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Abstract The Newman–Watts model is given by taking a cycle graph of n vertices and then
adding each possible edge (i, j), |i − j | �= 1 mod n with probability ρ/n for some ρ > 0
constant. In this paper we add i.i.d. exponential edge weights to this graph, and investigate
typical distances in the corresponding random metric space given by the least weight paths
between vertices.We show that typical distances growas 1

λ
log n for aλ > 0 anddetermine the

distribution of smaller order terms in terms of limits of branching process random variables.
We prove that the number of edges along the shortest weight path follows a Central Limit
Theorem, and show that in a corresponding epidemic spread model the fraction of infected
vertices follows a deterministic curve with a random shift.

Keywords Random networks · Newman–Watts small world · Typical distances ·
Multi-type branching processes · Hopcount · Epidemic curve

Mathematics Subject Classification Primary: 60C05 · 05C80 · 90B15

1 The Model and Main Results

1.1 The Newman–Watts Model

The Newman–Watts small world model, often referred to as “small world” in short, is one of
the first random graph models created to model real-life networks. It was introduced by Ball,
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Mollisson and Scalia-Tomba [6] as “the great circle” epidemic model, then also byWatts and
Strogatz [36], and a simplifying modification was made by Newman and Watts [31] later.
The Newman–Watts model consist of a cycle on n vertices, each connected to the k ≥ 1
nearest vertices, and then extra shortcut edges are added in a similar fashion to the creation
of the Erdős-Rényi graph [21]: i.e., for each pair of not yet connected vertices, we connect
them independently with probability p.

The model has been studied from different aspects. Newman et al. studied distances
[32,33] with simulations and mean-field approximation, as well as the threshold for a large
outbreak of the spread of non-deterministic epidemics [30]. Barbour and Reinert treated
typical distances rigorously. First, in [7], they studied a continuous circle with circumference
n instead of a cycle on n many vertices, and added Poi(nρ/2) many 0-length shortcuts at
locations chosen according to the uniform measure on the circle. Then, in [8], they studied
the discrete model, with all edge lengths equal to 1. They showed that typical distances in
both models scale as log n.

Besides typical distances, the mixing time of simple random walk on the Newman–Watts
model was also studied, i.e., the time when the distribution of the position of the walker gets
close enough to the stationary distribution in total variation distance. Durrett [20] showed
that the order of the mixing time is between (log n)2 and (log n)3, then Addario-Berry and
Lei [1] proved that Durett’s lower bound is sharp.

1.2 Main Results

We work on the Newman–Watts small world model [31] with independent random edge
weights: we take a cycle Cn on n vertices, that we denote by [n] := {1, 2, . . . , n}, and
each edge (i, j) ∈ [n], |i − j | = 1 mod n is present. Then independently for each i, j ∈
[n], |i − j | �= 1 mod n we add the edge (i, j) with probability ρ/n to form shortcut edges.
The parameter ρ is the asymptotic average number of shortcuts from a vertex. Conditioned
on the edges of the resulting graph, we assign weights that are i.i.d. exponential random
variables with mean 1 to the edges. We denote the weight of edge e by Xe. We write NWn(ρ)

for a realization of this weighted random graph.
We define the distance between two vertices in NWn(ρ) as the sum of weights along the

shortest weight path connecting the two vertices. In this respect, the weighted graph with this
distance function is a (non-Euclidean) random metric space. Further, interpreting the edge
weights as time or cost, the distance between two vertices can also correspond to the time it
takes for information to spread from one vertex to the other on the network, or it can model
the cost of transmission between the two vertices.

We say that a sequence of events {En}n∈N happens with high probability (w.h.p.) if
limn→∞ P(En) = 1, that is, the probability that the event holds tends to 1 as the size of
the graph tends to infinity. We write Bin,Poi,Exp for binomial, Poisson, and exponential

distributions. For random variables {Xn}n∈N, X , we write Xn
d−→ X if Xn tends to X in

distribution as n → ∞. The moment generating function of a random variable X is the
function MX (ϑ) := E[exp{ϑX}].

Our first result is about typical distances in the weighted graph. Let �i j denote the set
of all paths γ in NWn(ρ) between two vertices i, j ∈ [n]. Then the weight of the shortest
weight path is defined by

Pn(i, j) := min
γ∈�i j

∑

e∈γ

Xe. (1.1)
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Theorem 1.1 (Typical distances) Let U, V be two uniformly chosen vertices in [n]. Then,
the distance Pn(U, V ) in NWn(ρ) with i.i.d. Exp(1) edge weights satisfies w.h.p.

Pn(U, V ) − 1

λ
log n

d−→ − 1

λ
(logWUWV + � + c),

where λ is the largest root of the polynomial p(x) = x2 + (1 − ρ)x − 2ρ, � is a standard
Gumbel random variable, the random variables WU ,WV are independent copies of the
martingale limit of the multi-type branching process defined below in Sect. 2.3, and c :=
log(1 − π2

R/2) − log(λ(λ + 1)) with πR = 2/(λ + 2).

Let us write γ 	 = γ 	(i, j) for the path that minimizes the weighted distance in (1.1).
We call Hn(U, V ) := |γ 	(U, V )| the hopcount, i.e., the number of edges along the shortest-
weight path between two uniformly chosen vertices.

Theorem 1.2 (Central Limit Theorem for the hopcount) Let U, V be two uniformly chosen
vertices in [n]. Then, the hopcount Hn(U, V ) in NWn(ρ) with i.i.d. Exp(1) edge weights
satisfies w.h.p.

Hn(U, V ) − λ+1
λ

log n
√

λ+1
λ

log n

d−→ Z ,

where Z is a standard normal random variable.

Our next result characterises the proportion of vertices within distance t away from a
uniformly chosen vertex U as a function of t . To put this result into perspective, note that
we can model the spread of information starting from some source set I0 ⊂ [n] at time
t = 0 as follows: We assume that once a vertex v receives the information at time t , it starts
transmitting the information towards all its neighbors at rate 1. Let us denote the vertices that
are connected to v by an edge byH(v), then, for each w ∈ H(v), w receives the information
from v at time t + X(v,w). We further assume that transmission happens only after the first
receipt of the information, that is, any consecutive receipts are ignored. If instead of the
spread of information spread, we model the spread of a disease, this model is often called an
SI -epidemic (susceptible-infected).

In the next theoremwe consider this epidemic spreadmodel from a single source I0 = {U }
on NWn(ρ) with i.i.d. Exp(1) transmission times. We define

In(t,U ) := 1

n

∑

i∈[n]
1{i is infected before or at time t} = 1

n
#{i : i ∈ [n], �U, j ≤ t}, (1.2)

the fraction of infected vertices at time t of the epidemic started from the vertex U .

Theorem 1.3 (Epidemic curve)LetU be a uniformly chosen vertex in [n], and let us consider
the epidemic spread with source U and i.i.d. Exp(1) transmission times on NWn(ρ). Then,
the proportion of infected individuals satisfies w.h.p.

In(t + 1
λ
log n,U )

d−→ f (t + 1
λ
logWU ),

where f (t) = 1 − MWV (x(t)), where MWV (·) is the moment generating function of WV ,
and x(t) = − (

1 − 1
2π

2
R

)
eλt/(λ(λ+ 1)), with πR = 2/(λ+ 2); and where WU ,WV , are the

same random variables as in Theorem 1.1.
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Remark 1.4 Note that Theorems 1.1 and 1.2 are analogous to similar results in the sequence
of papers [11–13,24], while Theorem 1.3 is analogous to the results in [9,14]. The intuitive
message of Theorem 1.3 is that a linear proportion of infected vertices can be observed
after a time that is proportional to the logarithm of the size of the population. This time
has a random shift given by 1

λ
logWU . Besides this random shift, the fraction of infected

individuals follows a deterministic curve f (·): only the ‘position of the curve’ on the time-
axes is random. A bigger value ofWU means that the local neighborhood ofU is “dense”, and
hence the spread is quick in the initial stages: indeed, a bigger value ofWU shifts the function
f (t + (logWU )/λ) more to the left on the time axes. This phenomenon has been observed
in real-life epidemics, see e.g. [2,35] for a characterisation of typical epidemic curve shapes.
For individual epidemic curves, browse e.g. [18].

The next proposition characterizes the function MWV (t) in the definition of the epidemic
curve function f (t) in Theorem 1.3.

Proposition 1.5 (Functional equation system for the moment generating function) The
moment generating function MWV (ϑ), ϑ ∈ R

+ of the random variable WV satisfies the
following functional equation system, with MWV (ϑ) := MW (B) (ϑ):

MW (B) (ϑ) = (∫∞
0 MW (R) (ϑe−λx )e−xdx

)2 · exp{ρ · ∫∞
0

(
MW (B) (ϑe−λx ) − 1

)
e−xdx

}
,

MW (R) (ϑ) = ∫∞
0 MW (R) (ϑe−λx )e−xdx · exp{ρ · ∫∞

0

(
MW (B) (ϑe−λx ) − 1

)
e−xdx

}
.

(1.3)

Remark 1.6 These functional equations and the fact that there exists a solution for allϑ ∈ R
+

follow from the usual branching recursion of multi-type branching processes, that can be
found e.g. in [5].

1.3 Related Literature, Comparison and Context

First passage percolation (FPP) was first introduced by Hammersley andWelsh [22] to study
spreading dynamics on lattices, in particular on Z

d , d ≥ 2. The intuitive idea behind the
method is that one imagines water flowing at a constant rate through the (random) medium,
the waterfront representing the spread. The model turned out to be able to capture the core
idea of several other processes, such as weighted graph distances and epidemic spreads.

Janson [25] studied typical distances and the corresponding hopcount, flooding times as
well as diameter of FPP on the complete graph. He showed that typical distances, the flooding
time and diameter converge to 1, 2, and 3 times log n/n, respectively, while the hopcount is
of order log n.

1.3.1 Universality Class

In a sequence of papers (e.g. [11–13,23,24]) van der Hofstad et al. investigated FPP on
random graphs. Their aim was to determine universality classes for the shortest path metric
for weighted random graphs without ‘extrinsic’ geometry (e.g. the supercritical Erdős–Rényi
random graph, the configuration model, or rank-1 inhomogeneous random graphs). They
showed that typical distances and the hopcount scale as log n, as long as the degree distribution
has finite asymptotic variance and the edge weights are continuous on [0,∞). On the other
hand, power-law degrees with infinite asymptotic variance drastically change the metric and
there are several universality classes, compare [24] with [11]. In this respect, Theorems
1.1 and 1.2 show that the presence of the circle does not modify the universality class of
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First Passage Percolation on the Newman–Watts Small World... 963

the model. CLT for the hopcount in weighted random graphs first occured in [25] for the
complete graph, then it was implicitly stated in [23] for the Erdős-Rényi random graph, with
average degree at least (log n)3. For finite mean degree random graphs, CLT of the hopcount
was proved in [11–13].

1.3.2 Comparison to the Erdős–Rényi graph

Notice that the subgraph formed by shortcut edges is approximately an Erdős–Rényi graph,
with the difference that the presence of the cycle always makes NWn(ρ) connected and
hence there is no subcritical or critical regime in NWn(ρ). Typical distances on the Erdős–
Rényi graph with parameter ρ/n and Exp(1) edge weights scale as log n/(ρ −1) [12], while
for NWn(ρ) they scale as (log n)/λ, with λ = (ρ − 1 + √

ρ2 + 6ρ + 1)/2 > ρ − 1 for
all ρ ∈ R. This means that when ρ > 1, the presence of the cycle makes typical distances
shorter, and this appears already in the constant scaling factor of log n. However, λ(ρ)/ρ → 1
as ρ → ∞ meaning that the effect of the cycle becomes more and more negligible as the
number of shortcut edges grow.

1.3.3 Comparison to Inhomogeneous Random Graphs

Kolossváry et al. [29] studied FPP on the inhomogeneous random graph model (IHRG),
defined in [15]. In this model, vertices have types from a type space S, and conditioned on
the types of the vertices, edges are present independently with probabilities that depend on
the types. One can fine-tune the parameters of this model so that any finite neighborhood of
a vertex in the NWn(ρ) model is similar to that of in the IHRG, that is, both of them can be
modelled using the same continuous time multi-type branching process. It would be natural
to conjecture that typical distances are then the same in these twomodels. It turns out that this
is almost but not entirely the case: the first order term λ−1 log n, and the random variables
WU ,WV are the same, but the additive constant c in Theorem 1.1 is not: the geometry of the
Newman–Watts model modifies how the two branching processes can connect to each other,
which modifies the constant. Writing the main result in [29] in the same form as the one in
Theorem 1.1, we obtain cIHRG = log

(
(ρ + 2)(2ρ + λ2)/(ρ(λ + 2)2λ(λ + 1)

)
.

1.3.4 Comparison to the Discrete Model

Barbour and Reinert were the first to investigated typical distances on the Newman–Watts
model rigorously. In [7] they investigated a similar model, a continuous circle with circum-
ference L instead of L many vertices, and added Poi(Lρ/2) many shortcuts at locations
chosen according to uniform measure on the circle. Distances are measured by the usual
arc measure along the circle, while shortcuts are given length 0. Their results - considering
typical distances - are implicit, but rewritten they show the distance is logarithmic function
of L:

P(PL(U, V ) > (log(Lρ)/2 + x)/ρ) →
∫ ∞

0

e−ydy

1 + y(2e2x )

In a subsequent paper [8] they treated the discrete model NWn(ρ(n))with unit edge weights.
They gave complete characterisation of typical distances in terms of the parameter ρ(n) that
might also tend to infinity with n. In particular, they showed that the earlier continuous model
is a good approximation only if ρ(n) → ρ: in this case the distances are again logarithmic.
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1.3.5 The Epidemic Curve

The study of the epidemic curve on randomgraphs initiates fromBarbour andReinert [9],who
investigated the epidemic curve on the Erdős-Rényi random graph and on the configuration
model with bounded degrees, where also possible other aspects such as contagious period of
vertices or dependence of the transmission time distribution on the degrees might be present.
Later, in [14] Bhamidi et al. pointed out the connection between FPP, typical distances, and
the epidemic curve by studying the epidemic spread on the configurationmodel with arbitrary
continuous edge-weight distribution. Our Theorem 1.3 is very much along the lines of these
two results.

1.3.6 Possible Future Directions

In [3,10,19] the competition of two spreading processes running on the same graph is
investigated. This can be considered a competition between two epidemics, as well as the
word-of-mouth marketing of two similar products. The results suggest that the outcome
depends on the universality class of the model: in ultra-small worlds, one competitor only
gets a negligible part of the vertices, while on regular graphs coexistence might be possible,
i.e., both colors can paint a linear fraction of vertices. Studying competition on NWn(ρ) is
an interesting and challenging future project.

1.4 Structure of the Paper

In what follows, we prove Theorems 1.1, 1.2 and 1.3. The brief idea of the proof is the
following: we choose two vertices uniformly at random, then we start to explore the neigh-
bourhoods of these vertices in the graph in terms of the distance from these vertices (Sect.
2). We show that this procedure w.h.p. results in ‘shortest weight trees’ (SWT’s) that can
be coupled to two independent copies of a continuous time multi-type branching process
(CMBP). We then handle how these two shortest weight trees connect in the graph in Sect.
3 with the help of a Poisson approximation. We provide the proof of Theorem 1.3 about the
epidemic curve in Sect. 4 based on our result on distances. Finally we prove the Central Limit
Theorem for the hopcount in Sect. 5, based on an indicator representation of the ‘generation
of vertices’ in the branching processes.

2 Exploration Process

To explore the neighborhood of a vertex, we use a modification of Dijkstra’s algorithm.
Introduce the following notations: N (t), A(t), U(t) denote the set of explored (dead),

active (alive) and unexplored vertices at time t , respectively, and N(t), A(t),U(t) for the
sizes of these sets. The remaining lifetime of some vertex w ∈ A(t) at time t is denoted by
Rw(t), andmeans thatwwill become explored exactly at time t+Rw(t). The set of remaining
lifetimes is R{A(t)}(t). As before, H(v) denotes the neighbors of a vertex v (Figs. 1, 2).

2.1 The Exploration Process on an Arbitrary Weighted Graph

Let i = 1. The vertex from which we start the exploration process is denoted by v1. We color
v1 blue and set the time as t = T1 = 0. Evidently, we take

N (0) = {v1}, A(0) = H(v1), U(0) = [n] \ ({v1} ∪ H(v1)) .
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n = 60
= 1.1

U

n = 60
= 1.1

U

Fig. 1 A realisation of the Newman–Watts model for k = 1 and ρ = 1.1 with 60 vertices. On these two
pictures, we illustrated the growing neighbourhood of a uniformly picked vertex. Circle edges are red and
global edges are blue in the exploration. The edges that are partially red or blue are the ones that have an
already explored vertex on one side while a not-yet explored (active) vertex on the other side (Color figure
online)

Fig. 2 We indicated the growing
neighbourhood of a uniformly
picked vertex in the exploration
process. Exclamation marks
indicate ‘bad events’ for the
coupling to a branching process:
the vertices at the endpoint of
edges (indicated along the edge)
with two blue exclamation marks
are vertices that are blue active
and have been already explored
as well. The vertex with two red
and one blue exclamation mark is
twice red active and once blue
active at the same time (Color
figure online)

n = 60
= 1.1

U

!!

!!

!! !

! !

! !

The remaining lifetimes are determined by the edge weights, i.e.

R{A(0)}(0) = {Rw(0) = X(v1,w) for all w ∈ H(v1)}.
We color the active vertices w ∈ H(v1) to have the same color as the edge (v1, w).

We work with induction from now on. In each step, we increase i by 1. We can construct
the continuous time process in steps, namely, at the random times when we explore a new
vertex.

Let τi = min
{R{A(Ti−1)}(Ti−1)

}
, the minimum of remaining lifetimes. Then define Ti :=

Ti−1 + τi , the time when we explore the next vertex. Nothing changes in the time interval
[Ti−1, Ti ), hence for any t ∈ [Ti−1, Ti ),

N (t) := N (Ti−1), A(t) := A(Ti−1), U(t) := U(Ti−1).
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966 J. Komjáthy, V. Vadon

From all the remaining lifetimes, we subtract the time passed: for some 0 ≤ s ≤ τi ,

R{A(Ti−1)}(Ti−1 + s) := R{A(Ti−1)}(Ti−1) − s,

subtracted element-wise. At time Ti , the vertex (or all the vertices, if there is more than
one such vertices) vi of which the remaining lifetime equals 0, becomes explored and its
neighbors become active. We shall refer to vi as the i th explored vertex. We set

N (Ti ) :=N (Ti−1) ∪ {vi }, A(Ti ) :=(A(Ti−1) \ {vi }) ∪ H(vi ), U(Ti ) :=U(Ti−1) \ H(vi ).

We refresh the set of remaining lifetimes:

R{A(Ti )}(Ti ) := R{A(Ti−1)}(Ti ) \ {Rvi (Ti )} ∪ {Rx (Ti ) : x ∈ H(vi )}
where Rx (Ti ) = X(vi ,x), the edge weight of (vi , x), and x also gets the color of (vi , x).

On an arbitrary connected weighted graph, the exploration process can be continued until
all vertices become explored. Note that this algorithm builds the shortest weight tree SWT
from the starting vertex. This tree will be modeled using the branching process.

Remark 2.1 The set of active vertices might contain several occurrences of a vertex, in case
at least two neighbors of a vertex are explored already, see Fig. 2.

2.2 Exploration on the Weighted Newman–Watts Random Graph

We aim to apply the exploration process defined above for discovering the neighborhood
of a vertex in a realization of NWn(ρ). In the beginning, we think of the environment as
completely random, and we reveal the presence and weight of edges as the exploration
algorithm proceeds, i.e., we reveal an edge when one of its endpoints becomes explored. In
this respect, all the quantities defined for the exploration process become random variables.
In this section, we investigate the behavior of this random exploration process (Figs. 1, 2).

Let us color the cycle-edges red and the shortcut-edges blue, and let us say that an instance
of a vertex is red/blue in the exploration if it is encountered via a red/blue edge. Below, adding
the subscript R or B to any quantity corresponds to the same quantity restricted to only the
red or blue vertices, respectively. Note that in case there are more paths leading to a vertex i
from the root, there might be multiple instances of i in the exploration and they might have
different colors. However, as these paths have different lengths, eventually a unique instance
of i will be determined by being explored first, making the coloring unique on explored
vertices. We deal with the issue of multiple instances thoroughly in Sects. 2.4.3 and 2.4.1.

While running the exploration process, we build a weighted tree along the process con-
taining the edges that are used to explore the new vertices in the algorithm (restricted to the
explored vertices, this is indeed a tree). This tree has root v1, grows in time, and at any time t
it contains the vertex v ∈ [n] precisely when P(v1, v) < t . Let us denote the tree up to time
t by SWTv1(t).

Claim 2.2 (Children) Suppose the vertex v is being explored for the first time (i.e., not
“double-explored”). If v is red, one new red and Binomial(n − 3, ρ

n ) many new blue active
vertices are born. If v is blue, two new red and Binomial(n − 4, ρ

n ) many new blue active
vertices are born. The number of new blue active vertices is asymptotically Poi(ρ) in both
cases. Further, at any time t, the elements of R{A(t)}(t) are i.i.d. Exp(1) random variables,
and the next explored vertex is chosen uniformly over the set of active vertices.

Proof On a cycle there are two vertices neighboring a vertex, hence, if v is red, then it has
been reached from one of his neighbors. The other one is added to the new red active vertices.
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If v is blue then it has been reached via a shortcut edge and hence both of its neighbors on
the cycle are added to the new red active vertices. Since there are Bin(n − 3, ρ/n) many
shortcut edges from a vertex, this is also the distribution of new blue active vertices born
when exploring a red vertex. For the exploration of a blue vertex, we reached this vertex
via a blue edge, hence an additional Bin(n − 4, ρ/n) new active blue vertices. Clearly, by
the convergence of binomial to Poisson distribution, each vertex has asymptotically Poi(ρ)

many blue neighbours. The second statement follows from the fact that the edge weights are
i.i.d. exponential random variables, which has the memoryless property. Finally, note that at
any time, R{A(t)}(t) consists of i.i.d. exponential random variables, and the algorithm takes
the minimum of these. Clearly, the minimum of finite many absolutely continuous random
variables is unique almost surely, and uniform over the indices. 
�
2.3 Multi-type Branching Processes

We define the following continuous time multi-type branching process (CMBP) that will
correspond to the initial stages of SWT(t).

There are twoparticle types, red (R) andblue (B), and their lifetime isExp(1), independent
from everything else. Particles give birth upon their death. They leave behind offspring as in
Claim 2.2: each particle has Poi(ρ) many blue offspring, red particles have one, while blue
particles have two red children. Dead and alive particles will correspond to explored and
active vertices, respectively. With this wording, for the number of alive and dead particles,
we define

Definition 2.3 We shall write A(t) = (AR(t),AB(t)) for the number of alive particles of
each type, A(t) standing for the total number of alive particles. Let N(t) = NR(t) + NB(t),
where Nq(t) means the number of dead particles of type q = R, B. We assume the above
quantities to be right-continuous. Superscripts (R), (B) refer to the process started with a
single particle of the given type.

The exploration process corresponds to the process started with a single blue-type particle,
which dies immediately.

2.3.1 Literature on Multi-type Branching Processes

Here we restate the necessary theorems from [5] which we will use.

Definition 2.4 (Mean matrix) Let M(t) := Mr,q(t) = E[A(r)
q (t)], (q, r = R, B) the mean

matrix, where A(r)
q (t) is as defined above in Definition 2.3.

It is not hard to see that M(t) satisfies the semigroup property M(t + s) = M(t)M(s) and the
continuity condition limt→0 M(t) = I, where I denotes the identity matrix. As a result, we
have:

Theorem 2.5 (Athreya-Ney) There exists an infinitesimal generator matrix Q such that
M(t) = eQt , where Qr,q = arE[D(r)

q ] − δr,q . Here, ar is the rate of dying for a parti-
cle of type r , (i.e., the parameter of its exponential lifetime), D is the number of offspring
with the same sub-end superscript conventions as in Definition 2.3, and δr,q = 1{r=q} (i.e.,
δr,q = 1 if and only if r = q).

In our case,

Q =
(
0 ρ

2 ρ − 1

)
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968 J. Komjáthy, V. Vadon

Eigenvalues and eigenvectors of the Q matrix Using the characteristic polynomial, for
ρ ≥ 1, the maximal eigenvalue λ and the second eigenvalue λ2 is given by

λ = ρ − 1 + √
ρ2 + 6ρ + 1

2
, λ2 = ρ − 1 − √

ρ2 + 6ρ + 1

2
. (2.1)

For 0 < leqρ < 1, λ2 is the negative dominant eigenvalue.
The normalized left eigenvector π that satisfies πQ = λπ gives the stationary type-

distribution:

π = (πR, πB) =
(

2

λ + 2
,

λ

λ + 2

)
. (2.2)

We denote the right (column) eigenvector of Q by u and normalize it so that πu = 1. For later
use, without computing, we denote by v2 and u2 the left (row) and right (column) eigenvector
of Q belonging to the eigenvalue λ2. The most important theorem for our purposes is that the
CMBP grows exponentially with rate λ (the so-calledMalthusian parameter), more precisely,

Theorem 2.6 ([5])With the notation as above, almost surely,

lim
t→∞ A(t)e−λt = Wπ

where W is a non-negative random variable, the almost sure martingale limit of Wt :=
A(t)u e−λt . Further, W > 0 almost surely on the event of non-extinction.

Theorem 2.7 ([5])Define Tm, the mth split time, as the time of the mth death in the branching
process. (We assume T1 = 0 for the death of the root.) On the event {W > 0},
(i) For each q ∈ (R, B), limm→∞ Nq(Tm)/N(Tm) = limm→∞ Nq(Tm)/m

a.s.= πq

(ii) limm→∞ me−λTm a.s.= 1
λ
W

Corollary 2.8 For the vector of dead particles N(t) = (NR(t), NB(t)),

N(t)e−λt a.s.−→ 1

λ
Wπ .

Proof of Theorems 2.5, 2.6, 2.7 and Corollary 2.8 The proofs can be found in [5, Chap-
terV.7]. 
�

Throughout the next sections,we develop error bounds on the coupling between the branching
process and the exploration process on the graph. For convenience, we introduce

tn := 1

2λ
log n, (2.3)

the times we will observe the branching and exploration processes at, as well as

W (n) := e−λtnA(tn), with W (n) d−→ W, (2.4)

the approximations of the martingale limitW at the times tn . Note that in our case, extinction
can never occur, hence almost surely W > 0.
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2.4 Labeling, Coupling, Error Terms

In this section we develop a coupling between the CMBP discussed in the previous section
and SWT(t), the exploration process on NWn(ρ).

Error bound on coupling the offspring The CMBP is defined with Poi(ρ) blue offspring
distribution, while in the exploration process a vertex has Bin(n − 3, ρ/n) or Bin(n −
4, ρ/n)) many blue children. Let {ξi }ni=1 i.i.d. Bernoulli trials with success probability ρ/n,
X = ∑n

i=1 ξi ∼ Bin(n, ρ/n), and let Y ∼ Poi(ρ). By the usual coupling of binomial and

Poisson random variables, P(X �= Y ) ≤ ρ2

n . Now we decompose X as Z = ∑n−3
i=1 ξi ∼

Bin(n − 3, ρ/n) and V = ∑n
i=n−2 ξi ∼ Bin(3, ρ/n). Note that Z and V are independent

and we can write Z as Z = X − V . Then, under the usual coupling of X and Y ,

P(Z �= Y ) ≤ P(X �= Y ) + P(V �= 0) = ρ2

n
+ 3ρ

n
+ o(1/n2).

For the blue offspring of a blue vertex let Ẑ = ∑n−4
i=1 ξi ∼ Bin(n − 4, ρ/n) and V̂ =

∑n
i=n−3 ξi ∼ Bin(4, ρ/n), by similar arguments P(Ẑ �= Y ) ≤ ρ2

n + 4ρ
n + o(1/n2) holds.

Taking maximum and using union bound, the probability that up to k steps, at least one
particle has different number of blue offspring in the exploration process and the Poisson
branching process, is at most k(ρ2 + 4ρ)/n.

2.4.1 Labeling and Thinning

We relate the CMBP to the exploration process onNWn(ρ) through the labeling of the earlier.
Below, everything must be interpreted modulo n.

(i) The root is labeled u, the source of the exploration process. u can be U , a uniformly
chosen vertex in [n].

(ii) Every other particle gets a label when it is born.
(iii) We distinguish “left type” and “right type” red children. Left type red particles have

a left type red child, right type red particles have a right type red child, blue particles
have a red child of both types.

(iv) A left type red child of v gets label v − 1, a right type red child of v is labeled v + 1.
(v) The blue children of v get a set of labels uniformly chosen from [n].

Lemma 2.9 We say that the labeling fails if two explored vertices share the same label (this
still allows for several occurrences of the same label in the active set). The probability that
the labeling fails at the i ith split is at most 2i/n.

Proof The labeling fails at the i ith split if the splitting particle has a label that is already
taken by an explored vertex. We distinguish two cases.
When a blue particle splits Since the label of a blue particle is chosen uniformly in [n], and
there are at most i − 1 dead labels already, the probability that we choose from this set is
(i − 1)/n.
When a red particle splits Note that the labeling procedure ensures that whenever a blue
particle v is explored, it starts a growing (possibly asymmetric) red interval of red vertices
around it. A red vertex, upon dying, extends this interval in one direction (if it is left type,
then towards the left). Note that the original vertex v in this interval had a uniformly chosen
label in [n]. Let us denote the position of the kith explored blue vertex by ck , and write lk(Ti )
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and rk(Ti ) for the number of explored red vertices to the left and to the right of ck after the
i ith split, i ≥ k. Finally, we denote the whole interval of explored vertices around ck after
the i ith split by Ik(Ti ). Recall that the process is by definition right-continuous.

In this setting, the label of a red vertex that is just being explored can coincide with the
label of an already explored red vertex if and only if two intervals ‘grow into each other’ at the
i ith split. Denote by I ∗ the interval that grows at the i ith split, write c∗, r∗(Ti−1), 


∗(Ti−1)

for the location of its blue vertex, right and left length, respectively. Then, I 	 grows into
another interval Ik if and only if ck , the location of the blue vertex in Ik , is at position
c∗ − l∗(Ti−1) − rk(Ti−1) − 1 or is at position c∗ + r∗(Ti−1) + 
k(Ti−1) + 1. (The first case
means that the furthest explored red vertex on the right of Ik was a red active child of the
furthest explored left vertex in I ∗). Since the location of ck is uniform in [n],

P(I ∗(Ti−1) ∩ Ik(Ti−1) = ∅, I ∗(Ti ) ∩ Ik(Ti ) �= ∅) = 2

n
.

Note that there are exactly as many intervals as blue explored vertices (at either Ti−1 or Ti ,
since the i ith explored vertex vi must be red).

Let the bad event Ei = {vi is red and its label is already used}. Hence,

P(Ei ) ≤
NB (Ti−1)−1∑

k=1

2

n
= 2

n
(NB(Ti−1) − 1) ≤ 2i

n
,

since there are at most i blue explored vertices. Note that the proof also applies when the
new red explored vertex coincides with a formerly explored blue one, in case 
k(Ti−1) = 0
or rk(Ti−1) = 0. Hence, the statement of the lemma follows. 
�

In NWn(ρ), the shortest path (u, v) through x necessarily uses the shortest path between
(u, x). As a result, in the CMBP, we also do not need later occurrences of the label x . Hence,
wemark the second (or any later) occurrence of a label thinned, and all its descendants ghosts.
We move towards bounding the proportion of ghosts among active individuals to carry on
with the CMBP approximation. To determine whether a vertex is a ghost, we need knowledge
about its ancestors.

2.4.2 Ancestral Line

We approach the problem of ghost actives with the help of the ancestral line. We define
the ancestral line AL(y) of a vertex y as the chain of particles leading to y from the root,
including the root and y itself. Then an alive particle is a ghost if and only if at least one
of its ancestors is thinned. The ancestral line was introduced by Bühler in [16,17] with the
following observation: for each time interval [Tk, Tk+1) we can allocate a unique particle on
the ancestral line that was active in the interval [Tk, Tk+1). For the following observations,
we condition on {Di , i = 1, . . . , k}, where Di is the total number of offspring of the i ith
splitting particle. Denote byGk the generation of a uniformly chosen alive (active) particle Y
after the kith split. Then Gk = L1 + L2 +· · ·+ Lk , where the indicators Li are conditionally
independent and Li = 1 if and only if the ancestor of Y that was alive in the time interval
[Ti , Ti+1) was newborn (born at Ti ). (A rewording of the indicators Li is as follows: Li = 1
if and only if the i th splitting particle is in AL(Y ).)

SinceY is chosenuniformly, and at each split the individual to split is also chosenuniformly
among the currently active individuals, each one of these active individuals is equally likely
to be an ancestor of Y . Further, in the interval [Ti , Ti+1), Di many particles are newborn,
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and Si many are alive, which yields the probability P(Li = 1|Di , i = 1, . . . , k) = Di/Si ,
see the discussion at the beginning of [17, Sect. 2.A]. We arrive to the following corollary:

Corollary 2.10 The probability of the i th dying particle being an ancestor of Y , a uniformly
chosen active vertex after the kth split:

P(vi ∈ AL(Y )|Di , i = 1, ..., k) = P(Li = 1) = Di

Si
.

Expected proportion of thinned actives Let us combine Corollary 2.10 and Lemma 2.9.
To be able to do so, we need the following lemma. We will provide its proof later on.

Lemma 2.11 For every ε > 0, there exists a positive integer-valued random variable K =
K (ε) so that K is always finite and for every i > K , Si = iλ(1 + o(i−1/2+ε)) holds.

Recall that tn = (log n)/2λ, and it was chosen such that the number of active vertices is of
order

√
n, and that A(t),A(t),N (t),N(t) denotes the set and number of active and dead

individuals in the CMBP at time t , respectively.

Lemma 2.12 Let AG(t) = {y ∈ A(t) : y is a ghost} the set of ghost active vertices at time
t and AG(t) its size. For every fixed s ∈ R, the proportion AG(tn + s)/A(tn + s) tends to 0
in probability as n tends to infinity.

Proof of Lemma 2.12 The proportion AG(t)/A(t) = P(Y ∈ AG(t)), where Y is uniform
over A(t), i.e., uniformly chosen active individual. Recall that vi is the particle that dies at
Ti . For an event E , let us write Pk(E) := P(E |Di , i = 1, . . . , k). Using these notation and
Corollary 2.10 for the representation of the ancestral line of V ∈ A(t), we can write

Pk(Y ∈ AG(t)) ≤
N(t)∑

i=1

Pk(vi ∈ AL(Y ) and vi is thinned),

Since the labeling is independent of the family tree,

Pk(Y ∈ AG(t)) ≤
N(t)∑

i=1

Pk (vi ∈ AL(Y )) · Pk (vi is thinned) ≤
N(t)∑

i=1

Di

Si

2i

n
. (2.5)

We apply Lemma 2.11 by splitting the sum for parts up to K and above, use Di < Si for
i ≤ K :

P(Y ∈ AG(t)) ≤ ∑K
i=1

2i
n + ∑N(t)

i=K+1
Di

λ(1+o(i−1/2+ε))n

≤ K 2

n + 2
∑N(t)

i=K+1 Di

λn < K 2

n + 2A(t)+N(t)
λn

(2.6)

where we used that all particles are either active or dead in the process and with a possible
modification of K , we can have (1 + o(i−1/2+ε) > 1/2 for all i > K . Next, we can use
Corollary 2.8 and Theorem 2.6, which gives that N(t) + A(t) = eλt ( 1

λ
+ 1)W (n)(1 + o(1)).

Hence

AG(tn + s)/A(tn + s) = P(Y ∈ AG(tn + s)) ≤ K 2/n + 2eλ(tn+s) λ + 1

λ2n
W (n)(1 + o(1)).

Setting tn = log n/(2λ), the right hand side tends to 0 as n → ∞, since W (n) → W and K
is a tight random variable (does not depend on n). 
�
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Let us now return to the proof of Lemma 2.11. This lemma follows from [4, Theorems 1,
2]. Here, we restate [4, Theorem 1] using our notations and for a special case, where each
eigenvalue has multiplicity 1. This is sufficient for our purposes and easier than the general
case.

Theorem 2.13 (Asmussen, [4]) Let Zn be the number of individuals in the nth generation of
a (discreet time) supercritical multi type Galton–Watson process, with dominant eigenvalue
λ, the corresponding left and right eigenvector v and u. For any other eigenvalue ν, vν and
uν denote the left and right eigenvectors belonging to ν.

For an arbitrary vector a ∈ R
p with the property v · a = 0 define

μ := sup{ν : vνa �= 0}, σ 2 := lim
n→∞

|v|Var(Zna)

λn
(2.7)

If μ2 < λ, then with Cn = (2σ 2Znu log n)1/2

lim inf
n→∞

Zna
Cn

= −1 and lim supn→∞ Zna
Cn

= 1.

We also restate [4, Theorem 2] without change.

Theorem 2.14 (Asmussen 2., [4]) Replacing Zn with A(t), t ∈ [0,∞), Theorem 2.13
remains valid for any supercritical irreducible multi-type Markov branching process.

Proof of Lemma 2.11 We use the previous two theorems for the 2-type branching process
defined in Sect. 2.3. Since π and v2 are linearly independent, for any a �= (0, 0)with πa = 0,
necessarily v2a �= 0, which implies μ = λ2 in (2.7). The eigenvalues of the mean matrix
M(t) are eλt and eλ2t . The condition μ2 < λ in Theorem 2.13 is then equivalent to 2λ2 < λ

which follows from the nonnegativity of ρ, through simple algebraic computations, see (2.1).
The asymptotic variance σ 2 and Ct in this case becomes:

σ 2 = lim
t→∞ πVar(A(t)a)e−λt , Ct = (2σ 2A(t)u log t)1/2

This implies that the theorem rewrites to

lim sup
t→∞

A(t)a
Ct

= 1 and lim inf
t→∞

A(t)a
Ct

= −1.

Applying this for the split time Ti , we get that there is only a finite number of indexes i such
that

∣∣A(Ti )a/CTi

∣∣ > 2. Let the maximum of these indexes be K , a random variable. Since
Ti − log i/λ has an almost sure limit by Theorem 2.7, Ti is of order log i . This implies that
CTi is of order (i log log i)1/2, and by definition of the almost sure convergence, CTi exceeds
i1/2+ε only finitely many times for every ε > 0.

Since E[A(t)a] = 0 if and only if πa = 0, we can apply the theorem for the centered
version Sci := Si − ESi . Then for i > K , |Sci | ≤ CTi . The fluctuation is of smaller order
then Si ; itself, which means we can indeed write Si = iλ(1 + o(i−1/2+ε)). For more detail
on this, see the proof of [26, Corollary 3.16]. 
�

2.4.3 The Number of Multiple Active and Active-Explored Labels

Recall that both in the exploration process as well as in the branching process there might be
multiple occurrences of active vertices, see Remark 2.1, as thinning only prevents multiple
explored labels.
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Later we want to use that the number of different active labels that are not ghosts at Ti is
approximately the same as Si , i.e., there are not many multiple occurrences. In Lemma 2.12
we have seen that the proportion of ghosts is negligible on the time scale tn , but we still have
to deal with labels that are multiply active, or are explored and active at the same time. We
will discuss these issues in the following five cases:

1. A blue active vertex has been already explored.
2. A red active vertex has been already explored.
3. A blue active vertex is also red active.
4. A vertex is double red active.
5. A vertex is double blue active.

We will denote by pα(t) the probability that a uniformly chosen active vertex falls under case
α = 1, . . . , 5 at time t , which is the same as the proportion of vertices falling under case α

among all active vertices.
Case 1. Blue active being already explored At time t , there are at most N(t) explored

labels that are not thinned. Under the condition that the active vertex is blue, its label is
chosen uniformly over [n], so the probability that this label has been already explored is at
most N(t)/n. Substitute N(tn + s) from Corollary 2.8, then for tn + s = 1

2λ log n + s,

p1(tn + s) ≤ P(v is already explored | v is blue) = N(tn + s)/n. (2.8)

Case 2.Red active being already exploredThis case can be treated similarly as the thinning
of red vertices, so we also use the notation there. A label of the red active vertex is explored if
and only if two intervals are about to grow into each other: the furthest explored red vertices
in both intervals are neighbors. We call these intervals neighbors. Then, for two neighboring
intervals, the active vertices at the end of each interval are explored in the other interval. Let
Ik and I j , 1 ≤ k < j ≤ NB(t) intervals with blue particles with label ck and c j respectively.
Conditioned on ck, lk(t), r j (t), there are two possibilities so that Ik and I j are neighbors:
c j = ci + ri + 
 j + 1 or c j = ci − 
i − r j − 1. Thus for each pair of indices the probability
of the intervals being neighbors is 2/n (these are not independent, but expectation is linear).
Summing up for all pair of indexes and dividing by the number of all red actives gives the
proportion of case 2 red actives among all red actives.

p2(tn + s) ≤ 1

AB(tn + s)

∑

1≤i< j≤NB (tn+s)

2

n
=

(NB (tn+s)
2

) · 2/n
2NB(tn + s)

≤ NB(tn + s)

2n
. (2.9)

Case 3. Blue active being red active Using that the labels of blue vertices are chosen
uniformly,

P(v is red and blue active) = AR(tn + s)/n. (2.10)

Case 4. Multiple red active vertices This case is similar to Case 2. A vertex v can be red
active twice if the two intervals that it belongs to are “almost neighbors”, that is, both have v

as an active vertex on one of their ends (v is the only vertex separating them.) Conditioning
on the location of one of the intervals, the blue vertex in the other interval can be at 2 different
locations, hence

p4(tn + s) = p2(tn + s). (2.11)

Case 5.Multiple blue active vertices Again, the label of a blue vertex is chosen uniformly
at random, hence the probability that the label of an active blue vertex v coincides with
another active blue label is at most AB(t)/n. Hence
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p5(tn + s) ≤ 1

AB(tn + s)

∑

v∈AB (tn+s)

AB(tn + s)/n = AB(tn + s)/n. (2.12)

Corollary 2.15 Define Ae(t) the effective size of the active set as follows: we subtract from
A(t) the number of ghosts, already explored and multiple active labels, to get the number of
different labels in A(t). Then

Ae(tn + s)/A(tn + s)
P−→ 1. (2.13)

Similarly, define Ne(t) the effective size of the explored set to be equal to the size of the
explored set minus the number of thinned and ghost explored vertices, i.e., vertices that were
ghosts when they became explored. Then

Ne(tn + s)/N(tn + s)
P−→ 1. (2.14)

Proof We start with the proof of formula (2.13). By the previous arguments, a lower bound
can be given if we subtract the individual probabilities for red and blue vertices to be deleted
(note that this is a crude bound since we do not weight it with the proportion of red and blue
active labels):

Ae(tn + s)/A(tn + s) ≥ 1 −
5∑

i=1

pi (tn + s) = 1 − 2N(tn + s) + A(tn + s)

n
,

where we summed up the rhs of (2.8), (2.9), (2.10), (2.11), (2.12) to obtain the rhs. Now we
can use that tn + s = log n/(2λ) + s, use N(t) from Corollary 2.8, and Theorem 2.6 to get

Ae(tn + s)/A(tn + s) ≥ 1 − λ + 2

λ
eλsW (n)(1 + o(1))/

√
n,

which tends to 1 since W (n) → W a.s. by (2.4) and Theorem 2.6.
To prove formula (2.14), we use the first moment method to bound the number of thinned

vertices. By Corollary 2.9, the probability that the i ith explored vertex is thinned is at most
2i/n. Hence, conditioned on the size of the explored set N(tn + s), the expected number of
thinned vertices is:

∑N(tn+s)
i=1 P(the i ith explored vertex is thinned) ≤ ∑N(tn+s)

i=1 2i/n ≤ 2N(tn + s)2/n

= 2
(
W (n)eλs/λ

)2
(1 + o(1))

n→∞−→ 2
(
Weλs/λ

)2
,

where we used Corollary 2.8 for the asymptotic size of N(tn + s) to obtain the second line.
Since this conditional expected size is of order 1,Markov’s inequality implies that the number
of thinned vertices is at most of order log n w.h.p.

We show that the number of ghost explored vertices is of the same order. Note that
proportion of ghost actives among actives tends to 0 by (2.13) (see also Lemma 2.12). Recall
that the next explored vertex is a uniformly chosen active vertex, hence the proportion of
ghosts becoming explored among explored vertices also tends to 0 in probability. One can
make this argument rigorous by using first moment method and the upper bound from (2.6)
to get that the expected number of ghost explored vertices is also of constant order. Markov’s
inequality finishes the proof again. 
�

The conclusion of this section is summarized in the following corollary.
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Corollary 2.16 Fix n ≥ 1 and ρ > 0. Consider the thinned CMBP with label u for the root.
Then, there is a coupling of shortest weight tree SWTu(t) in NWn(ρ) to the evolution of the
thinned CMBP as long as t ≤ tn + M for some arbitrary large M ∈ R. Further, the set of
active vertices in the thinned CMBP can be approximated by the set of labeled active vertices
in the the original CMBP in the sense that the proportion of the different labels among the
actives over the total active vertices tends to zero as n → ∞, in the sense of Corollary 2.15.

3 Connection Process

Now that we have a good approximation of the shortest weight tree (SWT) started from a
vertex, it provides us a method to observe the shortest weight path between two vertices.
Let us give a raw sketch of this method before moving into the details. The previous section
provides us with a coupling of a CMBP and the SWT as long as the total number of vertices
is of order

√
n in the SWT. To find the shortest weight path between vertices U and V , we

grow the shortest weight trees from one of the vertices (SWTU ) until time tn (the size is then
of order

√
n). Then, conditioned on the presence of SWTU (tn), we grow SWTV (·) and see

when is the first time that these two trees intersect. The shortest weight path is determined by
the first intersection of the explored set of vertices in the two processes. However, to avoid
contradiction with the neighbors of the vertex that would be explored in both SWTs, and
we have a good bound on the effective size of the set of active vertices, it turns out to be
easier to look at the times when the first few active vertices in SWTU (tn) become explored
in SWTV (·). Note that a vertex w in the active set of vertices in SWTU (tn) is at distance
tn + Rw(tn) from U , where Rw(tn) denotes the remaining lifetime, see Section 2. Then we
have yet to minimize the total length of the paths over vertices in AU (tn) ∩ N V (·). This is
what we shall carry out now rigorously.

Definition 3.1 (Collision and connection) We grow SWTU , the shortest weight tree of U
until time tn = 1

2λ log n, and then fix it. Thenwe growSWTV until time tn+M , for some large
M ∈ R, conditioned on the presence of SWTU (tn). We say that a collision happens at time
tn + s when an active vertex in SWTU (tn) becomes explored in SWTV at time tn + s. Denote
the set of collision times by the point process (tn + Pi )i∈N.1 If a collision happens at vertex
xi at time tn + Pi , this determines a path between U and V with length 2tn + Pi + RU

xi (tn),
where RU

xi (tn) is the remaining lifetime of xi in SWTU (tn). Then the length of the shortest
weight path is given by

min
i∈N

(
2tn + Pi + RU

xi (tn + Pi )
)

among all collision events.

We can see that in the case of growing SWTV after SWTU , the labels belonging to explored
vertices in SWTU can not be used again, leading to some extra thinned vertices in SWTV . We
claim that the number of additional ghosts is not too big. (Since we would like to get a bound
on the effective size of active vertices in SWTV (tn + u), we must delete the descendants of
vertices that formed earlier collision events.)

Claim 3.2 Consider the case of growingSWTV afterSWTU (tn) on the samegraphNWn(ρ).
Then the effective size of the active and explored set in SWTV for times t = tn + s is

1 We will see later that a.s. there is a first collision time. Hence, indexing by i ∈ N makes sense.
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asymptotically the same as the size of the active and explored set respectively, that is, the
statements of Corollary 2.15 remain valid for SWTV as well.

Note that for the active set, it suffices to bound the proportion of ghosts, as the error terms
caused by multiple active, or active-explored vertices are not increased by the presence of
SWTU .

Proof We consider the computations in the proof of Lemma 2.12, using (2.5). Recall that the
proportion of ghosts depends simultaneously on the thinning probability of the i th explored
vertex as well as it being an ancestor of a uniform active vertex.

The arguments with the ancestral line (see 2.4.2) remain valid without any modification,
we only have to examine the change in the thinning probability.

In case the i ith explored vertex is blue, its label is chosen uniformly, thus the probability
that this label coincides with a previously chosen label equals

(
NU (tn) + i − 1

)
/n. In case

the i ith explored vertex in SWTV is red, we can use the same idea as before: it has the label of
an already explored vertex if and only if two intervals grow into each other with the i ith step.
We now consider the union of the intervals in SWTU and SWTV . Conditioned on the interval
that grows, for any interval the probability that these two grow into each other is 2/n. The
number of intervals is at most the total number of blue explored vertices, NU

B (tn) +NV
B (Ti ).

Hence the probability that the labeling fails at the i ith step of SWTV , if this is a red vertex
is at most

NU
B (tn)+NV

B (Ti )∑

k=1

2

n
= 2

(
NU

B (tn) + NV
B (Ti )

)

n
≤ 2

(
NU (tn) + i

)

n
.

Since the color of the i-th explored vertex is either blue or red, we get

P
(
labeling fails inSWTV at step i

) ≤ 2
(
NU (tn) + i

)
/n. (3.1)

For the probability of a uniformly chosen active vertex in SWTV being a ghost, similarly to
(2.5), we have

AV
G(tn+s)

AV (tn+s)
=

NV (tn+s)∑

i=1

Di

Si
· 2(N

U (tn)+i)

n
=

NV (tn+s)∑

i=1

Di

Si
· 2i
n

+
NV (tn+s)∑

i=1

Di

Si
· 2
n
NU (tn). (3.2)

By Lemma 2.12, the first sum on the rhs tends to 0 as n tends to ∞. for the second sum, let
us recall the a.s. finite K in Lemma 2.11, and we split the sum again. We use Corollary 2.8,
2.4 and tn = log n/(2λ) to get

2

n
NU (tn)

K∑

i=1

Di

Si
≤ 2

n
NU (tn)

K∑

i=1

1 = K
2

λ
√
n
W (n)

U (1 + o(1))
n→∞−→ 0.

For the second part of the sum, by Lemma 2.11 again,

�2 = 2

n
NU (tn)

NV (tn+s)∑

i=K+1

Di/Si = 2

n
NU (tn)

NV (tn+s)∑

i=K+1

Di

iλ(1 + o(i−1/2+ε))
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UsingE[Di ] ≤ λ+2,webound the expectedvalueof the sum�3 :=∑NV (tn+s)
i=K+1

Di
iλ(1+o(i−1/2+ε))

with tower rule.

E[�3]≤E

⎡

⎣(1 + o(1))
NV (tn+s)∑

i=K+1

λ + 2

iλ

⎤

⎦≤ λ + 2

λ
E

[
log(NV (tn + s))

]
(1 + o(1))

Since the logarithm is concave, we use Jensen’s inequality:

E[�3] ≤ λ + 2

λ
logE

[
NV (tn + s)

]
(1 + o(1)) (3.3)

FromTheorem 2.5 it follows thatE
[
NV (tn+s)

] = (0, 1) exp{Q·(tn+s)}1, where 1 = (1, 1)T

is a column vector. Using the Jordan decomposition of the matrix Q and exponentiating,
elementary matrix analysis yields that the leading order is determined by the main eigenvalue
λ and hence (1, 0) exp{Q(tn + s)}1 ≤ eλ(tn+u)C1 for some constant C1 ≥ 0. Let us then use
this bound with tn + s = log n/(2λ) + s to give an upper bound on the rhs of (3.3), and set
C2 := 2C1(λ + 2). Then Markov’s inequality yields

P
(
�3 ≥ C2(log n)2

) ≤ 1/ log n
n→∞−→ 0.

Then on the w.h.p. event {�3 ≤ C2(log n)2} for �2 = 2
nN

U (tn)�3, by Corollary 2.8, (2.4)
again,

�2 ≤ 2

n
NU (tn)C2(log n)2 ≤ C2(log n)2

W (n)

U (1 + o(1))

λ
√
n

n→∞−→ 0.

Since we showed that the proportion of ghost actives tends to 0, the proportion of ghost
explored vertices also tends to 0, by similar arguments as in the proof of Corollary 2.15.
For the number of thinned vertices, we calculate the expected value as before, with thinning
probability as in (3.1). Conditioned on the sizes of both explored sets NU (tn) and NV (tn +s),
the expected number of thinned vertices in SWTV at time tn + s is given by

∑NV (tn+s)
i=1 P(i thexplored inSWTV is thinned) ≤ ∑NV (tn+s)

i=1 2
(
NU (tn) + i

)
/n

≤ 2
n

(
(NV (tn + s))2 + NV (tn + s)NU (tn)

)= 2
λ2

(
e2λs(W (n)

V )2 + eλsW (n)

V W (n)

U

)
(1+o(1)),

that is, the expected number of thinned vertices is of constant order. We finish the proof by
applying Markov’s inequality to show that this number is at most of order log n w.h.p. 
�

3.1 The Poisson Point Process of Collisions

Recall that we say that a collision event happens at time tn + s when an active vertex in
SWTU (tn) becomes explored in SWTV at time tn + s. First we show that for each pair of
colours, with respect to the parameter s in tn + s, the set of points (Pi )i∈N form a non-
homogeneous Poisson point process (PPP) on R, and that these PPP-s are asymptotically
independent. We consider the intensity measure μ(dt), t ∈ R as the derivative of the mean
function M(t) (expected value of points up till time t). To determine the intensity measure of
the collision process, wewill consider the four collision point processes for each possible pair
of colours. None of the PPPs is empty: since the labels of blue vertices are chosen uniformly,
they can meet any color, and considering the growing set of intervals, we see that red can
meet red as well (see Fig. 3).
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Fig. 3 We indicated the growing
neighbourhood of two uniformly
picked vertices in the exploration
process, with purple and yellow
colors, respectively. The letters
‘C’ on the picture show that a
collision event happens at the
given vertex. Notice that all these
collision events have a remaining
edge-length yet to be covered in
the exploration process of U , i.e.,
the vertex is active in SWTU and
explored in SWTV (Color figure
online)

n = 60
= 1.1

U

V

C

C

C

C

Let us introduce the notation for q, r ∈ {R, B}, s ∈ R

Cq,r (s) := N V
q (tn + s) ∩ AU

r (tn), Cq,r (s) := |Cq,r (s)|,
C(s) := ⋃

q,r∈{R,B} Cq,r (s), C(s) := |C(s)| (3.4)

(Note that e.g. CR,B(s) denotes the set of red explored labels in SWTV that are blue active in
SWTU .) The corresponding asymptotic intensity measures are denoted by μq,r (s) and total
intensity measure by μ(s). Our goal for this section is to prove

Theorem 3.3 (Total intensity measure of the collision PPP) The point processes Cq,r (s), s ∈
R, q, r = R, B of collision events are asymptotically independent Poisson point processes,
with intensity measures on NWn(ρ) given by

μB,B(ds) := π2
BW

(n)

V W (n)

U eλsds(1 + o(1)),

μR,B(ds) := πRπBW
(n)

V W (n)

U eλsds(1 + o(1)),

μB,R(ds) := πBπRW
(n)

V W (n)

U eλsds(1 + o(1)),

μR,R(ds) := 1
2π

2
RW

(n)

V W (n)

U eλsds(1 + o(1)).

(3.5)

where the 1 + o(1) factor only depends on n. The total intensity measure of the collision
Poisson point process is then

μ(ds) = W (n)

U W (n)

V eλs(1 − π2
R/2

)
ds(1 + o(1)). (3.6)

It is not hard to show (e.g. using Borel–Cantelli lemma) that these PPP-s have only finitely
many points on (−∞, 0), hence, indexing the points by i ∈ N is doable. Before we proceed
to the proof, we take a small analytic excursion.

Proposition 3.4 (PPP approximation of ’increasing’ binomial distributions) Let us consider
a time-dependent multinomial distribution with C

√
n trials, where the success parameters for

type 1 and type 2 successes are R1(s) = f1(s)/
√
n and R2(s) = f2(s)/

√
n, respectively, for

increasing functions f1(·) and f2(·). Let (N1(s), N2(s)) denote the number of type 1 and type
2 successes (using the success probabilities at time s). Then the collection of randomvariables
(N1(s), N2(s))s>0, as n goes to infinity, converges in probability to a two-dimensionalPoisson
point process with mean C f1(s) × C f2(s). Shortly,

Multinomial(C
√
n, f1(s)/

√
n, f2(s)/

√
n)

d−→ PPP(C f1(s)) × PPP(C f2(s)). (3.7)
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In particular, the processes of type 1 and type 2 successes are asymptotically independent.
The statement remains valid when type 1 and type 2 successes can occur at the same time,
with probability R3(s) = o(1/

√
n) for all s.

Remark 3.5 (Analogue with an urn model) Looking at Proposition 3.4 in a simpler (but more
restrictive) way, we can think of an urn model with n balls, where balls are gradually painted
green and purple such that there are nR1(s) = f1(s)

√
n many green and nR2(s) = f2(s)

√
n

many purple balls at time s. We allow a few balls to be both green and purple, with their
number satisfying nR3(s) = o(

√
n) for all s. We draw C

√
n times with replacement, then

(N1(s), N2(s)) denotes the number of drawn balls that had been painted green and purple by
time s, respectively, and this converges to a two-dimensional PPP with the above mean.

Proof of Proposition 3.4 By [27, Theorem 4.7], it is enough to show that for any rectangle
[a, b] × [c, d], the number of type 1 successes in the interval [a, b] and type 2 successes in
the interval [c, d] satisfies

P(N1(b) − N1(a) = 0, N2(d) − N2(c) = 0)

= exp {−C( f1(b) − f1(a)) − C( f2(d) − f2(c))} . (3.8)

In the special case where the double success has 0 probability (there are no double-painted
balls), (N1(b) − N1(a), N2(d) − N2(c)) follows a multinomial distribution with parameters
C

√
n and ( f1(b) − f1(a))/

√
n, ( f2(d) − f2(c))/

√
n.

P
(
N1(b)−N1(a)=0, N2(d)−N2(c)=0

)=
(
1− f1(b) − f1(a)+ f2(d)− f2(c)√

n

)C
√
n

.

(3.9)

Note that the right hand side converges to the rhs of (3.8). This finishes the first statement of
the proposition.

In case a success can be both type 1 and 2 at the same time, (with probability R3(s)), by
inclusion-exclusion, these cases are excluded twice on the intersection of [a, b] and [c, d] in
the formula (3.9). When [a, b] ∩ [c, d] = ∅, (3.9) remains valid. By the symmetric role of
type 1 and type 2 successes, we can assume a ≤ c, then, [a, b] ∩ [c, d] �= ∅ implies c < b.
We consider the cases d ≤ b (when [c, d] ⊂ [a, b]) and d > b ([a, b] ∩ [c, d] = [c, b])
separately.

Case 1: a ≤ c < b < d . Note that {N1(b) − N1(a) = 0, N2(d) − N2(c) = 0} means that
we have no type 1 success on [a, c], no success of any type on [c, b] and no type 2 success
on [b, d].

P
(
N1(c) − N1(a) = 0, N1(b) − N1(c) = 0, N2(b) − N2(c) = 0, N2(d) − N2(b) = 0

)

=
(
1 − f1(c)− f1(a)√

n
−
(

f1(b)− f1(c)+ f2(b)− f2(c)√
n

− (
R3(b) − R3(c)

))

− f2(d)− f2(b)√
n

)C√
n

(3.10)

Using R3(b) − R3(c) = o
(
1/

√
n
)
and 1 − x = e−x + o

(
1/x2

)
, the left hand side of (3.10)

becomes
(
1 − f1(b) − f1(a) + f2(d) − f2(c) + o(1)√

n

)C
√
n

→ e−
(
f1(b)− f1(a)+ f2(d)− f2(c)

)
·C

,

as n tends to infinity.
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Case 2: a ≤ c < d ≤ b Note that {N1(b) − N1(a) = 0, N2(d) − N2(c) = 0} means that
there is no type 1 success on [a, c] and [d, b] and no success of any kind on [c, d]. By similar
computations as in Case 1, and using that R3(d) − R3(c) = o

(
1/

√
n
)
as well,

P
(
N1(c) − N1(a) = 0, N1(d) − N1(c) = 0, N2(d) − N2(c) = 0, N1(b) − N1(d) = 0

)

=
(
1 − f1(b)− f1(a)+ f2(d)− f2(c)+o(1)√

n

)C√
n
,

and we have already showed that this converges to the right hand side of (3.8). 
�
Proof of Theorem 3.3 In Corollary 2.15 and in Claim 3.2 we showed that the effective size
of the active and explored sets at times tn + s for s ∈ R are asymptotically the same as
the number of active and explored individuals in the CMBP respectively, so we can use the
asymptotics of (AR(t),AB(t)) from Theorem 2.6 and the asymptotics of (NR(t),NB(t))
from Corollary 2.8. For the coming paragraphs, for s ∈ R and an event E we define the
notation

Ps(E) := P(E |AU
B (tn),A

U
R (tn),N

V
B (tn + s),NV

R (tn + s)).


�
Blue–blue and red–blue collision By the definition of the set CB,B(s), CR,B(s), we can use
the following indicator representation:

CB,B(s) =
∑

x∈AU
B (tn)

1{x ∈ N V
B (tn + s)}, CR,B(s) =

∑

x∈AU
B (tn)

1{x ∈ N V
R (tn + s)}

(3.11)

Recall that the labels inAU
B (tn) are chosen independently and uniformly in [n]. As a result, the

pair CB,B(s),CR,B(s) has multinomial distribution with parameters AU
B (tn) for the number

of draws, NV
B (tn + s)/n,NV

R (tn + s)/n for the two success parameters, and double success
has 0 probability, since double-explored vertices are thinned.

Note that 1{x ∈ N V
q (tn + s1)} ≤ 1{x ∈ N V

q (tn + s2)} when s1 ≤ s2 for q = R, B, this
description fits the conditions of Proposition 3.4, since for q = R, B

NV
q (tn + s) = eλsπqW

(n)

V

√
n/λ(1 + o(1)), AU

B (tn) = πBW
(n)

U

√
n(1 + o(1)),

where we have used the asymptotic results for A(t), N(t) from Theorem 2.6 and Corollary
2.8 and the definition of W (n) in (2.4). Note that the 1 + o(1) factor only depends on n
and comes from the error of possible deviation from the stationary distribution (πR, πB) in
the approximations. A direct application of Proposition 3.4 shows that (CB,B(s),CR,B(s))
converges to two independent Poisson processes, with means

Es[CB,B(s)] = NV
B (tn + s) · AU

B (tn)/n = eλsπ2
BW

(n)

V W (n)

U /λ(1 + o(1)),

Es[CR,B(s)] = NV
R (tn + s) · AU

B (tn)/n = eλsπBπRW
(n)

V W (n)

U /λ(1 + o(1)).

Differentiating with respect to s yields the required result for the intensity measures (rate
functions).
Blue–red collisionWeneed a slightly longer argument to get the independence of this process
and the other processes, i.e., that CB,R(s) is asymptotically independent of CR,B(s) and
CB,B(s), and later also from CR,R(s). For this, let us recall that we stopped the evolution
of SWTU at time tn . Hence, we consider SWTU (tn) as a fixed set of intervals, {Ik, k =
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1, ...,NU
B (tn)} (some of them might have already possibly merged by time tn). Again, we

write

CB,R(s) =
∑

x∈AU
R (tn)

1{x ∈ N V
B (tn + s)}. (3.12)

Consider an individual x ∈ AU
R (tn). Then, let us write Ix for the explored interval of x , cx

for the location of the center – and already explored blue individual in SWTU (tn) – and x ′
for the other active red individual at the other end of Ix . Let us write 
x , rx for the number of
explored red vertices to the left and to the right of cx in Ix , i.e., x is at location cx − 
x − 1
and x ′ is at cx + rx + 1 or the other way round. Note that cx , an explored blue label was
chosen uniformly, and as a result, the marginal distribution of the labels of x, x ′, cx are all
uniform. We can rewrite the above sum in (3.12) as

CB,R(s)=
∑

cx∈NU
B (tn)

1{cx ∈ N V
B (tn+s) −rx−1}+1{cx ∈ N V

B (tn+s)+
x+1}, (3.13)

whereN V
B (tn + s) + a stands for shifting the whole setN V

B (tn + s) by a modulo n. We aim
to show that this converges to a Poisson point process with mean NU

B (tn) · 2NV
B (tn + s)/n

by using Proposition 3.4. Indeed, consider the event {cx ∈ N V
B (tn + s) − rx − 1} as type

1 success, and the event {cx ∈ N V
B (tn + s) + 
x + 1} as type 2 success. These both have

probability NV
B (tn + s)/n since cx is a blue, hence uniform label, and a shift does not change

the size of a set. In this case, double success occurs when cx ∈ (N V
B (tn + s) − rx − 1) ∩

(N V
B (tn + s) + 
x + 1), which is equivalent to cx + rx + 1, cx − 
x − 1 ∈ N V

B (tn + s).
Recall NV

B,e(tn + s) that is the ’effective size’, i.e., the number of non-thinned and non-ghost

labels in N V
B (tn + s), which is asymptotically a random constant times

√
n, see Claim 3.2

and Corollary 2.8. With this notation, for each fixed cx , the probability of double success
is the same as the probability that the uniform set of size NV

B,e(tn + s) contains two fixed

labels, and this probability is
( n−2
NV
B,e(tn+s)−2

)/( n
NV
B,e(tn+s)

)
, a random constant times 1/n, which

is clearly o
(
1/

√
n
)
. Hence, by Proposition 3.4, CB,R(s) is the union of two asymptotically

independent Poisson processes, which both have mean NU
B (tn) · NV

B (tn + s)/n.
Note that 2NU

B (tn) = AU
R (tn), since each interval contains 2 active red vertices, one on

each end. Hence

Es[CB,R(s)] = NV
B (tn + s) · AU

R (tn)/n = eλsπBπRW
(n)

V W (n)

U /λ(1 + o(1)), (3.14)

by Theorem 2.6 and Corollary 2.8, then differentiation yields the result for the intensity
measure.

The advantage of the form in (3.13) is that it reveals the independence of the processes
CB,B(s),CR,B(s),CB,R(s): in the first two cases, the number of draws were indexed by the
active blue individuals while here they are indexed by the explored blue individuals, which
are independent and uniform, hence the dependence comes from shared indeces only. Both
index sets are uniform and of order

√
n, it is easy to see the expected size of the intersection is

constant, hence by Markov’s inequality, at most of order log n w.h.p. As a result, the number
of shared indexes is o(

√
n), we can use a modification of Proposition 3.4 to see that CB,R(s)

is asymptotically independent from CB,B(s),CR,B(s).
Red–red collision We write again

CR,R(s) =
∑

x∈AU
R (tn)

1{x ∈ N V
R (tn + s)}. (3.15)
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Here we aim for a similar description as that in (3.13). Note that the argument that we used
in the previous paragraph is ‘almost valid’, in the sense that we can describe the location of
x ∈ AU

R (tn) by describing the location of cx ∈ NU
B (tn). The extra problem we face here is

the following issue: the right end of a red interval can only merge with the left end of another
interval (and not with the right end). As a result, simply changing the index N V

B (tn + s) to
N V

R (tn +s) in formula (3.13) is not quite enough. Let us quickly introduceN V
R,left(tn +s) and

N V
R,right(tn + s) for the set of left-type red and right-type red individuals in SWTV (tn + s),

respectively. Then, we can write

CR,R(s) =
∑

cx∈NU
B (tn)

1{cx ∈ N V
R,left(tn+s) −rx−1}+1{cx ∈ N V

R,right(tn + s) + 
x + 1},

(3.16)

that is, we shift the set of left-type red particles to the left by rx + 1 to get the possible
location of cx ; so that the right-type active individual in Ix merges with a left-type explored
individual, that is, with the left side of an interval in SWTV (tn + s). Similarly, we shift the
set of right-type red particles to the right by 
x + 1 to get the possible location of cx for a
collision on the other side.

We remark on the following issue: when two intervals Ji (s) ∈ SWTV (tn + s) and Ik ∈
SWTU (tn) collide at time s, in principle we should stop the evolution of Ji (s), that is, for all
s′ > s we should have Ji (s′) ≡ Ji (s). But this would cause computational difficulties later,
since then we have to condition on all the earlier collisions to be able to calculate the intensity
of the next one. Hence, it is easier to ignore this effect and do the following approximation
on the number of red-red collisions: we let Ji (s) grow further and it might collide with more
vertices inside Ik . The error terms caused by such events are negligible, since such events
have been already treated when we investigated the ‘extra’ thinning of SWTV imposed by
SWTU (tn), that had a negligible contribution in the sense of Claim 3.2.

We aim to use Proposition 3.4 to show that CR,R(s) converges to a Poisson point process
which is asymptotically independent of the other three PPPs. To show that it converges to a
PPP, let {cx ∈ N V

R,left(tn+s)−rx−1} correspond to type 1 and {cx ∈ N V
R,right(tn+s)+
x+1}

to type 2 successes, respectively. Since cx is a blue label that is chosen uniformly, the success
probabilities are NV

R,left(tn + s)/n and NV
R,right(tn + s)/n. In this case, double success is the

event

cx ∈ (N V
R,left(tn + s) − rx − 1) ∩ (N V

R,right(tn + s) + 
x + 1).

The probability of this event, again by the fact that cx is a uniformly chosen label, is

1

n

∣∣(N V
R,left(tn + s) − rx − 1) ∩ (N V

R,right(tn + s) + 
x + 1)
∣∣.

Note that Proposition 3.4 can be applied once we show that the size of the intersection in
the above formula is o(

√
n). Also note that at times tn + s, the cumulative length of all the

intervals is of order
√
n, which also implies rx and 
x are at most of order

√
n, hence the left

side of an interval even shifted left and right side of the same interval shifted right on a cycle
of length n cannot intersect. Now we only have to consider the left side of an interval shifted
left intersecting the right side of another interval shifted right. Note that their centers are blue
labels that were chosen uniformly in [n], hence their shifted positions are also uniform. The
number of vertices in the intersection of the shifted sets is thus stochastically dominated by
the number of thinned vertices, which was handled and proven to be o(

√
n), see the proof of

Claim 3.2.
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Proposition 3.4 now yields that CR,R(s) converges to a PPP with with mean

Es[CR,R(s)] = NU
B (tn) · (NV

R,left(tn + s) + NV
R,right(tn + s)

)
/n

= AU
R (tn)/2 · NV

R (tn + s)/n = π2
R
2 eλsW (n)

U W (n)

V /λ(1 + o(1)),

where we used that NU
B (tn) = AU

R (tn)/2, since there are two red active individuals in each
interval around an explored blue label, and the asymptotics from Theorem 2.6 and Corollary
2.8.

To show independence, note that now the number of draws in the multinomial distribution
are indexed by NU

B (tn), while in CB,B(s),CR,B(s) the number of draws are indexed by
AU

B (tn), compare (3.16) to (3.11) in particular. Once again, the dependence comes from
shared indeces only, the number of which is o(

√
n), hence by a modification of Proposition

3.4, CR,R(s) is asymptotically independent of CB,B(s) and CR,B(s). To see that CR,R(s)
and CB,R(s) are also asymptotically independent, consider falling in the set N V

R,left(tn +
s) − rx − 1 ∪ N V

R,right(tn + s) + 
x + 1 to be type 1 success and falling in the set N V
B (tn +

s) − rx − 1 ∪ N V
B (tn + s) + 
x + 1 to be type 2 success [compare (3.13) to (3.16)]. Our

aim is to once again apply Proposition 3.4. For this, we have show that the probability of
double success is negligible, that is, the size of the intersection

(N V
R,left(tn + s) − rx − 1 ∪

N V
R,right(tn + s)+ 
x + 1

)∩ (N V
B (tn + s)− rx − 1∪N V

B (tn + s)+ 
x + 1
)
is o(

√
n) for each

fixed x . The self-intersections of the left-shifted and right-shifted system (the intersections
N V

R,left(tn+s)−rx−1∩N V
B (tn+s)−rx−1 andN V

R,right(tn+s)+
x+1∩N V
B (tn+s)+
x+1)

have already been handled as thinned vertices and their sizes are o(
√
n), check the proof of

Claim 3.2. By symmetry, it is enough to consider the intersection between the system of
right-shifted right sides (i.e., N V

R,right(tn + s) + 
x + 1) and the left-shifted centers (i.e.,

N V
B (tn + s)− rx −1). Since the sum of all interval lengths is of order

√
n, both the shifts and

the interval lengths are at most of order
√
n, but the cycle length is n, hence the left-shifted

center ck − rx − 1 of an interval Ik cannot intersect the right-shifted right side of the same
interval. For any other interval I j , its center c j is another explored blue label, hence it is
independent of ck , and also uniform in [n]. As a result, the size of the intersection has the
same distribution as the size ofN V

B (tn +s)∩N V
R,right(tn +s), which can be upper bounded by

the number of thinned vertices and that has been shown to be o(
√
n). This proves that we can

indeed apply Proposition 3.4 and CR,R(s) and CR,B(s) are also asymptotically independent.
We emphasize that to obtain (3.5) we assumed that the number of actual intervals in

SWTU (tn) and SWTV (tn + s) is NU
B (tn) and NV

B (tn + s), respectively. This is not entirely
true due to the fact that intervals within SWTU or within SWTV might have merged already.
However, in this case some of the included vertices are ghosts: Corollary 2.15 shows that
the effective size of the active sets at times tn + s for s ∈ R is asymptotically the same
as the number of active individuals in the CMBP, which, by the fact that every interval has
precisely two active red vertices, implies that also the number of disjoint active intervals is
asymptotically the same as NU

B (tn) and NV
B (tn + s), respectively in the two processes. 
�

3.2 Proof of Theorem 1.1

It is well known [34] that if (Ei )i∈N is a collection of i.i.d. random variables with cumulative
function FE (y), and the points (Pi )i∈N form a one-dimensional Poisson point process with
intensity measure μ(ds) on R, then the points (Pi , Ei )i∈N form a two-dimensional non-
homogeneous Poisson point process on R × R, with intensity measure μ(ds) × FE (dy).
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1

z

Exp(1)

z+Exp(1)→min

Fig. 4 An illustration of the two dimensional PPP with points (Pi , Ei )i∈N, with the point minimizing the
sum Pi + Ei indicated

In our case, to get the shortest path between U and V , recall from Definition 3.1 that
we have to minimize the sum of time of the collision and the remaining lifetimes over the
collision events. Mathematically, we want to minimize the quantity Pi + Ei over all points
(Pi , Ei ) of the two dimensional PPP with intensity measure ν(ds × dy) := μ(ds) × eydy,
since the remaining lifetimes are i.i.d. exponential random variables.

Note that event {mini Pi + Ei ≥ z} is equivalent to the event that there is no point in
the infinite triangle �(z) = {(x, y) : y > 0, x + y < z} in this two-dimensional PPP (see
Fig. 4). We calculate

ν(�(z)) =
∫ z

−∞

∫ z−s

0
μ(ds) · e−ydy = W (n)

U W (n)

V

(
1 − 1

2
π2
R

)
1

λ(λ + 1)
eλz(1 + o(1)).

For short, we introduce

W (n) := W (n)

U W (n)

V

(
1 − 1

2
π2
R

)
1

λ(λ + 1)
(1 + o(1)), (3.17)

Then we can reformulate

ν(�(z)) = W (n)eλz (3.18)

Let us turn our attention back to Pn(U, V ), the shortest weight path between U and V . By
the previous argument, we conclude

P(Pn(U, V ) ≥ z + 2tn |W (n)) = P
(
Poi(ν(�(z))) = 0|W (n)

) = exp{−ν(�(z))} (3.19)

Rearranging the left hand side and substituting the computed value of ν(�(z)), we get

P(2tn − Pn(U, V ) ≤ −z|W (n)) = exp{−W (n)eλz}
We substitute tn = log n/(2λ), and set z := −x/λ to get

P
(
log n − λPn(U, V ) < x |W (n)

) = exp{− exp{−(x − logW (n))}}
We recognize on the right hand side the cumulative distribution function of a shifted Gumbel
random variable, which implies

(log n − λPn(U, V ))|W (n) d= � + logW (n),
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Rearranging and substituting W (n) from (3.17), using that the martingales (W (n)

U ,W (n)

V )
a.s.−→

(WU ,WV ), and the factor 1 + o(1) only depends on n and becomes an additive term when
taking logarithm, we obtain

Pn(U, V ) − 1

λ
log n

d−→ −1

λ
� − 1

λ
log(WUWV ) − 1

λ
log

(
1 − π2

R/2
) + 1

λ
log (λ(λ + 1)) .

This finishes the proof of Theorem 1.1.

4 Epidemic Curve

Recall the definition of the epidemic curve function from Sect. 1.2. The discussion of the
epidemic curve consists of three parts: first, we find the correct function f by computing
the first moment of In(t,U ). Then we prove the convergence in probability by bounding the
secondmoment. Finally, we give a characterization of MWV , the moment generating function
of the random variable WV , that determines the epidemic curve function f .

4.1 First Moment

First, we condition on the value W (n)

U from the martingale approximation of the branching
process of the uniformly chosen vertex U . Then we can express the fraction of infected
individuals as a sum of indicators, and calculate its conditional expectation:

E
[
In(t,U )

∣∣W (n)

U

] = 1

n

∑

w∈[n]
P
(
w is infected by time t

∣∣W (n)

U

)
.

Note that the rhs equals the probability of a uniformly chosen vertex, which we shall denote
by V , being infected. Also note that a vertex is infected if and only if its distance from U is
shorter than the time passed, hence

E
[
In(t,U )

∣∣W (n)

U

] = P
(Pn(U, V ) ≤ t

∣∣W (n)

U

)
. (4.1)

Now we can further condition on W (n)

V and use the distribution of Pn(U, V ) conditioned on
W (n)

U ,W (n)

V . Recall from Sect. 3.2, that

P (Pn(U, V ) ≥ z + 2tn |W (n)

U ,W (n)

V

) = exp
{
−W (n)

U W (n)

V

(
1 − 1

2π
2
R

) 1
λ(λ+1)e

λz
}

. (4.2)

Let us set here z = t − 1
λ
logW (n)

U and rearrange, yielding

P
(Pn(U, V ) ≤ t − 1

λ
logW (n)

U + 1
λ
log n

∣∣W (n)

U ,W (n)

V

)

= 1 − exp
{
−W (n)

V

(
1 − 1

2π
2
R

) 1
λ(λ+1)e

λt
}

Then, from (4.1) and (4.3) we get

E

[
In(t − 1

λ
logW (n)

U + 1
λ
log n,U )|W (n)

U

]
= 1 − E

[
exp

{
−W (n)

V

(
1 − 1

2π
2
R

) 1
λ(λ+1)e

λt
} ]

.

(4.3)

We recognize that the second term on the right hand side is the moment generating function
of W (n)

V , M
W (n)

V
(x), at x(t) = − (

1 − 1
2π

2
R

) 1
λ(λ+1)e

λt .
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Changing variables yields

E[In(t + 1
λ
log n,U )|W (n)

U ] = 1 − M
W (n)

V

(
x(t + 1

λ
logW (n)

U )
)
.

Note thatW (n)

V converges toWV almost surely, which implies their moment generating func-
tions converge in probability. This function is exactly the one given in Theorem 1.3.

4.2 Second Moment

The first moment above showed that the expected value of In(t,U ) indeed converges in
probability to the defined f function at the given point. We prove Theorem 1.3 by showing
that the variance of In(t,U ) converges to 0, then Chebyshev’s inequality yields that In(t,U )

converges to its expectation in probability.
Denote by 1i = 1{i is infected by time t}. Let us calculate

Var
(1
n

∑

i∈[n]
1i |W (n)

U

)

= 1

n2
∑

i∈[n]
Var(1i |W (n)

U ) + 2

n2
∑

i< j∈[n]
Cov[1i ,1 j |W (n)

U ]

Since 1i is an indicator, Var(1i |W (n)

U ) ≤ 1, hence the first term on the rhs is at most 1
n . As

for the second term,

Cov[1i ,1 j |W (n)

U ] = E[1i1 j |W (n)

U ] − E[1i |W (n)

U ]E[1 j |W (n)

U ]
= P(i and j are both are infected|W (n)

U ) − P(i is infected|W (n)

U )P( j is infected|W (n)

U )

Imagine now three exploration processes on NWn , one from U , one from i and one from
j . It is not hard to see that the three exploration processes from these three vertices can be
approximated by three independent branching processes. This implies that the covariance
can be bounded by the error of coupling between the graph and the branching processes,
as well as the thinning inside one tree and between the trees: these all have error terms
of order at most 1/ log n. It is not hard to see that the coupling can be extended to three
SWT’s (instead of two, as before), and the error terms are only multiplied by constants.
The connection processes between SWTU and the other two are related only through the
intersection of SWTi and SWT j , which is again at most of order 1/ log n. As a result,
then P(i and j are both are infected|W (n)

U ) − P(i is infected|W (n)

U )P( j is infected|W (n)

U ) =
O(1/ log n).

This coupling works if i and j are fairly apart, say (i − j)mod n > (log n)1+ε for any
ε > 0 (this is w.h.p. longer than the length of the longest red interval). The number of “bad
pairs”, which are closer than this is n(log n)1+ε/2, compared to the number of all pairs

(n
2

)
,

the fraction goes to 0. Even for these, the covariance is bounded by 1. Then the sum divided
by n2 goes to 0.

With that, we have bounded the variance by a term that goes to 0, which finishes the proof.

4.3 Characterization of the Epidemic Curve Function

In this section, we prove Proposition 1.5. Recall that adding a superscript (B) or (R) indicates
a branching process described in Sect. 2.3 that is started from a blue or red type vertex,
respectively. We start with the recursive formula for the martingale limit random variables
from [5]:
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W (B) d=
D(B)
R∑

i=1

e−λXi W (R)

i +
D(B)
B∑

j=1

e−λX j W (B)

j ,

whereW (R)

i are independent copies ofW (R) = limt→∞ e−λt Z (R)(t), andW (B)

j are independent

copies ofW (B) d= WV , and Xi , X j are i.i.d. Exp(1). Denote the moment generating functions
of W (B) and W (R) by MW (B) , MW (R) respectively. Recall that a blue individual has two red
and Poi(ρ) many blue children. Hence

E

[
eϑW (B)

]
= (

E
[
exp{ϑe−λXi W (R)}])2 · E

[
exp

{
ϑ
∑D(B)

B
j=1 e−λX j W (B)

j

}]
(4.4)

We use law of total expectation with respect to Xi to compute

J (R) := E
[
exp{ϑe−λXi W (R)}] = ∫∞

0 E
[
exp{ϑe−λxW (R)}] e−xdx

= ∫∞
0 MW (R) (ϑe−λx )e−xdx

Let J (B) defined similarly, with MW (R) replaced by MW (B) . Then, the second factor in (4.4)

can be treated by conditioning on D(B)
B and using independence:

∏D(B)
B

j=1 E

[
exp{ϑe−λX j W (B)

j }
]

:= ∏D(B)
B

j=1 J (B) = (
J (B)

)D(B)
B .

Taking expectation w.r.t. D(B)
B

d= Poi(ρ) yields that

E

[
exp

{
ϑ
∑D(B)

B
j=1 e−λX j W (B)

j

}]
= exp

{
ρ
(
J (B) − 1

)}

We can rewrite the factor in exponent as

J (B) − 1 =
∫ ∞

0
MW (B) (ϑe−λx )e−xdx − 1 =

∫ ∞

0

(
MW (B) (ϑe−λx ) − 1

)
e−xdx,

then the moment generating function in (4.4) becomes

MW (B) (ϑ) =
(∫ ∞

0
MW (R) (ϑe−λx )e−xdx

)2

· exp
{
ρ ·

∫ ∞

0

(
MW (B) (ϑe−λx ) − 1

)
e−xdx

}
.

Similarly for M (R)

W , using that D(R)
R = 1 and D(R)

B
d= Poi(ρ),

MW (R) (ϑ) =
∫ ∞

0
MW (R) (ϑe−λx )e−xdx · exp

{
ρ ·

∫ ∞

0

(
MW (B) (ϑe−λx ) − 1

)
e−xdx

}

We have just showed that the moment generating functions satisfy the system of equations
given in Proposition 1.5, and by [5], there exist propermoment generating functions satisfying
these functional equations.

5 Central Limit Theorem for the Hopcount

In this section we prove Theorem 1.2 that states that the hopcount Hn(U, V ), the number
of edges along the shortest weight path between two vertices U and V chosen uniformly at
random, satisfies a central limit theorem with mean and variance both λ+1

λ
log n.
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For this, we consider the shortest weight path between U and V in two parts: the path
from U within SWTU (tn) and from V within SWTV (·), to the vertex where the connection
happens. We denote the vertex where the connection happens by Y . These paths are disjoint
with the exception of Y , hence if suffices to determine their lengths, i.e. the graph distance
of Y from U and Y from V . Denote by G(U )(Y ) the generation of Y in SWTU , similarly for
V . Then the required steps from the root U to Y is exactly G(U )(Y ).

Claim 5.1 The choice of Y is asymptotically independent in the two SWT’s.

Proof Conditioned on Y being the connecting vertex, it is uniformly chosen over the active
set of SWTV . That determines its label, and it determines which particle is chosen in SWTU

through the label. Since the labeling is independent of the structure of the family tree, aside
from the thinning, the choice of Y in SWTU is independent from its choice in SWTV . We
have already bounded the fraction of ghost particles (those who have one of their ancestors
thinned) by a term that goes to 0 in Lemma 2.12, hence asymptotic independence holds. 
�

With these notations, Hn(U, V ) = G(U )(Y ) + G(V )(Y ), and the two terms are independent.
We reformulate the theorem using these terms:

Hn(U, V ) − λ+1
λ

log n
√

λ+1
λ

log n
= G(U )(Y ) − λ+1

2λ log n
√

λ+1
λ

log n
+ G(V )(Y ) − λ+1

2λ log n
√

λ+1
λ

log n
(5.1)

Considering that the terms are independent, it suffices to show that both terms on the right
hand side have normal distribution with mean 0 and variance 1

2 . We show that both terms
on the rhs of (5.1), multiplied by

√
2, have standard normal distribution. Due to the method

we established the connection between SWTU and SWTV , the two terms need to be treated
somewhat differently.

5.1 Generation of the Connecting Vertex in SWTV

Recall that we established the connection between SWTU and SWTV in the following way:
we grew SWTU until time tn , then we freeze its evolution. Then, we grow SWTV , and every
time a label is assigned to a splitting particle, we check if this label belongs to the active
set of SWTU . As a result, the connecting vertex Y is a particle at some splitting time Tk ,
and hence chosen uniformly over the active vertices. This implies that for its generation,
we can use the indicator decomposition of the ancestral line described in Sect. 2.4.2, for Y ’s
generation asGk = ∑k

i=1 1i , where conditioned on the offspring variables Di , the indicators
are independent and have success probability P(1i = 1) = Di

Si
.

In our case the number of splits is a random variable. Recall from Sect. 3.2 that the
connection time minus tn forms a tight random variable, [see e.g. (3.19)], hence till the
connection there are N(tn+Z)many explored vertices for some random Z ∈ R. By Corollary
2.8, N(tn + u) = C

√
n for some bounded random variable C (that might depend on n, but

is tight). Denote by

B1 =
∑C

√
n

i=1 1i−∑C
√
n

i=1
Di
Si√

∑C
√
n

i=1
Di
Si

(
1− Di

Si

) , B2 =
√
∑C

√
n

i=1
Di
Si

(
1− Di

Si

)

√
λ+1
2λ log n

,

B3 =
∑C

√
n

i=1
Di
Si

− λ+1
2λ log n

√
λ+1
2λ log n

(5.2)
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Then

G(V )(Y ) − λ+1
2λ log n

√
λ+1
2λ log n

=
∑C

√
n

i=1 1i − λ+1
2λ log n

√
λ+1
2λ log n

= B1 ·B2 + B3 (5.3)

Our aim is to show that Lindeberg’s CLT is applicable for B1, B2 converges to 1, and B3

converges to 0.

5.1.1 Term B1

For this sum of (conditionally independent) indicators, Lindeberg’s condition is trivially
satisfied if the total variance tends to infinity. To give a lower bound,

C
√
n∑

i=1

Di/Si (1 − Di/Si ) =
C

√
n∑

i=1

Di/Si −
C

√
n∑

i=1

D2
i /S

2
i . (5.4)

Recall Lemma 2.11, and split the sum according to the random variable K . Each vertex has
at least one red child, hence Di ≥ 1. Then

C
√
n∑

i=1

Di/Si ≥
C

√
n∑

i=K+1

1

iλ(1 + o(i−1/2+ε))
.

where K is a.s. finite. The i th term on the rhs is at least 1/(2i), and thus the rhs tends to
infinity, and is at least log n/(2λ). For the second term in (5.4), we can use that the second

moment of Di
d= Poi(ρ)+ 1+1{i th explored is blue} can be bounded by some constant M2

independent of i . Hence, again cutting the sum at K , the sum of the first K terms is a.s. finite.
For the rest, we can use Lemma 2.11 again, and then Markov’s inequality yields:

P

⎛

⎝
C

√
n∑

i=K+1

D2
i(

i2λ2(1 + o(i−1/2+ε)2
) ≥

C
√
n∑

i=K+1

M2(
i22λ2

) · log log n
⎞

⎠≤ 1

log log n
. (5.5)

Note that
∑∞

i=1 M
2/(i22λ2) ≤ M2π

2

12 . Combining the two estimates for the two terms in
(5.4), we see that the variance tends to infinity w.h.p. As a result, the term B1 in (5.2) satisfies
a CLT.

5.1.2 Term B2

Similarly as for the term B1, we cut the sum at K given by Lemma 2.11 and write

∑C
√
n

i=1 Di/Si (1 − Di/Si )
λ+1
2λ log n

=
∑K

i=1 Di/Si (1 − Di/Si )
λ+1
2λ log n

+
∑C

√
n

i=K+1 Di/Si
λ+1
2λ log n

−
∑C

√
n

i=1 D2
i /S

2
i

λ+1
2λ log n

.

The first fraction tends to 0, as the numerator is a.s. finite. For the numerator in the third term,
we can use (5.5) again, which shows that the third term tends to zero w.h.p. We have yet to
show that the second term tends to 1. Let Fn = σ(D1, ..., Dn) be the filtration generated by
the random variables Di . Then

∑C
√
n

i=K+1 Di/Si
λ+1
2λ log n

=
∑C

√
n

i=K+1
Di−E[Di |Fi−1]
iλ(1+o(i−1/2+ε))

λ+1
2λ log n

+
∑C

√
n

i=K+1
E[Di |Fi−1]

iλ(1+o(i−1/2+ε))

λ+1
2λ log n

. (5.6)
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For the first term of the rhs of (5.6), we will use Chebyshev’s inequality. For this, elementary
calculation using tower rule yields that

Var

⎡

⎣
C

√
n∑

i=K+1

Di − E[Di |Fi−1]
iλ(1 + o(i−1/2+ε))

⎤

⎦ ≤
C

√
n∑

i,K+1

E[D2
i |Fi−1]

λ2i2(1 + o(i−1/2+ε)2

Since E[D2
i |Fi−1] ≤ M2 as in Sect. 5.1.1, we get that the rhs is at most M2π

2/(3λ2). Then
Chebyshev’s inequality yields

P

⎛

⎝

∣∣∣∣∣∣

C
√
n∑

i=K+1

Di − E[Di |Fi−1]
iλ(1 + o(i−1/2+ε))

∣∣∣∣∣∣
≥ log log n · π2

3

M2

λ2

⎞

⎠ ≤ 1

(log log n)2
. (5.7)

This implies that the first term in (5.6) tends to 0 w.h.p.
Now to show that the second term in (5.6) tends to 1, we use a corollary of Theorem 2.6

(see [5]), stating that the vector

(
SRi−1
Si−1

,
SBi−1
Si−1

)
→ (πR, πB) a.s. Further analysis (in particular,

the central limit theorem about (SR
i , SB

i ) in [26]) yields that the error term is at most of order

i−1/2+ε. Hence, using that Di
d= Poi(ρ) + 1 + 1{i th explored is blue} and the definition of

λ it is elementary to show that

E[Di |Fi−1] = (λ + 1)(1 + o(i−1/2+ε))

Substituting this into the sum, we have

∑C
√
n

i=K+1
E[Di |Fi−1]

iλ(1+o(i−1/2+ε))

λ+1
2λ log n

=
∑C

√
n

i=K+1 1/ i

log n/2
+

∑C
√
n

i=K+1 o(i
−1/2+ε)/ i

log n/2
(5.8)

The first term on the rhs, introducing a constant error term δ from the integral approximation,
equals

∑C
√
n

i=K+1 1/ i

log n/2
= log(C

√
n) − log(K + 1) + δ

log n/2
n→∞−→ 1, (5.9)

since C is a tight random variable. The second term in (5.8) is at most
∑∞

i=0 O(i−3/2+ε) is
summable and finite, hence divided by log n it tends to 0. Combining everything, we get that
B2 in (5.2) tends to 1 w.h.p.

5.1.3 Term B3

As before, we cut this sum at K given by Lemma 2.11, and the sum of the first K terms
divided by log n tends to 0 since Di/Si < 1. When we consider the rest of the sum, we use
the approximation of Si (given by Lemma 2.11) and add and subtract E[Di |Fi−1] again:

∑C
√
n

i=K+1
Di
Si

− λ+1
2λ log n

√
λ+1
2λ log n

=
∑C

√
n

i=K+1
Di−E[Di |Fi−1]
iλ(1+o(i−1/2+ε))√

λ+1
2λ log n

+
(∑C

√
n

i=K+1
E[Di |Fi−1]

iλ(1+o(i−1/2+ε))

)
− λ+1

2λ log n
√

λ+1
2λ log n

(5.10)
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The numerator of the first term on the rhs has been treated in (5.7) and is w.h.p of order at
most log log n, hence the first term on the rhs tends to 0 w.h.p. For the second term on the
rhs of (5.10) we can use (5.8) and (5.9), and then it is at most

λ + 1

λ
· logC − log(K + 1) + δ + ∑C

√
n

i=K+1 o(i
−1/2+ε)/ i

√
λ+1
2λ log n

→ 0

almost surely, since C is a tight random variable. This shows that the term B3 in (5.2) tends
to 0 w.h.p, and finishes the proof of the CLT for the generation of the connecting vertex in
SWTV , see (5.3).

5.2 Generation of the Connecting Vertex in SWTU

For the generation of Y in SWTU , we have to use a different approach. This is because the
label of the connecting vertex is chosen uniformly among the active vertex of SWTV but is not
necessarily uniform over the active vertices in SWTU . Indeed, it is a longish but elementary
calculation to show that conditioned on the event that a connection happens, any active red

label in SWTU is chosen with asymptotic probability (A(U )(tn))−1(1− πR
2 )/(1− π2

R
2 ), while

any active blue label is chosen with asymptotical probability (A(U )(tn))−11/(1− π2
R
2 ), where

A(U )(tn) is the total number of active vertices in SWTU . However, the following claim is
still valid and will be enough to show the needed CLT:

Claim 5.2 Conditioned on the connecting vertex having a label of a certain color in SWTU ,
with high probability, it is chosen uniformly at random among the active labels of that color
in SWTU .

Proof Weshow the statementfirst for color blue.Recall that a blue labelwas chosenuniformly
in [n]. Since the restriction of a uniformdistribution to any set is again uniform, the probability
of connection is the same for any particular blue active label among the different labels in
the active blue labels in SWTU . Recall that the number of different labels (that are neither
thinned nor ghost) is called the effective size and it is treated in Corollary 2.15.

The problem here is though, that some labels in the branching process approximation are
multiply active, and these are neither thinned nor called ghosts, and if chosen, theymodify the
uniform probability for the connection.2 However, Corollary 2.15 implies that the fraction
of multiple actives tends to 0 at time tn . Hence if we pick an active label in AU

B (tn) it has
multiplicity 1 w.h.p., including red and blue instances. (This also implies that asymptotically,
the label has a well defined color.) Hence with high probability, at the connecting vertex, we
have a uniform distribution over all possible blue active labels.

An analogous argument can be carried through for red active labels as well, using the fact
that the centre of the interval where they belong to is chosen uniformly, and the fact that
multiple red labels have proportion tending to 0 at time tn . 
�
To finish the central limit theorem of G(U )(Y ), we use a general result of Kharlamov [28]
about the generation of a uniformly chosen active individual in a given type-set in a multi-
type branching process. For this, consider a type set S of a multi-type branching process,

2 Consider a label Vi in the BP of SWTU that is activemi times, i.e., there aremi individuals in the BP having
label Vi . The label Vi in SWTV is still chosen only with the same probability, (that is, 1/n). Since which one
of the mi individuals has the minimal remaining lifetime is uniformly distributed, every individual with label

Vi has probability (miA
(U )
B,e (tn))−1 to be the connecting vertex, conditioned on connection at a blue label

(with A(U )
B,e being the effective size of blue labels).
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and letAS = ∪q∈SAq the set of active individuals with any type from the type-set S. Then,
[28, Theorem2] states that the generation of a uniformly chosen individual in AS satisfies a
central limit theorem with asymptotic mean and variance that is independent of the choice
of S.3

To apply this result, first pick S := {R, B} in our case. Then, the statement simply turns
into a CLT of the generation of a uniformly picked active individual. We have seen when
treating G(V )(Y ) that the asymptotic mean and variance are both λ+1

2λ log n in this case.
Now apply the result again for S := {R} and S := {B}, separately. Combined with

the previous observation, we get that an individual chosen uniformly at random with color
blue/red, respectively, also satisfies a CLTwith the same asymptotic mean and variance. This,
combined with Claim 5.2, implies that whether Y is red or blue in SWTU , its generation
G(U )(Y ) admits a central limit theorem with mean and variance λ+1

2λ log n. This completes
the proof of Theorem 1.2.
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