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Abstract We study the motion of spiral-shaped polygonal curves by crystalline curvature.
We describe this dynamics by the corresponding infinitely dimensional system of ordinary
differential equations and show that the considered model is uniquely solvable. Banach’s
Contraction Mapping Theorem and the Bellman–Gronwall inequality are the main tools
applied in our proof.

Keywords Crystalline curvature · Evolution of spiral-shaped polygonal curves · Local
existence and uniqueness

1 Introduction

The analysis concerning the growth and the motion of polygonal interfaces by the crystalline
curvature has become a popular subject of research in recent years. It has attracted much
attention largely due to the celebrated works by Angenent and Gurtin [2] and Taylor [20,21],
who explored the dynamics of interface between the two-face and stated the evolution law,
now known as the crystalline motion or as the evolution by crystalline curvature. This law
is established for a special class of piecewise linear closed curves, called admissible, for
which the motion is described by a system of ordinary differential equations (ODEs). Since
the evolution by crystalline curvature is defined for a special class of nonsmooth curves,
it naturally extends ordinary curvature for smooth curves both in the sense of the normal
velocity formulation and in terms of variational structures.We refer to the notablemonograph
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by Gurtin [9] and also to the papers by Almgren and Wang [1], Górka [6–8], Rybka [15–19]
and Dudziński and Górka [4], for comprehensive reviews on the research relating to these
kinds of evolutions.

In our paper,we are concernedwith themotionof spiral-shapedpolygonal curves described
in terms referring to the crystalline curvature.We assume that the discussed polygonal curves
spiral out to infinity and have one end fixed at the origin.We use a suitable system of ODEs to
model the crystalline motion of spirals. Our principal objective is to prove the local existence
and uniqueness of the solution to this system.

There are two major reasons for which it is worth to deal with the issue of spiral-shaped
polygonal curves. Firstly, the spiral patterns are frequently detected in practice—in particular,
they are commonly observed in real crystal growth as well as in a variety of biological and
chemical systems. The spiral waves observed in the Belousov–Zhabotinsky reaction are most
likely the best-known examples of such the presence and much attention has been focused on
both numerical and analytical modeling of this phenomena. We mention in this context the
articles by Belmonte et al. [3], Jahnke andWinfree [12], Luengviriya et al. [13], Mikhailov et
al. [14], and the references therein. Secondly, understanding the spiral shapes by constructing
appropriate models seems interesting from the purely mathematical point of view.

To our knowledge, not much work regarding the mathematical investigations on spirals
in crystals has been done so far. Among the rare, but undoubtedly valuable, papers devoted
to this topic, we cite the works by Taylor [20] and Imai et al. [10,11]. The last two of the
mentioned publications encouraged us to undertake some research relating to this field.

The system of equations (4), (5) in Imai et al. [10], governing the motion of the crystalline
curvature on each of the line segments of the spiral-shaped polygonal curve, is the starting
point of our considerations. However, our assumption varies from the conditions imposed
in Imai et al. [10]. Also, the techniques involved in our proof of the local existence and
uniqueness of the solution to the proposed system differ from those implemented by the
mentioned authors.

The remainder of the paper is structured as follows. In Sect. 2, we introduce the subject of
our research, the necessary terminology and notations aswell as, we comment on the imposed
assumptions. In Sect. 3, we formulate and prove our main result. Section 4 concludes and
summarizes our study.

2 Preliminaries and Notations

In this part of the paper, the problem setting together with the essential terminology and
notations are presented.

Assume that the spiral-shaped polygonal curve S(t) is given for any t from some interval
[0, T ). Without loss of generality, we suppose that S(t) spirals out anticlockwise. We denote
by Li (t), i = 0, 1, 2, . . ., the line segments of the curve S(t), numbered from the origin and
by li (t), i = 0, 1, 2, . . ., the corresponding lengths of Li (t). Moreover, it is assumed that the
origin maintains fixed during the evolution and that, for i ∈ {0, 1, 2, . . .}: 10 the unit normals
νi to the segments Li (t) have the outward orientation and are independent of t , 20 the set of
possible orientations of νi+1 is finite and νi+1 is attained by turning νi left.

The studied problem may be graphically presented as shown in Fig. 1 below.
With reference to the imposed conditions, we obtain—due to the relations in (4), (5)

from Imai et al. [10]—the following system of infinitely dimensional ordinary differential
equations (ODEs) for i ∈ N

123



The Crystalline Dynamics of Spiral-Shaped Curves 411

Fig. 1 Spiral-shaped polygonal
curve

⎧
⎪⎨

⎪⎩

d
dt zi (t) = (cot θi + cot θi+1) − 1/ sin θi − 1/ sin θi+1

−zi (t) (cot θi + cot θi+1) + zi−1(t)
sin θi

+ zi+1(t)
sin θi+1

,

zi (0) = ai ,

(1)

where z0 (t) = 0 for any t ∈ [0, T ) and, for the given i , zi (t) denotes the distance from the
origin to the line containing Li (t) and θi stands for the angle between νi−1 and νi ; we also
assume that zi ∈ C1 ([0, T )) for all i . It is worth to underline that the system in (1) is the
reduced version of the general model describing the dynamics of evolving phase boundaries,
which is given in the form of the following equation

b (ν) V = (
f (ν) + f ′′ (ν)

)
K − F,

where ν, V , K denote, respectively: the angle to the interface normal, the normal velocity, the
curvature of the interface, and where: F (ν) denotes the difference in bulk energy between
the two phases, f (ν) is the interfacial energy, b (ν) stands for the appropriate positive kinetic
coefficient. By putting b ≡ 1 and F ≡ 0 as well as assuming that f is piecewise a unity and
using the fact that the crystalline curvature Ki (t) is the derivative of the distance zi (t), we
get

d

dt
zi (t) = Ki (t) = g

(
θi−1, θi , θi+1, zi−1 (t) , zi (t) , zi+1 (t)

)
, i ∈ N,

where g is the function on the right-hand side of the basic system of equations in (1).
Clearly, the system in (1)—describing the dynamics of the spiral-shaped polygonal curves

in terms involving the crystalline curvatures Ki (t) = d

dt
zi (t)—may be rewritten as follows

⎧
⎨

⎩

d
dt zi (t) = sin (θi + θi+1) − sin θi − sin θi+1

zi+1 (t) sin θi − zi (t) sin (θi + θi+1) + zi−1 (t) sin θi+1
,

zi (0) = ai , i ∈ N.

(2)

Before proceeding further, we replace the assumptions (A1)–(A3) in [10] by the condition

inf
i∈N

∣
∣ai+1 sin θi−ai sin

(
θi+θi+1

)+ai−1 sin θi+1
∣
∣ > 0. (Assu)

Our goal is to show that, providing the assumption in (Assu) holds, the system in (2) is
uniquely solvable.

Although the system (2), introduced in [10], is the starting point of our investigations,
our assumption differs from the conditions imposed in [10]. In our research, we skipped the
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assumptions (A1)–(A3) from [10] in favour of the condition (Assu), which does not overlap
with the constraints in (A1)–(A3). Also, the methods employed in our proof vary from the
approach implemented by the mentioned authors; in particular, our proof is shorter, more
direct and concise as compared with the corresponding proof from the cited work. We treat
the system (2) as ODE in the Banach space �∞.

In the subsequent section, we formulate and prove Theorem 1, which is our principal
assertion.

3 Main Result

Let us recall the standard notation. By C1 ([0, T )), we denote the space of continuous and
differentiable functions on the interval [0, T ), endowed with the norm

‖ f ‖C1([0,T )) = sup
t∈[0,T )

| f (t)| + sup
t∈[0,T )

∣
∣ f ′ (t)

∣
∣ .

Moreover, by C ([0, T ) ; �∞), we denote the space of continuous functions with values in
the Banach space �∞. This space is endowed with the following norm

‖ f ‖
C
(
[0,T );�∞

) = sup
i∈N, t∈[0,T )

| fi (t)| .

Our purpose is to prove the following claim.

Theorem 1 Under the assumption (Assu), there exists a unique local solution z = (zi )∞i=1
to the system (2) in the class of functions satisfying:

zi ∈ C1( [0, T )
)
, for any i ∈ N,

z − a ∈ C
(
[0, T ) ; �∞

)
,

and
inf

i∈N, t∈[0,T )
|zi+1 (t) sin θi − zi (t) sin (θi + θi+1) + zi−1 (t) sin θi+1| > 0.

Proof The proof is divided into the two parts, denoted by (a), (b). In part (a), we show
the local existence of the solution to the proposed system, while in part (b), we prove the
corresponding uniqueness.

(a) The proof of existence.
Let, for the considered functions zi and the initial values ai = zi (0) ,wi (t) := zi (t)−ai ,
i = 1, 2, . . . Then, the system in (2) may be rewritten as

⎧
⎨

⎩

d
dt wi (t) = sin (θi + θi+1) − sin θi − sin θi+1

wi+1 (t) sin θi − wi (t) sin (θi + θi+1) + wi−1 (t) sin θi+1 + Ci
,

wi (0) = 0

where
Ci := ai+1 sin θi − ai sin

(
θi + θi+1

) + ai−1 sin θi+1.

It follows from (Assu) that

inf
i∈N

∣
∣ai+1 sin θi − ai sin

(
θi + θi+1

) + ai−1 sin θi+1
∣
∣ = η > 0.
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We denote by XT
η the set of the form

XT
η :=

{
w ∈ C ([0, T ) ; �∞) : ‖w‖C([0,T );�∞) ≤ η

6

}
.

In addition, we define the map F : XT
η → C ([0, T ) ; �∞) in the following manner

(F (w))i (t) =
∫ t

0

sin (θi + θi+1) − sin θi − sin θi+1

wi+1 (s) sin θi − wi (s) sin (θi + θi+1) + wi−1 (s) sin θi+1 + Ci
ds,

i = 1, 2, . . ., where the constantsCi are the same as at the beginning of the current proof.
The proof of existence is twofold. In the first step, we will show that

F : XT
η → XT

η ,

for sufficiently small T . Indeed, as w ∈ XT
η , we have, for any i , s,

|wi+1 (s) sin θi − wi (s) sin (θi + θi+1) + wi−1 (s) sin θi+1| ≤ η

6
+ η

6
+ η

6
= η

2
.

This and the assumption (Assu) imply, for any i , s,
∣
∣wi+1 (s) sin θi − wi (s) sin (θi + θi+1) + wi−1 (s) sin θi+1 + Ci

∣
∣

≥ ∣
∣|wi+1 (s) sin θi − wi (s) sin (θi + θi+1) + wi−1 (s) sin θi+1| − |Ci |

∣
∣

= |Ci | − ∣
∣wi+1 (s) sin θi − wi (s) sin (θi + θi+1) + wi−1 (s) sin θi+1

∣
∣ ≥ η − η

2
.

Since in addition,

|Bi | ≤ 3, where Bi := sin (θi + θi+1) − sin θi − sin θi+1,

we get

∣
∣(F (w))i

∣
∣ ≤

∫ T

0

3
(
η − η

2

)ds = 6

η
T .

Thus, we obtain that F : XT
η → XT

η , if T ≤ (η/6)2.

In the second step, we will prove that F is a contraction mapping on XT
η , provided T is

sufficiently small. Namely, observe that, for any u, v ∈ XT
η ,

∣
∣(F (u) − F (v))i (t)

∣
∣ ≤

∫ T

0

|Bi |
∣
∣
∣C

(u)
i (s) − C (v)

i (s)
∣
∣
∣

∣
∣
∣C

(u)
i (s) + Ci

∣
∣
∣

∣
∣
∣C

(v)
i (s) + Ci

∣
∣
∣
ds,

where the constants Bi , Ci are defined earlier, and:

C (u)
i (s) := ui+1 (s) sin θi − ui (s) sin (θi + θi+1) + ui−1 (s) sin θi+1,

C (v)
i (s) := vi+1 (s) sin θi − vi (s) sin (θi + θi+1) + vi−1 (s) sin θi+1.

It is easily seen that, for any u, v ∈ XT
η and all i , s,

∣
∣
∣C

(u)
i (s) − C (v)

i (s)
∣
∣
∣ ≤ 3 ‖u − v‖C([0,T );�∞) .
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Furthermore, it follows from the previous derivations that
∣
∣
∣C (u)

i (s) + Ci

∣
∣
∣ ≥ η − η

2
and

∣
∣
∣C (v)

i (s) + Ci

∣
∣
∣ ≥ η − η

2
.

Thus, we obtain

∣
∣(F (u) − F (v))i (t)

∣
∣ ≤

∫ T

0

9 ‖u − v‖C([0,T );�∞)
(
η − η

2

) (
η − η

2

) ds.

Therefore, for any i ∈ {1, 2, . . .},
∣
∣(F (u) − F (v))i (t)

∣
∣ ≤ 36

η2
T ‖u − v‖C([0,T );�∞).

Hence, by taking the supremum over i ∈ {1, 2, . . .} and t ∈ [0, T ), we have

‖F (u) − F (v)‖C([0,T );�∞) ≤ 36

η2
T ‖u − v‖C([0,T );�∞).

This indicates that F is a contraction mapping, if T < η2/36. Thus, by virtue of the
Banach Fixed-Point Theorem,F admits a unique fixed-point in XT

η , which is the solution
to the system in (2). This proves the existence of the solution to our system. Thus, it
remains to establish that this solution is unique.

(b) The proof of uniqueness.
Assume that, there exist two different solutions, say z, z̃, to the system in (2). Then,

(z − z̃)i (t) =
∫ t

0

(
Bi

C (z)
i (s)

− Bi

C (z̃)
i (s)

)

ds =
∫ t

0

Bi
(
C (z̃)
i (s) − C (z)

i (s)
)

(
C (z)
i (s)C (z̃)

i (s)
) ds,

where Bi , C
(z)
i , C (z̃)

i are defined earlier.
Clearly, we have, for any i ∈ N, s ∈ [0, T ),

|C (z̃)
i (s) − C (z)

i (s)| ≤ 3 ‖z (s) − z̃ (s)‖l∞ .

Moreover, we have:

|C (z)
i (s) | ≥ inf

i,s

∣
∣zi+1 (s) sin θi −zi (s)(sin θi +sin θi+1)+zi−1 (s) sin θi+1

∣
∣ =: D1 (z) > 0,

|C (z̃)
i (s) | ≥ inf

i,s

∣
∣z̃i+1 (s) sin θi − z̃i (s) (sin θi +sin θi+1)+ z̃i−1 (s) sin θi+1

∣
∣=: D2 (z̃) > 0,

where D1 (z), D2 (z̃) stand for some constants, depending on z, z̃, respectively.
Consequently, we may write that, for any i ∈ N, t ∈ [0, T ),

(
z − z̃

)

i (t) ≤ 9

(D1 (z) D2 (z̃))

∫ t

0
‖z (s) − z̃ (s)‖l∞ ds.

Hence, by passing to the supremum over i ∈ N, we get

‖z (t) − z̃ (t)‖�∞ ≤ 9

(D1 (z) D2 (z̃))

∫ t

0
‖z (s) − z̃ (s)‖l∞ ds,

for all t ∈ [0, T ).
Thus, due to the Bellman–Gronwall inequality, we obtain, for any t ∈ [0, T ),

‖z (t) − z̃ (t)‖�∞ = 0.
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Therefore, z = z̃, which proves the desired uniqueness and simultaneously, completes
the entire proof of our assertion. 
�

4 Conclusions

We have proved the local existence and uniqueness of the solution to the system of ordinary
differential equations describing the dynamics of spiral-shaped polygonal interfaces with
regard to the crystalline curvature. Similar investigations have been conducted by Imai et al. in
[10], but the assumptions proposed in our claim do not overlapwith the conditions used by the
mentioned authors and additionally, our theorem has been proved in themore straightforward
manner than the corresponding result stated in [10]. Furthermore, the techniques and tools
implemented in the proof of our assertion differ from the approach employed by Imai et al.

It is worth mentioning that the existence of the global in time solution to the system
governing the crystalline growth andmotion of the spiral-shaped curves is not to be expected,
since in this case the segments of the curve may be bonded together and the blow-up may
take place.
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4. Dudziński, M., Górka, P.: Stochastic evolution of 2D crystals. Appl. Math. Comput. 216, 205–212 (2010)
5. Giga, Y., Gurtin, M.E.: A comparison theorem for crystalline evolution in the plane. Quart. Appl. Math.

54, 727–737 (1996)
6. Górka, P.: Critical size of crystals in the plane. Interfaces Free Bound. 7, 99–105 (2005)
7. Górka, P.: Evolution of 3-D crystals from supersaturated vapor with modified Stefan condition: Galerkin

method approach. J. Math. Anal. Appl. 341, 1413–1426 (2008)
8. Górka, P.: Quasi-static evolution of polyhedral crystals. Discrete Contin. Dyn. Syst. Ser. B 9(2), 309–320

(2008)
9. Gurtin, M.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford

(1993)
10. Imai, H., Ishimura, N., Ushijima, T.: Motion of spirals by crystalline curvature. Math. Model. Anal.

Numer. 33, 797–806 (1999)
11. Imai, H., Ishimura, N., Ushijima, T.: A crystalline motion of spiral-shaped curves with symmetry. J. Math.

Anal. Appl. 240, 115–127 (1999)
12. Jahnke, W., Winfree, A.T.: A survey of spiral-wave behaviors in the oregonator model. Int. J. Bifurcation

Chaos 1, 445–466 (1991)
13. Luengviriyaa, J., Porjaic, P., Phantuc, M., Sutthiopadc, M., Tomapatanagetd, M., Müller, S.C.,

Luengviriya, C.: Meandering spiral waves in a bubble-free Belousov–Zhabotinsky reaction with pyrogal-
lol. Chem. Phys. Lett. 588, 267–271 (2013)

14. Mikhailov, A.S., Davydov, V.A., Zykov, V.S.: Complex dynamics of spiral waves and motion of curves.
Physica D 70, 1–39 (1994)

123



416 M. Dudziński, P. Górka
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