particle (species A, the
“activity”) takes the familiar form 1/(−ıω+Dk2+r)whereω and k parameterise frequency
and momentum (wave number) coordinates, respectively. The propagator of the immobile
species takes the form 1/(−ıω + ε′), where ε′ is the rate of spontaneous extinction of B
therticles and the limit ε′ → 0+ is implied to establish causality, as often done in field
theories. The key observable, corresponding to the volume of the sausage, is the total number
of immobile particles in the system after a given time t , i.e. the spatial integral over nB(x, t).

The engineering dimension of κ is a rate per density, which in comparison to the engineer-
ing dimension of the diffusion constant, an area per time, reveals the upper critical dimension
of 2. Alternatively, this can be seen from the density of unhindered deposition as a function
of time, (γ t)/(Dt)d/2, i.e. in the absence of discounts, κ = 0 or n0 → ∞.

In what follows, we will characterise process (iii) field theoretically. The Liouvillian of
the process is split into a linear part, Eq. (11), discussed in Sect. 3.2, and a non-linear part
Eq. (21), discussed in Sect. 3.3. The linear part of the Liouvillian can be constructed from the
propagators mentioned above and vice versa. The Liouvillian will enter into a path-integral,
which can be used to generate all correlation and vertex functions. The path integral itself
is to be evaluated perturbatively in the non-linearity, which, for example, instantly indicates
that the non-linearity has no bearing on the propagator of particle A.

Above two dimensions, the non-linearity causes an ultraviolet divergence, Eq. (56), which
has its origin in the increasingly sharp divergence in t of the density of a random walker at
the origin.1 However, in dimensions above 2 the non-linearity is infrared irrelevant and so
all long-time, long-range observables are covered by the tree-level. In dimension below 2 no
ultraviolet divergence occurs and the infrared can be regularised using finite masses r and ε′.
Wewill therefore work in dimensions 2−ε, with ε > 0, known as dimensional regularisation
(of the ultraviolet).

Initially, the density fields will be studied on an infinite domain without boundaries.
However, in Sect. 4.3 we will also consider an infinite slab and in Sect. 4.4 an infinite
cylinder. We will use Fourier transforms to write the fields in the infinite domain and suitably
chosen Fourier series in the presence of open (Dirichlet) or cylindrical boundaries. These
transforms and series are discussed in Sect. 3.1 and used later in the respective sections.

We will demonstrate in the following that the field theory recovers exact results of the
original Wiener Sausage as far as universal exponents are concerned, but also with respect
to some amplitudes (namely the leading order term of the volume of the sausage in one

1 The integral (56) is in fact the time-integrated density of a random walker at the origin, subject to extinction
r + ε′, namely

∫∞
0 dt exp

(−(r + ε′)t
)
(4πDt)−d/2 = �(1 − d/2)(4πD)−d/2(r + ε′)−(1−d/2).
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dimension as a function of time and the leading order of the volume as a function of the system
size of the infinite slab). Firstly, the present results confirm that the logistic term Eq. (2) is
capable of capturing the constraints due to the carrying capacity. At a more technical level,
the calculations for (partially) finite systems (infinite slab and cylinder) involve different
propagators, which under renormalisation can lead to new non-linearities. Similar to the
classic case discussed in [18] this problem, however, will be avoided. The results for these
more complicated boundary conditions show very interesting crossover behaviour. Finally,
from a physical point of view, it is particularly interesting that the infrared regularisation of
the immobile species, ε′, a neccessary ingredient as to preserve causality in the absence of
diffusion, can in principle be used to regularise the theory as a whole, i.e. without the need
of a particle mass r .

Before introducing the field theory of the present model in Sect. 3, we discuss in the
following briefly the intricacies of the fermionic nature of the B particles.

2.2 Finite Carrying Capacity

To fully understand the effect and consequences of the carrying capacity, it is best to reconsider
the process on the lattice. A carrying capacity of n0 = 1 in Eq. (1) switches off the deposition
of B particles in their presence in a rather dramatic fashion, implementing a constraint that is
normally referred to as fermionic, because there is never more than one B particle deposited
on a site. Raising n0 allows the spawning rate to drop linearly in the occupation in an
otherwise bosonic setup. While this may raise suspicion and invite the criticism of a fudge,
as demonstrated below, such a bosonic regularisation may be interpreted as the fermionic
case on a lattice with a particular connectivity, i.e. the attempted regularisation is the original,
fermionic case in disguise, suggesting that no such regularisation is needed.

Some authors [34, and references therein] avoid terms like Eqs. (1) or (2) by expanding
a suitable expression for δ1,nB (x,t), a Kronecker δ-function. Equations (1) and (2) are not
leading order terms in an expansion. For n0 = 1 and before taking any other approximation
(e.g. continuous space and density or removing irrelevant terms in the field theory) a logistic
term like (1) is a representation of the original process as exact as one involving theKronecker
δ-function. For n0 > 1 a logistic term gives rise to a model that may be strictly different
compared to one with a sharp carrying capacity implemented by, say, a Heaviside step-
function, θ(n0 − nB(x, t)), but nonetheless one that may be of equal interest.

Large n0 on the other hand, softens the cutoff, because spawning does not drop from
suddenly from γ to 0 but is more and more suppressed. One might therefore be inclined to
study the problem in the limit of large n0. At closer inspection, however, it turns out that
such increased n0 does not present a qualitative change of the problem: Having n0 > 1 is as
if each site was divided into n0 spaces. When the Brownian particle jumps from site to site it
arrives in one of those n0 spaces, only n0 − nB(n, t) of which are empty, so that an offspring
can be left behind. The process with carrying capacity n0 > 1 therefore corresponds to the
process with a carrying capacity of unity per space on a lattice where nB(n, t) describes
the number of immobile offspring in each “nest” or column of such spaces, as illustrated in
Fig. 2. In effect, the carrying capacity n0 > 1 is implemented per column, leaving the original
fermionic constraint of at most one offspring per space (or site) in place. In other words,
even when a carrying capacity n0 � 1 is introduced to smoothen the fermionic constraint,
it is still nothing else but the original constraint n0 = 1 on a different lattice. This led us to
believe that there is no qualitative difference in n0 = 1 or any other finite value of n0. In
the following, the field theory will retain the carrying capacity n0 because it is an interesting
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L

n0 = 4

L

n0 = 4

Fig. 2 A one dimensional lattice of size L and carrying capacity n0 = 4 corresponds to the lattice shown
above, where the carrying capacity of the former is implemented by expanding each site into a column of n0
sites. The Brownian particle can jump from every site to all sites in the neighbouring columns. In the new
lattice, the carrying capacity per site is unity, the carrying capacity per column is n0

parameter (n0 → ∞ switches the interaction off) and a “marker” of the interaction. It may
be set to any positive value.

3 Field Theory

In order to cast the model introduced above in a field-theoretic language, we take the Doi–
Peliti [8,21] approach without going through too many technical details. There are a number
of reviews and extremely useful tutorials available [4,5].

In the following the mobile particle is of species “A”, performing Brownian motion with
(nearest neighbour) hopping rate H , which translates to diffusion constant D = H/(2d) on
a d-dimensional hypercubic lattice. We expect universal scaling in the large time and space
limit. To regularise the infrared, we also introduce an extinction rate r . A’s creation operator
is a†(x), its annihilation operator is a(x). The immobile species is “B”, spawned with rate γ

by species A. Its creation operator is b†(x), its annihilation operator is b(x), both commuting
with the creation and annihilation operators of species A. The immobile species goes extinct
with rate ε′, which allows us to have a Fourier transform and to restore causality (possible
annihilation, i.e. existence, only after creation) even without spontaneous extinction, once
we take the limit ε′ → 0.

3.1 Fourier Transform

After replacing the operators by real fields, the Gaussian (harmonic) part of the resulting path
integral can be performed, once the fields have been Fourier transformed. We will use the
sign and notational convention of

φ(x, t)

= (2π)−1
∫ ∞

−∞
dω (2π)−1

∫ ∞

−∞
dk1 . . . (2π)−1

∫ ∞

−∞
dkd φ(k, ω)e−ıωt+ıkx

=
∫
d̄ωd̄dk φ(k, ω)e−ıωt+ıkx . (3)

The field φ(k, ω) corresponds to the annihilator a(x) of the active particles, the field φ̃(k, ω)

to the Doi-shifted creator ã(x) = a†(x) − 1. Correspondingly, ψ(k, ω) and ψ̃(k, ω) replace
b(x) and b̃(x) = b†(x) − 1, respectively.
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A Field-Theoretic Approach to the Wiener Sausage 611

It is instructive to consider a second set of orthogonal functions at this stage. Placing the
process in a space that has a finite extension along one axis means that boundary conditions
have to be met, which is more conveniently done in one eigensystem rather than another.
Below, we will consider an infinite slab with finite thickness L , i.e. d-dimensional spaces
which are infinitely extended (using the orthogonal functions and transforms introduced
above) in d̃ = d − 1 dimensions, while along one axis, the boundaries are open, i.e. the
particle density of species A vanishes at the (two parallel, d̃-dimensional) boundaries and
outside. This Dirichlet boundary condition is best met using eigenfunctions

√
2/L sin(qnz)

with qn = πn/L and n = 1, 2, . . ., making it complete and orthonormal because

2

L

∫ L

0
dz sin(qnz) sin(qmz) = δn,m . (4)

In passing, we have introduced the finite linear length of the space, L . Purely for ease
of notation and in order to keep expressions in finite systems dimensionally as similar as
possible to those in infinite ones, Eq. (3), we will transform as follows:

φ(z) = 2

L

∞∑

n=1

sin(qnz)φn (5a)

φn =
∫ L

0
dz sin(qnz)φ(z) (5b)

using

2

L

∞∑

n=1

sin(qn y) sin(qnz) = δ(z − y) (6a)

∫ L

0
dz sin(qnz) sin(qmz) = L

2
δm,n , (6b)

where δ(z − y) is the usual Dirac δ function for z − y ∈ (0, L) but to be replaced by the
periodic Dirac comb

∑∞
m=−∞ δ(z − y + mL) for arbitrary z − y. For ease of notation, we

have omitted the time dependence of φ(x, t) as well as d̃ components other than z. The other
fields, φ̃, as well as ψ and ψ̃ transform correspondingly. The spatial transform of the latter
is subject to some convenient choice, because the immobile species is not constrained by a
boundary condition.

It will turn out that, as expected in finite size scaling, the lowest mode q1 = π/L plays
the rôle of a temperature like variable, controlling the distance to the critical point.

We will also briefly study systems which are infinitely extended in d̃ dimensions and
periodically closed in one. In the periodic dimension, the spectrum of conveniently chosen
eigenfunctions

√
1/L exp (ıkn y) is discrete with kn = 2πn/L and n ∈ Z,

1

L

∫ L

0
dy eıkn yeıkm y = δn+m,0 . (7)

Again, we transform slightly asymmetrically (in L),

φ(z) = 1

L

∞∑

n=−∞
eıkn zφn (8a)

φn =
∫ L

0
dz e−ıkn zφ(z) (8b)
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with

1

L

∞∑

n=−∞
eıkn ye−ıkn z = δ(z − y) (9a)

∫ L

0
dz eıkn ze−ıkm z = Lδm,n , (9b)

where again δ(z − y) is to be replaced by a Dirac comb if considered for z − y /∈ (0, L).
Again, time and d̃ spatial coordinates were omitted. Similar transforms apply to the other
fields.

There is a crucial difference between eigenfunctions exp (ıkn y) and sin(qnz), as the former
conserves momenta in vertices, whereas the latter does not:

∫ L

0
dy eıkn yeıkm yeık�y = Lδn+m+�,0 (10a)

while ∫ L

0
dy sin(qn y) sin(qm y) sin(q�y) = Lεnm� , (10b)

where

εnm� =
{

1
2π

(
1

n+m−�
+ 1

n−m+�
+ 1

−n+m+�
− 1

n+m+�

)
for � + m + n odd

0 otherwise
(10c)

with qn = πn/L > 0, n ∈ N+ and kn = 2πn/L , n ∈ Z (sign unconstrained) as introduced
above.

Having made convenient choices such as Eq. (5), we will carry on using the Fourier
transforms of the bulk Eq. (3), which is easily re-written for Dirichlet boundary conditions
using Eq. (5), simply by replacing each integral overd̄k by (2/L)

∑
n and similar for periodic

boundary conditions, Eq. (8). Only the non-linearity, Sect. 3.3, is expected to require further
careful analysis as εnm� of Eq. (10b) is structurally far more demanding than δn+m+�,0 of
Eq. (10a).

3.2 Harmonic Part

Following the normal procedure [3, for example], the harmonic part L0 of the Liouvillian
L = L0 + L1 reads

L0 = φ̃∂tφ + D∇φ̃∇φ + r φ̃φ + ψ̃∂tψ + ε′ψ̃ψ . (11)

The non-linear part L1, Eq. (21), is discussed in Sect. 3.3. The harmonic part, L0, describes
the diffusive evolution of the density field of A particles, represented by φ and φ̃, which
diffuse with diffusion constant D and get spontaneously extinct with rate r , as well as the
evolution of immobile particles B, represented by densities ψ and ψ̃ , which do not diffuse
but get extinct with rate ε′.

After Fourier transforming and without further ado the harmonic part of the path integral
∫

DφDφ̃DψDψ̃e− ∫ d̄dk d̄ω L

can be performed, producing the two bare propagators
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〈
φ(k, ω)φ̃(k′, ω′)

〉

0
= δ̄(k+k′)δ̄(ω+ω′)

−ıω+Dk2+r
=̂ (12a)

〈
ψ(k, ω)ψ̃(k′, ω′)

〉

0
= δ̄(k+k′)δ̄(ω+ω′)

−ıω+ε′ =̂ (12b)

where δ̄(ω + ω′) = δ(ω + ω′)/(2π) and δ̄(k + k′) = δ(k + k′)/(2π)d . Below, we will
refer to the propagator of the diffusive particles as the “activity propagator” and to the one
for the immobile species as the “substrate propagator” (or “activity” and “substrate legs”,
respectively). As the propagation of the active particles is unaffected by the deposition of

immobile particles, the activity propagator does not renormalise
〈
φφ̃
〉

=
〈
φφ̃
〉

0
. The same

is true for the immobile species, which might be spawned by active particles, however, once

deposited remains inert,
〈
ψψ̃
〉
=
〈
ψψ̃
〉

0
.

The Fourier transform Eq. (3) of the latter produces δ(x−x′)θ(t − t ′) in the limit ε′ → 0,
with θ(x) denoting the Heaviside θ -function as onewould expect (with x, t being the position
and time of “probing” and x′, t ′ position and time of creation). At this stage, there is no

interaction and no transmutation,
〈
ψ̃(k, ω)φ(k′, ω′)

〉
= 0. Diffusing particles A happily

co-exist with immobile ones.

3.3 Non-linearity

The harmonic part of the Liouvillian, L0, discussed in the preceding section covers the diffu-
sive motion and spontaneous extinction of A particles (fields φ and φ̃) and the spontaneous
extinction of the restingB particles (fieldsψ and ψ̃). In the following, wewill discuss the non-
linear (interacting) part of the Liouvillian, L1, which introduces the spawning of B particles
by the A particle, subject to the constraint of the finite carrying capacity, which establishes
an effective interaction between previously deposited particles and any new particle to be
deposited.

As discussed in Sect. 2.2, spawning is moderated down in the presence of B particles to
γ (1 − nB(x, t)/n0). At the level of a master equation, this conditional deposition gives a
non-linear contribution of

∂tP(. . . , nA, nB , . . .) = harmonic terms +
∑

n

nAγ

(
1 − nB − 1

n0

)
P(. . . , nA, nB − 1, . . .)

−nAγ

(
1 − nB

n0

)
P(. . . , nA, nB , . . .), (13)

where, for convenience, the problem is considered for individual lattice sites nwhich contain
nA = nA(n) particles of species A and nB particles of species B. The contributions by
harmonic terms, namely diffusion of A particles and spontaneous extinction of both, as
discussed in the previous section, have been omitted. The first term in the sum describes the
creation of a B particle in the presence of nB − 1 of those to make up nB in total, the second
term makes the B particle number exceed nB , nB → nB + 1. If

|�〉 (t) =
∑

{nA,nB }
P(. . . , nA, nB , . . .)

∏

n

(
a†
)nA

(n)
∏

n

(
b†
)nB

(n) |0〉 , (14)
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where the sum runs over all states of the entire lattice, then the conditional deposition produces
the contribution

∂t |�〉 (t) = bilinear terms +
∑

n

γ b̃(n) a†(n)a(n) − γ

n0
b̃(n)b†(n)b(n) a†(n)a(n) , (15)

where we have used the commutator, (b†b − 1)b† = (
b†
)2

b and the Doi-shifted creation
operator, b† = b̃ + 1, as well as the particle number operator b†b.

Although using Doi-shifted operators throughout gives rise to a rather confusing six non-
linear vertices, the resulting field theory does not turn out as messy as one may expect.
However, we need to allow for different renormalisation, therefore introducing six different
couplings below.

Replacing a† by 1 + ã in the first term of the sum generates the bilinearty ab̃, which we
will parameterise in the following by τ , corresponding to a transmutation of an active particle
to an immobile one. Transmutation is obviously spurious; it does not actually take place but
will allow us in the Doi-shifted setup (and thus with the corresponding left vacuum [4,5]) to
probe for substrate particles (using b) after creating an active one (using a†) without having
to probe for the latter (using a). There is no advantage in moving that to the bilinear part L0,
because the determinant of the bilinear matrix M in

L′
0 =

(
φ̃

ψ̃

)T (−ıω + Dk2 + r 0
−τ −ıω + ε′

)

︸ ︷︷ ︸
M

(
φ

ψ

)
(16)

is unaffected by τ �= 0 and therefore none of the propagators mentioned above change.
One may therefore treat all terms (including the bilinear transmutation) resulting from the
interaction perturbatively, with transmutation

〈
ψ(k, ω)φ̃(k′, ω′)

〉

0

=
∫
d̄dk′′ d̄ω′′ 〈ψ(k, ω)ψ̃(k′′, ω′′)

〉
τ
〈
φ(k′′, ω′′)φ̃(k′, ω′)

〉

= δ̄(k + k′)δ̄(ω + ω′)
−ıω + ε′ τ

1

−ıω + Dk2 + r
=̂ τ

(17)

that is present regardless of the carrying capacity n0. At this stage it is worth noting the
sign of τ (and σ below) as positive, i.e. the perturbative expansion will generate terms with
pre-factors τ (and σ below).

The only other non-linearity independent from the carrying capacity n0 is the vertex b̃ãa
(or ψ̃φ̃φ) in the following parameterised by the coupling constant σ . Diagrammatically, it
may be written as the (amputated vertex)

σ
, (18)

and can be thought of as spawning, rather than transmutation parameterised by τ .
According to Eq. (15), there are four non-linearities with bare-level couplings of γ /n0,

generated by replacing the regular creation operators by their Doi-shifted counterparts,
a†(n) = 1 + ã(n) and b†(n) = 1 + b̃(n), in γ

n0
b̃(n)b†(n)b(n) a†(n)a(n). Each spawns

at least one substrate particle, but more importantly, it also annihilates at least one substrate
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particle as it “probes for” its presence. The two simplest and most important (amputated)
vertices are the ones introduced above with a “wriggly tail added”,

λ κ
(19)

where we have also indicated their coupling. By mere inspection, it is clear that those two
vertices can be strung together, renormalising the left one. In fact, κ is the one and only
coupling that renormalises all non-linearities (σ, λ, κ, χ , and ξ ), including itself.

Two more vertices are generated,
χ ξ

, (20)

which become important only for higher order correlation functions of the substrate particles,
because there is no vertex annihilatingmore than one of them—correlations between substrate
particles are present but not relevant for the dynamics. Notably, there is no vertex that has
more incoming than outgoing substrate legs. Finally, we note that the sign with which λ, κ ,
χ and ξ are generated in the perturbative expansion is negative.

For completeness, we state the interaction part of the Liouvillian (see Eq. (11))

L1 = −τ ψ̃φ − σψ̃φ̃φ + λψ̃ψφ + κφ̃ψ̃ψφ + χψ̃2ψφ + ξ φ̃ψ̃2ψφ , (21)

with
τ = σ = γ and λ = κ = χ = ξ = γ /n0 (22)

at bare level.

3.4 Dimensional Analysis

Determining the engineering dimensions of the coupling introduced above is part of the “usual
drill” and will allow us to determine the upper critical dimension and to remove irrelevant
couplings. Without dwelling on details, analysis of the harmonic part, Eq. (11), reveals that
[D] = L2/T (as expected for a diffusion constant) and [r ] = [

ε′] = 1/T (as expected for
all extinction rates), with [x] = L, a length, and [t] = T, a time. In real time and real space,[
φ̃φ
]

=
[
ψ̃ψ
]

= L−d .

Performing the Doi-shift in Eq. (15) first and introducing couplings for the non-linearities
as outlined above allows for two further independent dimensions, say spawning [σ ] = A and
transmutation [τ ] = B (both originally equal to the rate γ ), which implies [λ] = A−1BLdT−1,

[κ] = LdT−1, [χ] = LdB, [ξ ] = LdA, as well as [ψ] = TAL−d ,
[
ψ̃
]

= A−1T−1, [φ] =
AB−1L−d ,

[
φ̃
]

= A−1B in real space and time.

As far as the field theory is concerned, the only constraint is to retain the diffusion constant
on large scales,which impliesT = L2.As a result, the non-linear coupling κ (originally γ /n0)
becomes irrelevant in dimensions d > dc, as expected with upper critical dimension dc = 2.
The two independent engineering dimensions A and B will be used in the analysis below in
order to maintain the existence of the associated processes of transmutation and spawning,
which are expected to govern the tree level. If we were to argue that they become irrelevant
above a certain upper critical dimension, the density of offspring and its correlations would
necessarily vanish everywhere.2

2 Strictly, as we will demonstrate below, n-point correlation functions can be constructed with τ only, say
τ

in Eq. (32). However, it is clear that the density of the active walker and its immobile
offspring will remain correlated, which is mediated by σ , Eq. (18).
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Even though we may want to exploit the ambiguity in the engineering dimensions [17,28]
in the scaling analysis (however, consistent with the results above), in the following section
we will make explicit use of the Doi-shift when deriving observables, which means that

both φ̃ and ψ̃ are dimensionless (in real space and time),
[
φ̃
]

=
[
ψ̃
]

= 1, which implies

A = T−1 and A = B. As expected, τ is then a rate (namely the transmutation rate) and so is
σ , [τ ] = [σ ] = 1/T. Also not unexpectedly, the remaining four couplings all end up having
the same engineering dimension, [λ] = [κ] = [χ] = [ξ ] = LdT−1, as suggested by γ /n0,
which is a rate per density (γ being the spawning rate and n0 turning into a carrying capacity
density as we take the continuum limit).

3.5 Observables at Tree Level: Bulk

The aim of the present work is to characterise the volume of the Wiener Sausage field-
theoretically. As discussed in Sect. 2, this is done not in terms of an actual spatial volume, but
rather in terms of the number of spawned immobile offspring. In this section, we define the
relevant observables in terms of the fields introduced above. This is best done at tree level,
presented in the following, before considering loops and the subsequent renormalisation.
While the tree level is the theory valid above the upper critical dimension, it is equivalently
the theory valid in the absence of any physical interaction, i.e. the theory of n0 → ∞. We
introduce the observables first in the presence of a mass r , which amounts to removing the
particle after a time of 1/r on average.

If v(1)(x; x∗) is the density of substrate particles atx in a particular realisation of the process
at the end of the life time of the diffusive particlewhich started atx∗, the volumeof the Sausage
is V = ∫

dd x v(1)(x; x∗). The ensemble average is then just 〈V 〉 = ∫
dd x

〈
v(1)(x; x∗)

〉
,

where 〈•〉 denotes the ensemble average of • and the dependence on x∗ drops out in the
bulk. Alternatively (as done below), one may consider a distribution3 d(x∗) of initial starting
points x∗, over which an additional expectation, denoted by an overline, •, has to be taken.

Higher moments require higher order correlation functions

〈
V n 〉 =

∫
dd x1 . . .dd xn

〈
v(n)(x1, . . . , xn)

〉
, (23)

where 〈
v(n)(x1, . . . , xn)

〉
=
∫
dx∗ d(x∗)

〈
v(n)(x1, . . . , xn; x∗)

〉
(24)

and
〈
v(n)(x1, . . . , xn; x∗)

〉
denotes the n-point correlation function of the substrate particle

density generated by a single diffusive particle started at x∗. Equivalently in k-space

〈
v(n)(. . .)

〉
=
∫
dd x∗ d(x∗)

〈
v(n)(. . . ; x∗)

〉
=
∫
d̄dk∗ d(−k∗)

〈
v(n)(. . . ;k∗)

〉
.

Given that b†(x)b(x) is the particle density operator, that correlation function is the expec-
tation

〈
v(n)(x1, . . . , xn; x∗)

〉
= lim

t1,t2,...,tn→∞
〈
ψ†(x1, t1)ψ(x1, t1)

×ψ†(x2, t2)ψ(x2, t2) × . . . × ψ†(xn, tn)ψ(xn, tn) × φ†(x∗, t0)
〉

(25)

3 This is a distribution of experiments with one initial particle each, rather than a “smeared out” initial particle,
whose “constituents” would be able to “see” each other’s traces.
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with only a single,4 initial, diffusive particle started at x∗, t0. The multiple limits on the right
are needed so we measure deposition due to the active particle left after its lifetime. As the
present phenomenon is time-homogeneous, t0 will not feature explicitly, but rather enter in
the difference ti − t0, each of which diverges as the limits are taken. In principle, only a single
limit is needed, t = t1 = t2 = . . . = tn → ∞, but as discussed below, equal times leave
some ambiguity that can be avoided.

For n = 1, the relevant correlation function is
〈
ψ†(x1, t1)ψ(x1, t1)φ†(x∗, 0)

〉
, which leaves

us with four terms after replacing by Doi-shifted creation operators,
〈
ψ†(x1, t1)ψ(x1, t1)φ†(x∗, 0)

〉

= 〈ψ(x1, t1)〉 +
〈
ψ̃(x1, t1)ψ(x1, t1)

〉

+
〈
ψ(x1, t1)φ̃(x∗, 0)

〉
+
〈
ψ̃(x1, t1)ψ(x1, t1)φ̃(x∗, 0)

〉
. (26)

Pure annihilation, 〈ψ〉, vanishes—it is the expected density of substrate particles in the

vacuum, as no active particle has been created first. The expectation
〈
ψ̃(x1, t1)ψ(x1, t1)

〉
∝

θ(t1 − t1) vanishes as well, for θ(0) = 0 (effectively the Itō interpretation of the time
derivatives, [27]) is needed in order to make the Doi–Pelitti approach meaningful. The field
ψ̃(x1, t1) in the density ψ̃(x1, t1)ψ(x1, t1) is meant to re-create the particle annihilated by

the operator corresponding to ψ(x1, t1). For the same reason,
〈
ψ̃(x1, t1)ψ(x1, t1)φ̃(x∗, 0)

〉

vanishes, even when a vertex,

0t1

t1

is available. In fact, to contribute, any occurrence of ψ̃(x1, t1) requires an occurrence of
ψ(x2, t2) with t2 > t1. What remains of Eq. (26) is therefore only

〈
ψ(x1, t1)φ̃(x∗, 0)

〉
= . (27)

Taking the Fourier transform of Eq. (17),
∫
d̄ω0 e

−ıω0t0

∫
d̄ω1 e

−ıω1t1 δ̄(k0 + k1)δ̄(ω0 + ω1)

−ıω1 + ε′ τ
1

−ıω1 + Dk21 + r

= δ̄(k0 + k1)θ(t1 − t0)τ

Dk21 + r − ε′
(
e−ε′(t1−t0) − e−(Dk21+r)(t1−t0)

)
(28)

reveals the general mechanism of

lim
t→∞ lim

ε′→0

∫
d̄ω

g(ω) exp (−ıωt)

−ıω + ε′ = g(0) , (29)

provided g(ω) itself has no pole at the origin, as otherwise additional residues that survive
the limit t → ∞ would have to be considered.

In Eq. (28) the starting point of the walker still enters via k0. If that “driving” is done with
a distribution of initial starting points d(k0), the resulting deposition is given by

〈
v(1)(k)

〉
=
∫
d̄dk0

〈
v(1)(k;k0)

〉
d(−k0) = τd(k)

Dk2 + r
= τ

∣
∣
∣
∣
ω=0

(30)

4 Obviously, an entirely different set of diagrams will be generated by having more than one initial particle,
clearly so in the presence of a finite carrying capacity, where the trail of one suppresses the trail of the other,

∝ στ . One can see that this diagram contains an infrared divergence for d ≥ 4 [31].
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where the little circle on the right indicates the “driving” which “supplies” a certain momen-
tum distribution. More specifically, an initial distribution of d(x) = δ(x − x∗) has Fourier
components

∫
dd x d(x)e−ık0x = e−ık0x∗ = d(k0)

and the resulting deposition is distributed according to
〈
v(1)(k; x∗)

〉
= τe−ıkx∗

/(Dk2 + r) .

In an infinite system, the position of the initial driving should not and will not enter—to
calculate the volume of the Sausage, we will evaluate at k = 0. The same applies for the
time of when the initial distribution of particles is made. In principle it would give rise to an
additional factor of exp (−ıωt∗), but we will evaluate at ω = 0.

Evaluating atk = 0 in the bulkproduces the volume integral over the offspringdistribution,
i.e. the expected volume V of the Sausage, in the absence of a limiting carrying capacity,

〈V 〉 =
〈
v(1)(k = 0; x∗)

〉
= τ

r
, (31)

which corresponds to the naïve expectation of the (number) deposition rate τ multiplied by
the survival time of the random walker 1/r . From this expression it is also clear that the
“volume” calculated here is, as expected, dimensionless.

Following similar arguments for n = 2, the relevant diagrams are
〈
ψ†(x2, t2)ψ(x2, t2)ψ†(x1, t1)ψ(x1, t1)φ†(x0, t0)

〉

=
〈
ψ(x2, t2)ψ̃(x1, t1)ψ(x1, t1)φ̃(x0, t0)

〉
+
〈
ψ(x2, t2)ψ(x1, t1)φ̃(x0, t0)

〉

=̂ τ + τ σ
, (32)

where the symbol represents ψ̃(x, t)ψ(x, t), which is a convolution in Fourier space,

=̂
∫
dd xdt ψ̃(x, t)ψ(x, t)eıωt−ıkx =

∫
d̄dk′d̄ω′ ψ̃(k′, ω′)ψ(k − k′, ω − ω′) (33)

so that

k0, ω0k2, ω2

k1, ω1 = δ̄(ω0 + ω1 + ω2)δ̄(k0 + k1 + k2)
(−ıω2 + ε′)(ıω0 + ε′)

, (34)

which in real space and time gives a δ(x2 − x1)δ(x1 − x0)θ(t2 − t1)θ(t1 − t0), corresponding
to an immobile particle deposited at t0 and x0, found later at time t1 > t0 and x1 = x0 and
left there to be found again at time t2 > t1 and x2 = x1 = x0.

The effect of taking the limits ti → ∞ is the same as for the first moment, namely it
results in ωi = 0. The same holds here, except that in diagrams containing the convolution,
the result depends on the order in which the limits are taken. This can be seen in the factor
θ(t2 − t1)θ(t1 − t0), as one naturally expects from this diagram: The first probing must occur
after creation and the second one after the first. A diagram like the second in Eq. (32) does
not carry a constraint like that.

Each of the diagrams on the right hand side of Eq. (32) appears twice, as the external
fields can be attached in two different ways. When evaluating at k1 = k2 = 0 this would
lead to the same (effective) combinatorial factor of 2 for both diagrams. However, taking
the time limits in a particular order means that one labelling of the first diagram results in
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a vanishing contribution. The resulting combinatorial factors are therefore 1 for
and 2 for , i.e.

〈
V 2〉 = τ

r

(
1 + 2

σ

r

)
, (35)

again dimensionless. Given that τ = σ = γ initially, Eq. (15), the above may be written
γ /r + 2γ 2/r2. Unsurprisingly, the moments correspond to those expected for a Poisson
process with rate γ taking place during the exponentially distributed lifetime of the particle,
subject to a Poisson process with rate r . The resulting moment generating function is simply

M(x) = r/γ

r/γ + 1 − ex
(36)

with 〈V n〉 = dn
dxn

∣
∣
∣
x=0

M(x) reproducing all moments once τ = σ = γ .

Carrying on with the diagrammatic expansion, higher order moments can be constructed
correspondingly. At tree level (or n0 → ∞ equivalently), there are no further vertices con-
tributing. Determining

〈
v(n)(k1, . . . ,kn;k0)

〉
is therefore merely a matter of adding substrate

legs, , either by adding a convolution, , or by branching with coupling σ . For example,
〈
v(3)
〉
=̂ τ + τ σ + τ σ + τ σ σ

. (37)

Upon taking the limits, effective combinatorial factors become 1, 3, 3 and 6 respectively, so
that

〈
V 3〉 = τ

r

(
1 + 6

σ

r
+ 6

(σ

r

)2)
, (38)

and similarly

〈
V 4〉 = τ

r

(
1 + 14

σ

r
+ 36

(σ

r

)2 + 24
(σ

r

)3)
(39a)

〈
V 5
〉
= τ

r

(
1 + 30

σ

r
+ 150

(σ

r

)2 + 240
(σ

r

)3 + 120
(σ

r

)4)
(39b)

〈
V 6〉 = τ

r

(
1 + 62

σ

r
+ 540

(σ

r

)2 + 1560
(σ

r

)3 + 1800
(σ

r

)4

+ 720
(σ

r

)5)
. (39c)

In general, the leading order behaviour in small r at tree level in the bulk is dominated by
diagrams with the largest number of branches, i.e. the largest power of σ , like the right-most
term in Eq. (37), so that 〈

Vm 〉 ∝ m!τσm−1r−m , (40)

which is essentially determined by the time the active particle survives.

3.6 Observables at Tree Level: Open Boundary Conditions

Nothing changes diagrammatically when considering the observables introduced above in
systems with open boundary conditions along one axis. As n0 → ∞ does not pose a con-
straint, it makes no difference whether the system is periodically closed (in d = 2 a finite
cylinder) or infinitely extended (infinite slab) along the other axes—these directions simply
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do not matter for the observables studied, except when the diffusion constant enters. What
makes the difference to the considerations in the bulk, Sect. 3.5, are open dimensions, in the
following fixed to one, so that the number of infinite (or, at this stage equivalently, periodically
closed) directions is d̃ = d − 1; in the following k,k′ ∈ Rd̃ .

While the diagrams obviously remain unchanged, their interpretation changes because
of the orthogonality relations as stated in Eqs. (6b) and (10b) or, equivalently, the lack
of momentum conservation due to the absence of translational invariance. Replacing the
propagators by

〈
φn(k, ω)φ̃m(k′, ω′)

〉

0
= δ̄(k + k′)δ̄(ω + ω′) L2 δn,m

−ıω + Dk2 + Dq2n + r
=̂ (41a)

〈
ψn(k, ω)ψ̃m(k′, ω′)

〉

0
= δ̄(k + k′)δ̄(ω + ω′) L2 δn,m

−ıω + ε′ =̂ , (41b)

where a single open dimension causes the appearance of the indices n and m, results in the
one point function

〈
v(1)
n (k)

〉
= τdn(k)

Dk2 + Dq2n + r
= τ

∣
∣
∣
∣
ω=0

,

where the index n refers to the Fourier-sin component as discussed in Sect. 3.1. If driving (i.e.
initial deposition) is uniform (homogeneous) along the open, finite axis, its Fourier transform
is dn(k) = δ̄(k)

∫ L
0 dz sin(qnz)/L = 2δ̄(k)/(qnL) for odd n and vanishes otherwise. As for

the periodic or infinite dimensions, the distribution of the driving does not enter into 〈V n〉,
as momentum conservation implies that the only amplitudes of the driving that matter are
that of the k = 0 or k0 = 0 modes, Eqs. (3) and (7).

Integrating (2/L)
∑

n

〈
v

(1)
n (k)

〉
sin(qnz) over the interval [0, L] produces [35]

〈V 〉 = 2

L

∑

n odd

2

qn

τ

Dq2n + r

2

Lqn

= 8τ

π4D
L2
∑

n odd

1

n2
1

n2 + r L2

Dπ2

= τ

r

⎛

⎝1 −
√

4D

rL2 tanh

⎛

⎝

√
r L2

4D

⎞

⎠

⎞

⎠ . (42)

In the limit of large L this result recovers Eq. (31), which would be less surprising if L →
∞ would simply restore the bulk, which is, however, not the case, because as the driving
is uniform, some of it always takes place “close to” the open boundaries. However, open
boundaries matter only up to a distance of

√
D/r from the boundaries, i.e. the fraction of

walkers affected by the open boundaries is of the order
√
D/r/L .

The limit r → 0 gives 〈V 〉 = τ L2/(12D), matching results for the average residence time
of a randomwalker on a finite lattice with cylindrical boundary conditions using D = 1/(2d)

[22]. Sticking with r → 0, calculating higher order moments for uniform driving is straight-
forward, although somewhat tedious. For example, the two diagrams contributing to

〈
v(2)
〉

are

τ

k0, ω0, nk2, ω2, l

k1, ω1,m

= τ δ̄(ω0 + ω1 + ω2)δ̄(k0 + k1 + k2)Lεnm�

(−ıω2 + ε′)(ıω0 + Dk20 + Dq2n + r)(ıω0 + ε′)
(43)
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and

τ

k2, ω2, l
σ

k0, ω0, n

k1, ω1,m

= τσ δ̄(ω0 + ω1 + ω2)δ̄(k0 + k1 + k2)Lεnm�

(−ıω2 + Dk22 + Dq2� + r)(−ıω2 + ε′)(ıω0 + Dk20 + Dq2n + r)(ıω0 + ε′)
. (44)

Using

2π
∑

nm�
odd

1

n3
1

m

1

�
εnm� = 1

6

(π

2

)6
(45a)

2π
∑

nm�
odd

1

n3
1

m

1

l3
εnm� = 1

15

(π

2

)8
, (45b)

where n,m, l ∈ {1, 3, 5, . . .} (as driving is uniform and the sausage volume is an integral
over the entire system), then produces

〈
V 2〉 = τ L2

12D

(
1 + σ L2

5D

)
. (46)

This may be compared to the known expressions for the moments of the number of distinct
sites visited by a randomwalker within n moves [29, in particular Eq. (A.14)], which contains
logarithms even in three dimensions, where the present tree level results are valid. This is,
apparently, caused by constraining the length of the Sausage by limiting the number ofmoves,
rather than a Poissonian death rate.

Performing the summations Eq. (45) is straight-forward, but messy and tedious.5 The rele-
vant sums converge rather quickly, for the third moment producing (by summing numerically
over 200 terms for each index), for example

〈
V 3〉 = τ L2

12D

(
1.00002196165 · · · + 0.60000307652 · · · σ L2

D

+ 0.060714286977 · · · σ 2L4

D2

)
. (47)

Just like in the bulk for small r , Eq. (39), the diagrams dominating large L are the tree-
branch-like diagrams such as Eq. (44), with highest power of σ , rather than those involving
convolutions, Eq. (43). Each new branch produces a factor L2, so in general

〈
Vm 〉 ∝ τσm−1L2mD−m , (48)

as in Eq. (40) essentially determined by the time the particle stays on the lattice.
Similar to the bulk, the lack of interaction allows the volume moments of the Sausage to

be determined on the basis of the underlying Poisson process. In the case of homogeneous
drive, the mth moment of the residence time tr of a Brownian particle diffusing on an open
interval of length L is

〈
tmr
〉 = 8m!

π2(m+1)Dm
L2m

∑

n odd

n−2(m+1) (49)

5 GP would like to thank Aman Pujara and Songhongyang Yuan for their help.
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and the moment generating function of the Poissonian deposition with rate γ is justM(z) =
exp (−γ tr (1 − exp (z))), so that 〈Vm〉 = 〈dmM(z)/dzm |z = 0〉, reproducing the results
above such as

〈
V 3〉 = γ L2

12D

(
1 + 3γ L2

5D
+ 17γ 2L4

280D2 ,

)
(50)

confirming, in particular, the high accuracy of the leading order term in L , as 17/280 =
0.06071428571428571428 . . ..

4 Beyond Tree Level

Below dc = 2 the additional vertices parameterised by λ, κ , χ and ξ , Eqs. (19) and (20)
respectively, have to be taken into account. Because κ is the only vertex that has the same
number of incoming and outgoing legs, it is immediately clear that its presence can, and, in
fact, will contribute to the renormalisation of all other vertices, say

σ + σκ + σκκ + σκκκ + . . . , (51)

but in particular itself:

κ + κκ + κκκ + κκκκ + . . . . (52)

Among the vertices introduced in Sect. 3.3, namely τ , σ , λ , κ ,
χ and ξ , none has an outgoing activity leg if it does not have an incoming activity
leg, and all have at least as many outgoing substrate legs as they have incoming substrate
legs. Apart from κ , each vertex has either more outgoing substrate legs than incoming ones
or fewer outgoing activity legs than incoming ones. Combining them in any form will thus
never result in a diagram contributing to the renormalisation of κ , which has one leg of each
kind.

Combinations of other vertices gives rise to “cross-production”, say χ , , by λξ ,
, but none of these terms contains more than one loop without the involvement

of κ . As for the generation of higher order vertices, it is clear that the number of outgoing
substrate-legs (on the left) can never be decreased by combining vertices, because within
every vertex the number of outgoing substrate legs is at least that of incoming substrate legs.
In particular does not exist. A vertex like that, combined, say, with σ to form the
bubble , which renormalises the propagator, suggests the diffusive movement of
active particles is affected by the presence of substrate particles. This is, by definition of the
original problem, not the case.

Because no active particles are generated solely by a combination of substrate particles,
none of the vertices has more outgoing then incoming activity legs. Denoting the tree level
coupling of the proper vertex (with amputated legs)

�

[
m n
a b

]

=

a

....

m ....

b

...
.

n...
.

(53)

of the correlation function
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G

[
m n
a b

]

({k1, . . . ,km+n+a+b;ω1, . . . , ωm+n+a+b}; D, r, τ, σ, λ, κ, χ, ξ)

=
〈

φ(k1, ω1) . . . φ(km, ωm)
︸ ︷︷ ︸

m terms

ψ . . . ψ
︸ ︷︷ ︸
a terms

φ̃ . . . φ̃
︸ ︷︷ ︸
n terms

ψ̃ . . . ψ̃
︸ ︷︷ ︸
b terms

〉

(54)

by γ

[
m n
a b

]

, the topological conditions on the vertices can be summarised as a ≥ b, b ≤ 1,
n = 1, m ≤ 1, m + a ≥ 1, which means that there are in fact only four different types of
vertices, namely n = 1, b = 0, 1 and m = 0, 1, whereas a is hitherto undetermined. For
future reference, we note

τ = γ

[
0 1
1 0

]

σ = γ

[
1 1
1 0

]

(55a)

λ = γ

[
0 1
1 1

]

κ = γ

[
1 1
1 1

]

(55b)

χ = γ

[
0 1
2 1

]

ξ = γ

[
1 1
2 1

]

(55c)

Dimensional analysis gives
[
γ

[
m n
a b

]]
=
[
�

[
m n
a b

]]
= Ld(n+b−1)Ta−b−1Am−n+a−bBn−m .

Because diffusion is to be maintained, it follows that T = L2, yet, as indicated above, the
dimensions of A and B are to some extent a matter of choice. Leaving them undetermined

results in d(n+ b− 1)+ 2(a− b) ≤ 2 for �

[
m n
a b

]

to be relevant in d dimensions. Setting, on
the other hand, A = B = T−1 (see above) results in d(n+ b− 1) ≤ 2. As n = 1, this implies
(d − 2)b + 2a ≤ 2 and db ≤ 2, respectively. In both cases, the upper critical dimension for
a vertex with b ≥ 1 and thus a ≥ 1 to be relevant is dc = 2. On the other hand, no loop can
be formed if b = 0, so above d = 2 (where b = 1 is irrelevant) there are no one-particle

irreducibles contributing to any of the �

[
m n
a b

]

and so the set of couplings introduced above,
τ , σ , λ, κ , χ and ξ remains unchanged. As far as Sausage moments are concerned, λ, κ , χ
and ξ do not enter, as there is no vertex available to pair up the incoming substrate leg on
the right. The tree level results discussed in Sect. 3.5 therefore are the complete theory in
d > dc = 2.

Below dc = 2, the dimensional analysis depends on the choice one makes for A and B. If
they remain independent, then the only relevant vertices that are topologically possible are
those with a ≤ 1, removing χ and ξ from the problem. However, it is entirely consistent (and
onemay argue, even necessary) to assumeA = B = T−1, resulting in no constraint on a at all.
Not only are therefore vertices for all a relevant, what is worse, they are all generated as one-
particle irreducibles. For example, the reducible diagram contributing to

〈
v(2)
〉

at tree level, Sect. 3.5, possesses, even at one loop, two one-particle irreducible counterparts
in d < 2,

χ σ λ ξ

contributing to the corresponding proper vertex. Such diagrams exist for all a, so, in principle,
all these couplings have to be allowed for in the Liouvillian and all have to be renormalised
in their own right. The good news is, however, that the Z -factor of κ (see below) contains all
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624 S. Nekovar, G. Pruessner

infinities of all couplings exactly once, i.e. the renormalisation of all couplings can be related
to that of κ by a diagrammatic vertex identity, see Sect. 4.1.1.

4.1 Renormalisation

Without further ado, we will therefore carry on with renormalising κ only. As suggested in
Eq. (52), this can be done to all orders, in a geometric sum. The one and only relevant integral
is6

k − k′, ω − ω′

k′, ω′

= κ2
∫
d̄dk′d̄ω′ 1

−ıω′ + ε′
1

−ı(ω − ω′) + D(k − k′)2 + r

= κ2

(4π)d/2D

(
r + ε′ − ıω

D

)−ε/2

�
( ε

2

)
, (56)

where ε = 2− d and we have indicated the total momentum k (i.e. the sum of the momenta
delivered by the two incoming legs) and the total frequencyω going through it.7 This integral
has the remarkable property that it is independent of k, because of the k-independence of the
substrate propagator. While the latter conserves momentum in the bulk by virtue of δ̄(k+k′)
in Eq. (12b), its amplitude does not depend on k. Even if there were renormalisation of the
activity propagator it would therefore not affect its k-dependence, i.e. η = 0, whereas its ω

dependence may be affected, i.e. z �= 2 would be possible.
The expression ((r+ε′−ıω)/D)1/2 can be identified as an inverse length; it is the infrared

regularisation (or more precisely the normalisation point, R = 1, Eq. (74a)) that can, in
the present case, be implemented either by considering finite time (ω �= 0), spontaneous
extinction of activity (r > 0) or, notably, spontaneous extinction (evaporation) of substrate
particles (ε′ > 0). In order to extract exponents, it is replaced by the arbitrary inverse length
scale μ. We will return to the case μ = √−ıω/D in Sect. 4.2, e.g. Eq. (84). For the time
being, the normalisation point is

μ2 = r

D
(57)

with ε′ → 0, ω → 0.
The renormalisation conditions are then (see Eq. (55))

τR = �

[
0 1
1 0

]

({0, 0}) σR = �

[
1 1
1 0

]

({0, 0}) (58a)

λR = �

[
0 1
1 1

]

({0, 0}) κR = �

[
1 1
1 1

]

({0, 0}) (58b)

χR = �

[
0 1
2 1

]

({0, 0}) ξR = �

[
1 1
2 1

]

({0, 0}) (58c)

6 We have written explicitly κ vertices, including the amputated legs. At this stage it is unimportant which
coupling forms the loop, but this will change when we study infinite slabs in Sect. 4.3.
7 Here and in the following we obviously choose {ki , ωi } = {0, 0} in the renormalisation condition, i.e.

γ

[
m n
a b

]

R = �

[
m n
a b

]

({0, 0}).
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where {0, 0} indicates that the vertex is evaluated at vanishing momenta and frequencies.
Defining Z = κR/κ allows all renormalisation to be expressed in terms of Z , as detailed in
Sect. 4.1.1.

Starting with only one loop, the renormalisation of κ , Eq. (52), is therefore κR = κ −κ2W
with

W = �
(

ε
2

)

(4π)d/2D
μ−ε (59)

or κR = κZ with Z = 1 − κW . Introducing the dimensionless coupling g = κW/�(ε/2)
with gR = gZ gives Z = 1 − g�(ε/2), which may be approximated to one loop by
Z = 1− gR�(ε/2). Keeping, however, all loops in Eq. (52), this last expression is no longer
an approximation: if all terms in Eq. (52) are retained, Z becomes a geometric sum in g,

Z = 1 − κW + (κW )2 − · · · = 1

1 + κW
= 1

1 + g�(ε/2)
= 1 − gR�(ε/2) , (60)

incorporating all parquet diagrams [12]. The resulting β-function is βg(g) = dgR/d ln
μ|ggR = −εgR − κWβg and therefore

βg(g) = −εgR
1 + κW

= −εgRZ = −εgR (1 − gR�(ε/2)) . (61)

The last statement is exact to all orders; the non-trivial fixed point in ε > 0 is exactly
g∗
R = 1/�(ε/2) ≈ ε/2, which is when the Z -factor vanishes (as g diverges in small μ).

4.1.1 Ward-Takahashi and Vertex Identities

Different vertices and therefore the renormalisation of different couplings can be related to
each other byWard-Takahashi identities. They are usually constructed by considering global
symmetries [36], such as the invariance of the Liouvillian under [1]

φ → φ(1 + δ) φ̃ → φ̃(1 + δ)−1 (62)

ψ → ψ(1 + δ) ψ̃ → ψ̃(1 + δ)−1 , (63)

to be considered for small δ, which produces an identity on couplings involving an odd
number of fields,

(n − m + b − a)�

[
m n
a b

]

=
∫
dd xdt

(
−σ

∂

∂σ
+ λ

∂

∂λ
− ξ

∂

∂ξ

)
�

[
m n
a b

]

. (64)

The identities derived in the following are certainly consistent with Eq. (64), but derived
at diagrammatic level. To start with, we reiterate that Eq. (52) contains all contributions (and

to all orders) to �

[
1 1
1 1

]

, the renormalised vertex κ . Repeating for σ , , and λ, , the
diagrammatic, topological argument presented for κ after Eq. (52), it turns out that diagrams
contributing to their renormalisation are essentially identical to those contributing to κ , as
shown in Eq. (51). Using the same notation as in Eq. (58), we note that κR = κZ implies
σR = σ Z and λR = λZ , i.e.

λR = λ

κ
κR σR = σ

κ
κR . (65)

The renormalisation of the coupling τ breaks with that pattern as

τR = τ

(
1 + σλ

κτ
(Z − 1)

)
, (66)
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because the tree level contribution τ , Eq. (17), has higher order corrections such as
, which do not contain τ itself, but rather the combination λσ . However, at

bare level, σ = τ and λ = κ , so that in the present case

τR = τ

κ
κR . (67)

A different issue affects the renormalisation of χ and ξ . For example, the latter acquires
contributions from any of the diagrams shown in Eq. (52) by “growing an outgoing substrate
leg”, , on any of the κ vertices,

ξ + κξ + ξκ

+ κκξ + κξκ + ξκκ + . . . (68)

whereas contributions from , generated byσd/dr areUVfinite and therefore dropped.
Given that Eq. (68) are the only contributions to the renormalisation of ξ , it reads

ξR = 2ξ
dκR
dκ

− ξ
κR

κ
(69)

and correspondingly for the one-particle irreducible contributions to χR

χR = 2χ
dκR
dκ

− χ
κR

κ
, (70)

where we have used χ − ξλ/κ = 0. From Sect. 4.1, it is straight forward to show that

dκR
dκ

= Z2 (71)

and we can therefore summarise

τR = τ Z σR = σ Z (72a)

λR = λZ κR = κZ (72b)

χR = χ(2Z2 − Z) ξR = ξ(2Z2 − Z) (72c)

In d < 2, the only proper vertices �

[
n m
a b

]

to consider are those with n = 1, b ≤ 1, m ≤ 1

and arbitrary a. The renormalisation for all of them can be traced back to that of�

[
1 1
1 1

]

. It is a
matter of straight-forward algebra to demonstrate this explicitly. As these couplings play no
further rôle for the observables analysed henceforth, we spare the reader a detailed account.

4.2 Scaling

We are now in the position to determine the scaling of all couplings. For the time being, we
will focus solely, however, on calculating the first moment of the Sausage volume.

We have noted earlier (Sect. 4), that the governing non-linearity is κ and have already
introduced the corresponding dimensionless, renormalised coupling gR and found its fixed
point value. Following the standard procedure [27], we define the finite, dimensionless,
renormalised vertex functions

�

[
m n
a b

]

({k, ω}; D, r, τ, σ, λ, κ, χ, ξ)

= μ2−d(n+b−1)D�

[
m n
a b

]

R ({k, ω}; R, TR, sR, �R, gR, cR, xR;μ) , (73)
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where {k, ω} denotes the entire set of momenta and frequency arguments andμ is an arbitrary
inverse scale. In principle, there could be more bare couplings and there are certainly more
generated, at least in principle, see Sect. 4.1.1. The vertex functions can immediately be
related to their arguments via Eqs. (58) and (55):

R = r D−1μ−2 (74a)

TR = τ ZD−1μ−2 SR = σ ZD−1μ−2 (74b)

�R = λZD−1μ−ε(4π)d/2 gR = κZD−1μ−ε(4π)d/2 (74c)

cR = χ(2Z2 − Z)D−1μ−ε xR = ξ(2Z2 − Z)D−1μ−ε , (74d)

where the normalisation point is R = 1. Because

lim
gR→g∗

R

d

d lnμ
ln Z = ε,

Z scales in μ like Z ∝ με . The asymptotic solution (of the Callan–Symanzik equation)

z2−d(n+b−1)D

×�

[
m n
a b

]

R

({k, ω}; Rz−2, TRz−2+ε, sRz−2+ε, �∗
R, g∗

R, c∗
R, x∗

R;μz
)

= asymptotically constant in smallz (75)

can be combined with the dimensional analysis of the renormalised vertex function, which
gives

�

[
m n
a b

]

R ({k, ω}; R, TR, sR, �R, gR, cR, xR;μz)

= �

[
m n
a b

]

R

({
k
z
,

ω

z2

}
; R, TR, sR, �R, gR, cR, xR;μ

)
(76)

to give, using z2 = r and Eq. (73),

�

[
m n
a b

]

({k, ω}; D, r, τ, σ, λ, κ, χ, ξ)

= r1−
d
2 (n+b−1)�

[
m n
a b

] ({
k√
r
,
ω

r

}
; D, 1, τr− 2−ε

2 , σr− 2−ε
2 , λ, κ, χ, ξ

)
(77)

As far as scaling (but not amplitudes) is concerned, the tree level results apply to the right
hand side as its mass r is finite, i.e.

�

[
1 1
0 0

]

({0, 0}; D, r, τ, σ, λ, κ, χ, ξ) = r1 × 1 (78)

and

�

[
0 1
1 0

]

({0, 0}; D, r, τ, σ, λ, κ, χ, ξ) ∝ r1 × τr− 2−ε
2 (79)

so that following Eq. (31)

〈V 〉 = �

[
0 1
1 0

]

�

[
1 1
0 0

] ∝ τr−d/2 . (80)

If r−1 is interpreted as the observation time t , the result

〈V 〉 ∝ td/2 (81)
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x

V0
2

V0
2 points actually visited

Fig. 3 The volume of the Wiener Sausage in one dimension is the length covered by the Brownian particle
(the set of all points actually visited) plus the volume V0 of the sphere the Brownian particle is dragging
(indicated by the two rounded bumpers)

in d < 2 (and 〈V 〉 ∝ t in d > 2, Eq. (31)) recovers the earlier result in [2], including the
logarithmic corrections expected at the upper critical dimension. Eqs. (80) and (81) are the
first two key results for the field theory of the Wiener Sausage reported in the present work.
We will now further explore the results and their implications.

In d = 1, it is an exercise in complex analysis (albeit lengthy) to determine the amplitude
of the first moment. To make contact with established results in the literature, we study the
sausage in one dimension after finite time t . Following the tree level results Eqs. (27), (30)
and (31) we now have

〈V 〉 (t) =
∫
dx1 =

∫
d̄ω

1

−ıω + ε′ τ Z
1

−ıω + r
, (82)

where the space integral is taken by setting k = 0 and the driving has been evaluated to
d(0) = 1, see Eq. (30). The Z -factor is given by Eq. (60), but μ should be replaced by√−ıω/D, as we will consider the double limit r, ε′ → 0, but at finite ω, which is the total
frequency flowing through the diagram, Eq. (56), so for d = 1 = ε

Z = 1

1 + κ
√
ı/(4Dω)

(83)

which for small ω and therefore large t (which we are interested in) is dominated by
2
√−ı Dω)/κ . Keeping only that term, the integral in Eq. (82) can be performed and gives

〈V 〉 (t) = τ

κ
4

√
t D

π
. (84)

On the lattice, i.e. before taking the continuum limit, sites have no volume and the ratio τ/κ

is just the carrying capacity n0. Setting that to unity one recovers, up to the additive volume
mentioned above, see Fig. 3, the result in the continuum by Berezhkovskii, Makhnovskii
and Suris [2, Eq. (10)] which coincides with the asymptote on the lattice [20,29]. Given the
difference in the process and the course a field-theoretic treatment taken, in particular the
continuum limit, one might argue that this is a mere coincidence. In fact, attempting a similar
calculation for the amplitude of the second moment does not suggest that it can be recovered.

As for higher moments of the volume, in addition to the two diagrams mentioned in
Eq. (32), there is now also

�

[
0 1
2 0

]
(85)
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and �

[
0 1
2 0

]

= χσ(3Z − 2Z2 − 1)/κ . However, as above, the second moment is dominated
in small r by the second, tree-like term in Eq. (32), which gives to leading order

〈
V 2〉 ∝ 2

τ Zσ Z

r2
∝ 2τσr−d , (86)

as Z ∝ r ε/2. Higher order moments follow that pattern 〈Vm〉 ∝ Zm , and as dimensional
consistency is maintained by the dimensionless product r Dd/εκ−2/ε entering Z , Eqs. (57),
(59) and (60),

Z = 1

1 + �
(

ε
2

)
(4π)−d/2(r Dd/εκ−2/ε)−ε/2

the general result is

〈
Vm 〉 ∝ m!τσm−1r−m

(
r Dd/ε

κ2/ε

)εm/2

= m!τσm−1r−md/2
(
Dd/2

κ

)m

, (87)

for d < 2 with r=̂1/t . Compared to Eq. (40) the diffusion constant is present again, as
the coverage depends not only on the survival time (determined by r ), but also on the area
explored during that time.

4.3 Infinite Slab

In the following, we study the renormalisation of the present field theory on an infinite slab,
i.e. a lattice that is finite and open (Dirichlet boundary conditions) along one axis and infinite
in d̃ = d−1 orthogonal dimensions. The same setup was considered at tree level in Sect. 3.6.
Again, there are no diagrammatic changes, yet the renormalisation procedure itself requires
closer attention.

Before carrying out the integration of the relevant loop, Eq. (56), we make a mild adjust-
ment with respect to the set of orthogonal functions that we use for the substrate and the
activity. While the latter is subject to Dirichlet boundary conditions in the present case, natu-
rally leading to the set of sin(qnz) eigenfunctions introduced above, the former is not afflicted
with such a constraint, i.e. in principle one may choose whatever set is most convenient8 and
suitable. As general as that statement is, there are, however, some subtle implications; to start
with, whatever representation is used in the harmonic part of the Hamiltonian must result
in the integrand factorising, so that the path integral over the Gaussian can be performed.
In the presence of transmutation, that couples the choice of the set for one species to that
for the other. With a suitable choice, all propagators fulfil orthogonality relations and there-
fore conserve momentum, i.e. they are proportional to δn,m (in case of the basis sin(qnz)),
δn,−m (basis exp (ıknz)) and/or δ(k + k′) (basis exp (ıkz)), which is obviously a welcome
simplification of the diagrams and their corresponding integrals and sums.

This constraint canbe relaxedby considering transmutationonly perturbatively, i.e. remov-
ing it from the harmonic part. However, if different eigenfunctions are chosen for different
species, transmutation vertices are no longer momentum conserving; if we choose, as we
will below, sin(qnz) for the basis of the activity and exp (ıkmz), then the proper vertex of τ

comes with ∫ L

0
dz eıkn z sin(qmz) = L�n,m (88)

8 The existence of a 0-mode as the space integral is one feature to consider.
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and a summation of the n and m, connecting from the sides, Eq. (17), i.e.

τ

�mnp =̂ 2

L

∞∑

n=1

1

L

∞∑

m=−∞

∫
d̄d−1k d̄ω′′

×
〈
ψp(k, ω)ψ̃n(k′′, ω′′)

〉
τ L�n,m

〈
φm(k′′, ω′′)φ̃�(k′, ω′)

〉

= δ̄(k + k′)δ̄(ω + ω′)
−ıω + ε′ τ L�p,�

1

−ıω + Dk2 + Dq2� + r
(89)

where the m ∈ Z refers to the index of the eigenfunction used for the activity and n ∈ N+
to the eigenfunction of the substrate field. The fact that �p,l has off-diagonal elements
indicates that momentum-conservation is broken. Obviously, in the presence of boundaries,
translational invariance is always broken, but that does not necessarily result in a lack of
momentum conservation in bare propagators, as it does here. However, it always results in
a lack of momentum conservation in vertices with more than two legs, as only exponential
eigenfunctions have the property that their products are eigenfunctions as well. If propagators
renormalise through these vertices, they will eventually inherit the non-conservation, i.e.
allowing them to have off-diagonal elements from the start will become a necessity in the
process of renormalisation.

While the transmutation vertex introduced above may appear unnecessarily messy, it does
not renormalise and does not require much further attention. Rewriting the four-point vertex
κ in terms of the two different sets of eigenfunctions, however, proves beneficial. Introducing

∫ L

0
dz sin(qnz)e

ıkm zeıkk z sin(q�z) = LUn,m+k,� (90)

means that the relevant loop is

�n

m2 m1

k−k′, ω−ω′, n′

k′, ω′,m′

= κ2 2

L2

∞∑

m′=−∞

∞∑

n′=1

∫
d̄d−1k′d̄ω′ L2Un,m2−m′,n′Un′,m′+m1,�

× 1

−ıω′ + ε′
1

−ı(ω − ω′) + D(k − k′)2 + Dq2n′ + r
. (91)

Contrary to Eq. (56), it is now of great importance to know with which couplings (here
two κ couplings) this loop was formed, because different couplings require different
“tensors”, like Un,m+k,� in the present case. For example, the coupling σ comes with∫ L
0 dz sin(qnz) exp (ıkmz) sin(q�z). The actual technical difficulty to overcome, however,
is the possible renormalisation of Un,m,� itself, as there is no guarantee that the right hand
side of Eq. (91) is proportional to Un,m,�. In other words, the sum Eq. (52) may be of the
form κ(LUn,m+k,� + κWLU ′

n,m+k,� + κ2W 2LU ′′
n,m+k,� + · · · ), with U ′

n,m+k,� �= U ′
n,m+k,�

etc., rather than LUn,m+k,�κ(1+κW +κ2W 2 +· · · ), which would spoil the renormalisation
process.

Carrying on with that in mind, the integrals over ω′ and k′ are identical to the ones carried
out in Eq. (56) and therefore straight-forward. The summation over m′ is equally simple,
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because that index features only in Un,m,� and Eq. (9a) implies

1

L

∑

m′
L2Un,m2−m′,n′Un′,m′+m1,�

=
∫ L

0
dz sin(qnz)e

ıkm2 zeıkm1 z sin(q�z) sin
2(qn′ z) . (92)

Using that identity in Eq. (91) allows us to write

= κ2

(4πD)
d−1
2

�

(
3 − d

2

)

×
∫ L

0
dz sin(qnz)e

ıkm2 zeıkm1 z sin(q�z)

× 2

L

∞∑

n′=1

(
Dq2n′ + r + ε′ − ıω

) d−3
2 sin2(qn′ z) . (93)

It is only that last sum that requires further investigation. In particular, if we were able
to demonstrate that it is essentially independent of z, then the preceding integral becomes
LUn,m1+m2,� and this contribution to the renormalisation of κUn,m1+m2,� is proportional to
Un,m1+m2,�.

The remaining summation in Eq. (93) can be performed [35] to leading order in the small9

dimensionless quantity ρ = L2
(
r + ε′ − ıω

)
/(π2D),

∞∑

n′=1

(n′2 + ρ)
d−3
2 sin2(qn′ z)

= 1

2
ζ(3 − d) − 1

4

(
Li3−d

(
e
2π ı z
L

)
+ Li3−d

(
e− 2π ı z

L

))
+ O(ρ)

(94)

with ζ(3 − d) = ζ(1 + ε) = (1/ε) + O(1), the Riemann ζ -function, and Lis(z) the poly-
logarithm with [35]

Li1+ε

(
e
2π ı z
L

)
+ Li1+ε

(
e− 2π ı z

L

)
= − ln(4 sin2(zπ/L)) + O(ε) , (95)

so that the leading order behaviour in ε of Eq. (93) is in fact

= 2κ2LUn,m1+m2,�

(4π)d/2D

(
L

π

)ε

ζ(3 − d) + O(ε0, ρ) (96)

to leading order in ε, where we have used �((3 − d)/2) = √
π + O(ε), anticipating no

singularities around d = 3.
Approximating 2ζ(3 − d) ≈ �(ε/2) the Z -factor for the renormalisation of κ in a sys-

tem with open boundaries in one dimension is therefore unchanged, cf. Eqs. (56) and (96),
provided μ = π/L . Of course, that result holds only as long as ρ � 1 is small enough, in
particular r � D/L2, i.e. sudden death by extinction is rare compared to death by reaching
the boundary. In the case of more frequent deaths by extinction, or, equivalently, taking the

9 For ρ large,
∑∞

n′=1(n
′2 + ρ)

d−3
2 ≈ ρ

d−2
2

√
π�(ε/2)/�((3 − d)/2), the open system recovers the results

in the bulk, Eq. (56).
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thermodynamic limit in the finite, open dimension, extinction is expected to take over even-
tually and the bulk results above apply, Sect. 4.2. Although there is an effective change of
mechanism (bulk extinction versus reaching the edge), there is no dimensional crossover.

The renormalisation of τ involves the κ-loops characterised above, as well as σ and λ,
which, in principle, have to be considered separately; after all, the loop they form has a
structure, , that deviates from the structure studied above, , Eq. (96).

In principle, there is (again) no guarantee that the diagrams contributing to the renormalisation
of τ all have the same dependence on the external indices, i.e. whether they are all proportional
to �n,m , Eq. (88). By definition, however, Eq. (90)

2

L

∞∑

n=1,3,...

LUn,m,�

2

qn
= L�m,l , (97)

i.e. one leg is removed by evaluating at m1 = 0 (see the diagram in Eq. (91)) and one by
performing the summation. Applying this operation to all diagrams appearing in Eq. (52)
produces all diagrams renormalising τ . Provided that σ = τ and λ = κ , the renormalisation
of τ is therefore linear in that of κ and Eq. (67) remains valid, i.e. the renormalisation
procedure outlined above for τ and κ remains intact.

In principle, further attention is required for the renormalisation of higher order vertices,
but as long as only (external) substrate legs are attached, , their indexmn can be absorbed
into the sum of the indices of the substrate legs present: Just like any external leg can take up
momentum or frequency, such new legs shift the index used in the internal summation such
as the one in Eq. (91), but that does not affect the renormalisation provided that it is done
at vanishing external momenta, so that the external momenta do not move the poles of the
propagators involved.

We conclude that all diagrammatic vertex identities of Sect. 4.1.1 remain unchanged. As
for the scaling of the Sausage volume, comparing Eqs. (96) to (56) and identifying μ = π/L
or r = π2D/L2 means that now

〈
Vm 〉 ∝ m!τσm−1

(
L

π

)md

κ−m (98)

for d < 2, compared to Eq. (87). Noticeably, compared to the tree level Eq. (48), the diffusion
constant is absent—in dimensions d < 2 each point is visited infinitely often, regardless of
the diffusion constant. Even though the deposition in the present setup is Poissonian, what
determines the volume of the sausage is not the time it takes the active particles to drop off
the lattice, ∝ L2/D, but the competition between deposition parameterised by τ and σ and
its inhibition by κ .

The scaling 〈Vm〉 ∝ Lmd for d < 2 suggests that the Wiener Sausage is a “compact”
d dimensional object in dimensions d < 2, whereas 〈Vm〉 ∝ L2m at tree level, d > 2,
Sect. 3.6. The Wiener Sausage may therefore be seen as a two-dimensional object projected
into a d-dimensional space.

The obvious interpretation of r = π2D/L2 in Eq. (98) is that of π/L being the lowest
mode in the denominator of the propagator Eq. (41a) in the presence of open boundaries
compared to (effectively)

√
r/D at k = 0 in Eq. (12a).

It is interesting to determine the amplitude of the scaling in L with one open boundary,
not least in order to determine whether the finding of Eq. (84) being identical to the result
known in the literature is a mere coincidence. Technically, the route to take differs from
Eq. (42), because in Sect. 3.6 both substrate as well as activity were represented in the sin
eigensystem. However, integrating over L (for uniform driving and in order to determine
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the volume) amounts to evaluating the matrix �p,� in Eq. (89) at p = 0 and in that case
L�p,� = 2/q� for � odd and 0 otherwise, which reproduces Eq. (42) at r = 0, with τ replaced
by τR:

〈V 〉 = 2

L

∑

n odd

2

qn

τR

Dq2n

2

Lqn
= 8τR

π4D
L2
∑

n odd

1

n4
= τR

12D
L2 . (99)

To determine τR = τ Z we replaceW in Eqs. (56), (59) and (60) by 2(L/π)εζ(3−d)�((3−
d)/2)/(

√
πD(4π)d/2), according to Eq. (96), so that asymptotically in large L

〈V 〉 = π(5−d)/22dτ

24ζ(3 − d)�
( 3−d

2

)
κ
Ld (100)

which for d = 1 reproduces the exact result (for uniform driving)

〈V 〉 = τ

2κ
L , (101)

which is easily confirmed from first principles. However, repeating the calculation for driving
at the centre, x∗ = L/2, gives dn = (−1)(n−1)/2 for n odd and 0 otherwise, so that in d = 1
after some algebra

〈V 〉 (x∗ = L/2) = 3τ

4κ
L , (102)

which is somewhat off the exact amplitude of ln(2) = 0.69314718 . . . compared to 3/4. This
is apparently due to the renormalisation ofUn,m,� in Eq. (96) being correct only up toO(ε0),
but that problem may require further investigation.

4.4 Infinite Cylinder: Crossover

At tree level, Sect. 3.6, it makes no technical difference to study the Sausage on a finite
cylinder or an infinite slab, because the relevant observables require integration in space
which amounts to evaluating at kn = 0 or k = 0 resulting in the same expression, e.g.
Eq. (31) in both cases.

When including interaction, however, it does matter whether the lattice studied is infinite
in d−1 dimensions or periodically closed. Clearly a periodically closed axis has a 0-mode and
does therefore not impose an effective cutoff in k. In that respect, periodic closure is identical
to infinite extent, while physically it is not (just like at tree level). One may therefore wonder
how periodic closure differs from infinite extent mathematically: How does a finite cylinder
differ from an infinite strip? As a first step to assess the effect, we replace the open dimension
(axis) by a periodically closed one. One may regard this as an unfortunate kludge—after all,
what we are really interested in is a system that is finite in two dimensions, namely open in
one and periodically closed in the other. However, if the aim is to study finite size scaling in
2 − ε dimensions, then two finite dimensions are already ε too many.

However, the setup of an infinitely long (in d−1 dimensions) periodically closed tubewith
circumference L does address the problem in question, namely the difference of k = 0 in an
infinitely extended axis versus kn = 0 in a finite but periodic closed dimension. In addition,
an infinite cylinder compared to an infinite strip has translational invariance restored in the
periodic dimension, and therefore the vertices even for a finite systemdramatically simplified.

The physics of a d-dimensional system with one axis periodically closed is quite clear:
At early times, or, equivalently, large extinction rates r � D/L2, the periodic closure is
invisible and so the scaling is that of a d-dimensional (infinite) bulk system as described in
Sect. 4.2, 〈Vm〉 ∝ r−md/2. But when the walker starts to re-encounter, due to the periodic
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closure, sites visited earlier, this “dimension will saturate” and so for very small r , it will
display the scaling of an infinite d − 1-dimensional lattice.

Just like for the setup in Sect. 3.5, it is most convenient to study the system for small but
finite extinction rate r . The integrals to be performed are identical to Eq. (91), but both sums
have a pre-factor of 1/L , Eq. (8), (rather than one having 1/L and the other 2/L , Eq. (5))
and LUn,m,l has the much simpler Kronecker form

∫ L

0
dz eıkn zeıkm zeıkk zeık�z = LŨn,m+k,� = Lδn+m+k+�,0 . (103)

Most importantly the expression corresponding to Eq. (92) sees sin2(qn′ z) replaced by unity,
because the bare propagator corresponding to Eq. (41a) carries a factor Lδn+m,0, Eq. (7),
rather than Lδn,m/2, Eq. (4), which results in n′ of Ũn,m2−m′,n′ to pair up with −n′ in
Ũ−n′,m′+m1,�. For easier comparison, we will keep LŨn,m+k,� in the following. We thus have
(see Eq. (93))

= κ2LŨn,m+k,�

(4πD)
d−1
2

�

(
3 − d

2

)
1

L

∞∑

n′=−∞

(
Dk2n′ + r + ε′ − ıω

) d−3
2 . (104)

Comparing Eqs. (104) to (93), (94) and (96) and re-arranging terms gives for small ρ̃ =
L2
(
r + ε′ − ıω

)
/(4π2D)

= 2κ2LŨn,m1+m2,�

(4π)d/2D
Lε�

(
3 − d

2

)

×
{

(2π)−ε ζ(3 − d)√
π

+ √
π

(
r + ε′ − ıω

D
L2
) d−3

2
}

+ O(ε0, ρ̃) (105)

and for large ρ̃

= κ2LŨn,m1+m2,�

(4π)d/2D

(
r + ε′ − ıω

D

)− ε
2

�
( ε

2

)
+ O(ε0, ρ̃

d−3
2 ) (106)

using

∞∑

n′=−∞
(n′2 + ρ̃)

d−3
2 = ρ̃

d−3
2 + 2ζ(3 − d) + O(ρ̃) for ρ̃ � 1 (107a)

∞∑

n′=−∞
(n′2 + ρ̃)

d−3
2 = ρ̃

d−2
2

√
π�
( 2−d

2

)

�
( 3−d

2

) + O
(
ρ̃

d−3
2

)
for ρ̃ � 1. (107b)

The asymptotics above are responsible for all the interesting features to be discussed in the
following. Firstly, intuition seems to play tricks: One may think that for small ρ̃ in the sum on
the left of Eq. (107), it will always be large compared to n′ = 0 and always be small compared
to n′ → ∞. In fact, one might think there is no difference at all between large or small ρ̃

and be tempted to approximate the sum immediately by an integral,
∑

(n′2 + ρ̃)(d−3)/2 ≈
∫∞
−∞dn′ (n′2 + ρ̃)(d−3)/2 = ρ̃

d−2
2

√
π�
( 2−d

2

)
/�
( 3−d

2

)
. That, however, produces only the

second line, Eq. (107b). The crucial difference is that in a sum each summand actually
contributes, whereas in an integral the integrand is weighted by the integration mesh. So, the
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summand (n′2 + ρ̃)(d−3)/2 has to be evaluated for n′ = 0, producing ρ̃
d−3
2 in Eq. (107a),

which dominates the sum for d < 2 (even d < 3, but the series does not converge for 2 < d ,
and, in fact, is not needed as no IR divergences appear in d > 2) and ρ̃ → 0. The remaining
terms can actually be evaluated for ρ̃ = 0, producing 2ζ(3 − d). The integral, which the

(Riemann) sum converges to for large ρ̃, on the other hand, is strictly proportional to ρ̃
d−2
2

and therefore much less divergent than then sum for small ρ̃ → 0 and d < 2.
Of the two regimes ρ̃ � 1 and ρ̃ � 1 the former is more easily analysed. Setting

ε′ − ıω = 0 for the time being, we notice that ρ̃ ∝ L2r suggests, somewhat counter-
intuitively, that large r , which shortens the lifetime of the walker, has the same effect as
large L , which prolongs the time it takes the walker to explore the system. Both effects are,
however, of the same nature: They prevent the walker from “feeling” the periodicity of the
system. In that case, the walker displays bulk behaviour and in fact, Eq. (106) is the same as
Eq. (56).

The other regime, ρ̃ � 1 is richer. At d < 2 and fixed L , Eq. (105) displays a crossover
between the two additive terms on the right hand side. Stretching the expansion (107a) beyond
its stated limits, for intermediate values of r or L , ρ̃ ≈ 1, the first term on the right hand side
of Eq. (105) dominates and the scaling behaviour is that of an open infinite slab of linear
extent L , Eq. (96). This is because at moderately large r (or, equally, short times t), the
walker is not able to fully explore the infinitely extended directions. But rather than “falling
off” as in the system with open boundaries, it starts crossing its own path due to the periodic
boundary conditions, at which point the scaling like a d-dimensional bulk lattice (ρ̃ � 1)
ceases and turns into that of a d-dimensional open one (ρ̃ ≈ 1). The crossover can also be
seen in Eq. (107a), which for d < 2 is dominated by 2ζ(3 − d) for large ρ̃ and by ρ(d−3)/2

for small ρ̃.
As r gets even smaller (or t increases), ρ̃ → 0, the scaling is dominated by the infinite

dimensions, of which there are d̃ = d − 1, i.e. the scaling is that of a bulk system with
d̃ dimensions as discussed in Sect. 4.1, in particular Eq. (56). In this setting, the walker
explores an infinitely long, thin cylinder, which has effectively degenerated into an infinitely
long line. While the (comparatively) small circumference of the cylinder remains accessible
this is fully explored very quickly compared to the progress in the infinite directions.

To emphasise the scaling of the last two regimes, one can re-write Eq. (105) as

= 2κ2LŨn,m1+m2,�

(4π)d/2D

�
( 1+ε

2

)

√
π

(
L

2π

)ε

ζ(1 + ε)

+κ2LŨn,m1+m2,�

(4π)d̃/2LD

(
r + ε′ − ıω

D

)−ε̃/2

�

(
ε̃

2

)
+ O(ε0, ρ̃) , (108)

with ε̃ = 1+ ε = 3− d , d̃ = d − 1. Here, the first term displays the behaviour of the infinite
slab discussed above (Sect. 4.3, Eq. (96), ζ(3 − d) ∝ 1/ε, but L/π there and L/(2π) here)
and the second term that of a bulk-systemwith d̃ dimensions, Eq. (56); the infrared singularity
(r +ε′ − ıω)−ε̃/2 is in fact accompanied by the corresponding ultraviolet singularity �(ε̃/2),
exactly as if the space dimension was reduced from d to d̃ = d − 1.

The second term also reveals an additional factor 1/L compared to (56).10 This expression
determines the factorW , which enters the Z -factor inversely, Z ∝ Lr ε̃/2, Eq. (60), i.e. in the
present setting, the Sausage volume scales like (τ/r)Lr ε̃/2 = τ Lr−d̃/2. The scaling in t is

10 The factor L in front of Ũn,m1+m2,� should be regarded as part of the latter, as the tree level obviously comes

with the same pre-factor, see Eq. (103). Dimensional consistency is maintained by ((r + ε′ − ıω)/D)−ε̃/2,
which has dimension L1+ε .
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found by replacing r by 1/t , or more precisely by ω and Fourier transforming according to
Eq. (82), which results in the scaling 〈V 〉 ∝ Lt1−ε̃/2 = Ltd̃/2.

5 Summary and Discussion

Because the basic process analysed above is very well understood and has a long-standing
history [2,9,14–16,23,24,26,30,32], this work may add not so much to the understanding
of the process itself, was it not for a field-theoretic re-formulation, which is particularly
flexible and elegant. The price is a process that ultimately differs from the original model.
In hindsight, the agreement of the original Wiener Sausage problem with the process used
here to formulate the problem field-theoretically deserves further scrutiny. In the following,
we first summarise our findings above with respect to the original Wiener Sausage problem,
before discussing in further detail the field-theoretic insights.

5.1 Summary of Results in Relation to the Original Wiener Sausage

The original Wiener Sausage problem is concerned with the volume traced out by a finite
sphere attached to a Brownian particle. In the present analysis, this has been replaced by a
Brownian particle attempting to spawn immobile offspring at Poissonian rate σ . The attempt
fails if such immobile particles are present already. On the lattice, this process amounts to a
variant of the number of distinct sites visited [29].

Above, the field-theoretic treatment has been carried out perturbatively to one loop for
dimensions d < 2 = dc, but it turns out that there are no higher order loops to be considered.
In any dimension, by construction and as a matter of universality, the large time and space
asymptotes of the original Wiener Sausage, the process on the lattice and the field theory are
expected to coincide at least as far as exponents are concerned.

The tree level of the field theory describes the phenomenon without interaction, i.e. ignor-
ing returns. The resulting observables are the asymptotes of the Wiener Sausage volume in
dimensions above d = 2. The moments found in the bulk, Eqs. (31), (35), (38), (39) and gen-
erally (40), 〈Vm〉 ∝ m!τσm−1r−m , coincide with those from the exact moment generating
function Eq. (36) of the process ignoring return, obtained by probabilistic considerations.

In the infinite slab, the field theory still produces exact results (of the process ignoring
return), such as Eqs. (42) and (46), although highermoments are tedious to calculate in closed
form, Eq. (47). Again, they are easily verified using generating functions, such as Eq. (49),
which also confirms the general form Eq. (48), 〈Vm〉 ∝ τσm−1L2mD−m , determined field-
theoretically.

Below two dimensions, infrared divergences occur in the perturbation theory, which need
to be controlled by a finite extinction rate r (or ε′). It turns out that all orders can be dealt
with at once, because “parquet diagrams” [12] can be summed over in a geometric (Dyson)
sum, such as Eq. (52). We can therefore expect exact universal exponents of asymptotes,
whereas amplitudes are generally non-universal and can be affected by field-theoretically
irrelevant terms. In the bulk, the asymptotes Eqs. (80), (81), (86) and generally (87),
〈Vm〉 ∝ m!τσm−1r−md/2(Dd/2/κ)m , reproduce the (leading order) exponents as known
in the literature [2]. In one dimension, the first moment of the volume, Eq. (84), reproduces
the asymptote (in large t) in the continuum [2] and on the lattice [20,29]. Even the amplitude
is reproduced correctly.
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The bulk calculations can be modified to apply to the infinite slab, producing Eq. (98),
〈Vm〉 ∝ m!τσm−1(L/π)mdκ−m . However, the renormalisation in this case is correct only
to leading order in ε, as terms of order ε0, such as Eq. (95), were omitted (whereas in the
bulk, the Z -factor was exact, Eqs. (83) or (60)). In one dimension, i.e. when the walker
can explore only a finite interval, the amplitude of the first moment for uniformly distributed
initial starting points, Eq. (100) at d = 1, coincides with the exact result, Eq. (101). However,
placing the particle initially at the centre results in an amplitude, (102), that differs from the
exact result.

Unless one is prepared to allow for a space-dependent κ (whose space dependence is in
fact irrelevant in the field-theoretic sense) as suggested in Eq. (93) for the infinite slab, one
cannot expect the resulting amplitudes to recover the exact results. That Eq. (101) does so
nevertheless, may be explained by the “averaging effect” of the uniform driving, given that

∫ L

0
dz
(
Li1+ε

(
e
2π ı z
L

)
+ Li1+ε

(
e− 2π ı z

L

))
= 0 ,

see (94).
As alluded to above, the field-theoretic description of the Wiener Sausage is very ele-

gant, not least because the diagrams have an immediate interpretation. For example,
corresponds to a substrate particle deposited while the active particle is propagating. Corre-
spondingly, is the suppression of a deposition as the active particle encounters
an earlier deposition—the active particle returns to a place it has been before. All loops can

therefore be contracted along the wavy line, , to produce a trajectory, say or more

strikingly just , illustrating that the loop integrals calculated above, in fact capture the
probability of a walker to return:W ∝ ω−ε/2, Eq. (59), which in the time domain gives t−d/2.

5.2 Original Motivation

The present study was motivated by a number of “technicalities” which were encountered by
one of us during the study of a more complicated field theory. The first issue, as mentioned in
the introduction, was the “fermionic” or excluded-volume interaction. In a first step, that was
generalised to an arbitrary carrying capacity n0, whereby the deposition rate of immobile
offspring varies smoothly in the occupation number until the carrying capacity is reached. It
was argued above, Fig. 2, that the constraint to a finite but large carrying capacity n0, which
may be conceived as less brutal than setting n0 = 1, can be understood as precisely the latter
constraint, but on a more complicated lattice.

Even though the field theorywas constructed in a straight-forward fashion, the perturbative
implementation of the constraint, namely by effectively discounting depositions that should
not have happened in the first place, make it look like a minor miracle that it produces the
correct scaling (and even the correct amplitudes in some cases). We conclude that the present
approach is perfectly suitable to implement excluded volume constraints.

It is interesting to vary n0 in the expressions obtained for the volume moments. At first it
may not be obvious that, for example, the first volume moments in one dimension, Eqs. (84)
and (101), are linear in n0, because κ = τ/n0, Eq. (22). Given that κ enters the mth moment
〈Vm〉 as κ−m , Eqs. (87) and (98), the carrying capacity therefore enters through κ = γ /n0
as nm0 . Even though the carrying capacity enters smoothly into the deposition rate (or, equiv-
alently, the suppression of the deposition), in dimensions d < 2 each site is visited infinitely
often and is therefore “filled up to the maximum” with offspring particles, as if the carrying
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capacity was a hard cutoff (i.e. as if the deposition rate were constant until the occupation
reaches the carrying capacity). The volume of each sausage therefore increases by a factor
n0 in dimensions d < 2 and is independent of it (as κ does not enter) in d > 2.

The second issue to be investigatedwas the presence of openboundaries. This is, obviously,
not a new problem as far as field theory is concerned in general, but in the present case
being able to change boundary conditions exploits the flexibility of the field-theoretical re-
formulation of the Wiener Sausage and allows us to probe results in a very instructive way.

It is often said that translational invariance corresponds to momentum conservation in
k-space, but the present study highlights some subtleties. As far as bare propagators are con-
cerned, open, periodic, or, in fact, reflecting boundary conditions all allow it to bewrittenwith
a Kronecker-δ function. In that sense, bare propagators do not lose momentum. Momentum,
however, is generally not conserved in vertices, i.e. vertices with more than two legs do not
come with a simple δn+m+�,0, but rather in a form such as Eqs. (10c) or (90).

These more complicated expressions are present even at tree level, Eq. (46). This touches
on an interesting feature, namely that non-linearities are present even in dimensions above
the upper critical dimension—they have to, as otherwise the tree level lacks a mechanism by
which immobile offspring are deposited.

Below the upper critical dimension, the lack of momentum conservation has three major
consequences: Firstly, each vertex comes with a summation and so a loop formed of two
vertices, Eq. (91), requires not only one summation “around the loop” but a second one
accounting for another index, which is no longer fixed by momentum conservation. This is a
technicality, but one that requires more and potentially serious computation. Secondly, and
more seriously, the very structure of the vertex might change. For example, at bare level κ

comes with a factor LUn,m+k,�, but that Un,m+k,� might change under renormalisation.
Finally, the third and probably most challenging consequence is the loss of momentum

conservation in the propagator. While a lack of translational invariance may not be a problem
at bare level, the presence of non-momentum conserving vertices can render the propagators
themselves non-momentum conserving—provided the propagators renormalise at all (see
the discussion after Eq. (89)), which they do not in the present case, as far as the two shown
in Eq. (12a) are concerned. However, parameterised by τ has every right to be called
a propagator and it does renormalise. Luckily, however, it never features within loops, so the
complications arising from its new structure can be handled within observables and does not
spoil the renormalisation process itself.

A consequence of the Dirichlet boundary conditions is the existence of a lowest, non-
vanishing mode, q1 = π/L , Eq. (98), which, in fact, turns out to play the rôle of the effective
mass—just like the minimum of the inverse propagator, (−ıω + Dk2 + r), the “gap”, is r
in the bulk, it is Dq21 + r in the presence of Dirichlet boundary conditions, and thus does
not vanish even when r = 0. This is a nice narrative, which is challenged, however, when
periodic boundary conditions are applied. At tree level, when the interaction is switched
off, periodic boundaries cannot be distinguished from an infinite system, and so we would
evaluate at tree level an infinite and a periodic system both at k = 0 and kn = 0 respectively,
producing exactly the same expectation (for exactly the right reason).

The situation is different beyond tree level. Periodic or open, the system is finite. However,
periodic boundaries do not drain active particles, so the lowestwave number vanishes, kn = 0.
To control the infrared (in the infinite directions), a finite extinction rate r is necessary, which
effectively competes with the system size L via ρ̃ ∝ L2r/D, Eqs. (105) and (106). If ρ̃

is large, bulk behaviour ∝ ρ̃−ε/2 is recovered, Eq. (106), as is the case in the open system
(see footnote 9 before Eq. (94)). For moderately small values, ζ(3 − d) ∝ 1/ε dominates,
Eq. (107a), a signature of a d-dimensional system with open boundaries, Eq. (96). In that
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case, scaling amplitudes are in fact ∝ Lε , Eq. (108). However, the presence of the 0-mode
allows for a different asymptote as ρ̃ is lowered further, the bulk-like term governing the
d − 1 = d̃ infinite dimensions takes over, ∝ L−1((r + ε′ − ıω)/D)−ε̃/2. It is the appearance
of that term and only that term which distinguishes periodic from open boundary conditions.

So, the narrative of “lowest wave number corresponds to mass” is essentially correct. In
open systems, it dominates for all small masses. In periodic systems, the scaling of the lowest
non-zero mode competes with that of a d − 1-dimensional bulk system due to the presence
of a 0-mode in the periodic dimension, which asymptotically drops out.

The third point that was to be addressed in the present work were the special properties
of a propagator of an immobile species. The fact that the propagator is, apart from δ(k+k′),
Eq. (12b), independent of the momentum is physically relevant as the particles deposited
stay where they have been deposited and so the walker has to truly return to a previous spot
in order to interact. Also, deposited particles are not themselves subject to any boundary
conditions—this is the reason for the ambiguity of the eigenfunctions that can be used for
the fields of the substrate particles. If deposited particles were to “fall off” the lattice, the
volume of the sausage on a finite lattice cannot be determined by taking the ω → 0 limit.

It is interesting to see what happens to the crucial integral Eq. (56) when the immobile
propagator is changed to (−ıω + νk2 + ε′)−1:

κ2
∫
d̄dk′d̄ω′ 1

−ıω′ + νk2 + ε′
1

−ı(ω − ω′) + D(k − k′)2 + r

= κ2

(4π)d/2(D + ν)

(
r + ε′ − ıω + Dν

D+ν
k2

D + ν

)−ε/2

�
( ε

2

)
, (109)

which at external momentum k = 0 is Eq. (56) with D replaced by D + ν. The integral
thus remains essentially unchanged, just that the effective diffusion constant is adjusted by
D → D + ν.

A slightly bigger surprise is the fact that ε′, the IR regulator of the substrate propagator,
is just as good an IR regulator as r , the IR regulator of the activity propagator. The entire
field theory and thus all the physics discussed above, does not change when the “evaporation
of walkers” is replaced by “evaporation of substrate particles”. The stationarity of both in
infinite systems is obviously due to two completely different processes, which, however, have
the same effect on the moments of the Sausage Volume: If r is finite, then a walker eventually
disappears, living behind the trace of substrate particles, which stay indefinitely. If ε′ is finite,
then stationarity is maintained as substrate particles disappear while new ones are produced
by an ever wandering walker.

Finally, the fourth issue to be highlighted in the presentworkwas that of observableswhich
are spatial integrals of densities. These observables have a number of interesting features. As
far as space is concerned, eigenfunctions with a 0-mode immediately give access to integrals
over all space. However, open boundaries force us to perform a summation (and an awkward
looking one, too, say Eq. (42)).

5.3 Future Work

Two interesting extensions of the present work deserve brief highlighting. Firstly, theWiener
Sausage may be studied on networks: Given a network or an ensemble thereof, how many
distinct sites are visited as a function of time. The key ingredient in the analysis is the lattice
Laplacian, which provides a mathematical tool to describe the diffusive motion of the walker.
The contributions k2 and q2n in the denominator of the propagator, Eqs. (12a) and (41a), are
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the squared eigenvalues of the Laplacian operator in the continuum and, in fact, of the lattice
Laplacian, for, say, a square lattice. The integrals in k-space and, equivalently, sums like
Eqs. (5) and (42) should be seen as integrating over all eigenvalues k2, whose density in
d dimensions is proportional to |k|d−1. It is that d which determines the scaling in, say,
〈V 〉 ∝ td/2 for d < 2. In other words, if |k|ds−1 is the density of eigenvalues (the density
of states) of the lattice Laplacian, then the Wiener Sausage volume scales like tds/2 (and the
probability of return like t−ds/2). Provided the propagator does not acquire an anomalous
dimension, which could depend on ds in a complicated way, the difference between a field
theory on a regular lattice with dimension d and one on a complicated graph with spectral
dimension ds is captured by replacing d by ds [10, p. 23].We confirmed this finite size scaling
of the Wiener Sausage on four different fractal lattices.

The second interesting extension is the addition of processes, such as branching of the
walkers itself. In that case they not only interact with their past trace, but also with the trace
of ancestors and successors. This field theory is primarily dominated by the branching ratio,
say s, and λ, whereas κ , χ and ξ are irrelevant. Preliminary results suggest that dc = 4 [31,
see also] in this case and again 〈V 〉 ∝ L2−ε , this time, however, with ε = 4 − d . Higher
moments seem to follow 〈Vm〉 ∝ L(m−1)d+2−ε = Lmd−2. The latter result suggests that the
dimension of the cluster formed of sites visited is that of the underlying lattice.
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