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Abstract Correlation functions involving products and ratios of half-integer powers of char-
acteristic polynomials of random matrices from the Gaussian orthogonal ensemble (GOE)
frequently arise in applications of random matrix theory (RMT) to physics of quantum chaotic
systems, and beyond. We provide an explicit evaluation of the large-N limits of a few non-
trivial objects of that sort within a variant of the supersymmetry formalism, and via a related
but different method. As one of the applications we derive the distribution of an off-diagonal
entry Kab of the resolvent (or Wigner K -matrix) of GOE matrices which, among other things,
is of relevance for experiments on chaotic wave scattering in electromagnetic resonators.

Keywords Random matrix theory · Characteristic polynomials · Chaotic quantum
scattering

1 Motivations, Background and Results

1.1 Introduction

The goal of the present article is to attract attention to the problem of systematic evaluation
of the large-N asymptotics of random matrix averages of the form

CK ,L(μF1, . . . , μF K ;μB1, . . . , μBL ) =
〈

det(μF1 − H) . . . det(μF K − H)

det1/2(μB1 − H) . . . det1/2(μBL − H)

〉
G O E

(1)

where μFi , i = 1, . . . , K and μB j , j = 1, . . . , L are sets of complex parameters.
The angular brackets here and henceforth denote the average over the ensemble of real-
symmetric N × N matrices H with Gaussian entries characterised by the probability density
P(H) ∝ exp − N

4J 2 TrH2 and known as the Gaussian orthogonal ensemble (GOE). Note that
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732 Y. V. Fyodorov, A. Nock

the correlation functions involving products of square roots of the characteristic polynomials
in the numerator can be always reduced to the above form by multiplying and dividing both
the numerator and the denominator with the same corresponding factors.

Although there are reasons to suspect that the correlation functions (1) may have a nice
mathematical structure even for finite N , perhaps not unlike those determinantal or Pfaffian
structures discovered in [1–5] for similar objects involving only integer powers (see also [6,7]
for an alternative derivation) we were not yet able to reveal such structures beyond the simplest
case K = 1, L = 1, see (12) below. Instead we are mainly concentrating on the large-N
limit of a few simplest, yet nontrivial examples of the correlation function of the type (1). We
start with considering correlation functions with two square roots in the denominator, and
with one or two characteristic polynomials in the numerator, that is C1,2(μF1;μB1, μB2) and
C2,2(μF1, μF2;μB1, μB2), and then treat a special case of the correlation function involving
four square roots in the denominator, and two determinants in the numerator, that is C2,4

in our notation. As it should be clear from the examples given below the most physically
interesting (bulk) scaling regime in the large-N limit arises when all spectral parameters are
close to some value E ∈ (−2J, 2J ) by a distance of the order of the mean spacing between
neighbouring eigenvalues in the bulk, i.e. O(J/N ). Correspondingly we define the scaled
version of the correlation function as

C(bulk)
1,2 (ωF1;ωB1, ωB2)

≈
〈

det(E + iωF1/N − H)

det1/2(E + iωB1/N − H) det1/2(E + iωB2/N − H)

〉
G O E,N→∞

(2)

and

C(bulk)
2,2 (ωF1, ωF2;ωB1, ωB2)

≈
〈

det(E + iωF1/N − H) det(E + iωF2/N − H)

det1/2(E + iωB1/N − H) det1/2(E + iωB2/N − H)

〉
G O E,N→∞

(3)

where the approximate equality sign above should be understood in the sense of extracting
the leading asymptotic dependence on the parameters ωB and ωF when N → ∞. Our results
for the above correlation functions are given in Eqs. (13) and (14) for C(bulk)

1,2 and in Eqs. (16)

and (17) for C(bulk)
2,2 . In Eq. (22) we provide the result for a special limit (see Eq. (8)) of C(bulk)

2,4 .
These objects are already rich enough to provide answers for quantities arising in applications
of random matrices in the field of Quantum Chaos in closed and open (scattering) systems.
We discuss such relations in much detail below.

Although our methods are specifically tailored for dealing with the GOE we expect our
results in the bulk scaling limit to be universal and shared by a broad class of invariant
measures on real symmetric matrices H [8] and by so-called Wigner ensembles of random
real symmetric matrices with independent, identically distributed entries satisfying relevant
moments conditions [9,10].

1.2 Motivations and Background

To explain the origin of interest in the correlation functions (1) we start with recalling that the
phenomenon of Quantum Chaos attracted considerable theoretical and experimental inter-
est for more than three decades and remains one of the areas where applications of Ran-
dom Matrix Theory are most fruitful and successful [11]. The applications are based on
the famous Bohigas–Giannoni–Schmit (BGS) [12] conjecture claiming that in appropriately
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On Random Matrix Averages Involving Half-Integer Powers 733

chosen energy window sequences of highly excited discrete energy levels of generic quan-
tum systems whose classical counterparts are chaotic are statistically indistinguishable from
sequences of real eigenvalues of large random matrices of appropriate symmetry. Although
not yet fully rigorously proven, this conjecture has an overwhelming support in experimental,
numerical and analytical work of the last decades [13]. Inspired by this analogy as well as by
the fact of universality of many random matrix properties (i.e. insensitivity to the particular
choice of the probability measure on the matrix space), see [9,10] and references therein, one
of the common strategies for predicting universal observables of quantum chaotic systems has
been expressing them in terms of resolvents of underlying Hamiltonians, then replacing the
actual Hamiltonians by random matrices taken from analytically tractable (usually, Gaussian)
ensembles of N ×N random matrices. The characteristic functions of the probability densities
of the observables under consideration can be frequently computed explicitly by appropriate
ensemble averages. Note that the eigenvalues of the standard Gaussian Ensembles, Unitary
(GUE, β = 2), Orthogonal (GOE, β = 1) or Symplectic (GSE, β = 4) are independent of the
eigenvectors, with the matrix of N orthonormal eigenvectors being uniformly distributed over
the Haar’s measure of the Unitary U (N ), Orthogonal O(N ) or Symplectic Sp(2N ) group,
correspondingly. To that end it is natural to evaluate the corresponding characteristic func-
tions by performing first the ensemble average over the eigenvectors. For the β = 2 case the
average can be frequently done exactly for any N by employing the so-called Itzykson–Zuber–
Harish–Chandra [14,15] formula, which is not yet available for β = 1, 4 group averages.
Nevertheless, one is able to perform the eigenvector averages in the limit N � 1 by using a
heuristic idea (going back to [16]) that the set of eigenvectors essentially behaves for N � 1
as if their components were independent, identically distributed Gaussian variables with mean
zero and variance 1/N . One can rigorously justify this procedure if only a number n � N 1/2

of eigenvectors is involved in the set, see e.g. [17], but in general a rigorous justification
of such a step requires some nontrivial estimates on the resolvents. The heuristic procedure
is widely employed in Theoretical Physics for RMT applications to Quantum Chaos using
the properties of the standard Gaussian integrals over complex or real variables. In this way
the analysis of many distributions of practical interest is reduced to correlation functions of
products and ratios involving integer (for β = 2, 4) or half-integer (for β = 1) powers of
characteristic polynomials of random matrices. Similar averages arise if one is interested in
statistics of the matrix elements of the resolvents computed in the basis of random Gaussian
vectors, as it is frequently done in applications to scattering systems with Quantum Chaos,
see e.g. the recent paper [18] for an example and further references. For those and other
reasons averages of products and ratios of powers of characteristic polynomials of random
matrices attracted much interest over the years. When only integer powers are involved in the
average the corresponding theory was developed for β = 2 in [2–4] and extended to β = 1, 4
in [5]. The case of half-integer powers for β = 1 remains however outstanding, despite the
fact that it is most relevant for an overwhelming majority of experiments in Quantum Chaos
due to the preserved time-reversal invariance of the underlying Hamiltonians. Additional
interest to this type of averages gives the fact that they are closely related to the problem
of evaluating averages of quantities involving absolute values of characteristic polynomials
due to the relation | det(E − H)| = limε→0 det(E − H + iε

N )1/2 det(E − H − iε
N )1/2 valid

for matrices H with real eigenvalues. Such averages emerge, for example, when studying
the statistics of the so-called “level curvatures” in quantum chaotic systems [19,20], see Eq.
(5) below, as well as in the problem of counting the number of stationary points of random
Gaussian surfaces, see [21,22].

To support the above picture we describe below explicitly a few examples of relations
between the characteristic functions of the physical observables of interest in quantum chaotic
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systems which can be related to particular instances of the correlation function (1). The list is
almost certainly not exhaustive (for example, when writing this article we have learned that
the square roots of characteristic polynomials emerged very recently in [23]), but hopefully
representative.

• LDoS distribution. One of the first examples of that sort which is worth mentioning is
related to the statistics of the local density of states (LDoS) ρ(x; E, η) at a point x of
a quantum system with energy levels broadening η due to a uniform absorption in the
sample. Mathematically the LDoS is defined in terms of the diagonal matrix element
of the resolvent as ρ(x; E, η) = 1

π
Im〈x |(E − iη

N − H)−1|x〉, and one is interested in
understanding the statistics of the LDoS assuming a random matrix GOE Hamiltonian H
of size N × N , with the parameter η being fixed when N → ∞. The Laplace transform
for the probability density P(ρ) of the LDoS can be expressed in the large-N limit as
[24] ∫ ∞

0
e−sρP(ρ) dρ =

〈
det1/2

[
(E − H)2 + η2

N 2

]

det1/2
[
(E − H)2 + η2

N 2 + ηs
N

]
〉

G O E,N→∞
. (4)

Evaluation of the above random matrix average (which in our notation is a particular
case of C(bulk)

2,4 ) attempted in [24] resulted in a quite impractical 5-fold integral, and to
this end remains an outstanding RMT problem. Note however that the density P(ρ) has
been found via a different route avoiding (4) as a sum of two-fold integrals in [25,26].

• Probability distribution of “level curvatures”. Consider a perturbation H = H + αV
of the Hamiltonian H where α is a control parameter and V is a real symmetric
matrix. “Level curvatures” are defined as second derivatives of the eigenvalues λn(α)

(interpreted as energy levels of a quantum-chaotic system) with respect to the exter-

nal parameter α: Cn = ∂2λn(α)

∂α2 = ∑
m �=n

〈n|V |m〉2

λn−λm
. Assuming the perturbation V to

be taken as well from the GOE one can show that the probability density PE (c) =
1

ρ̄(E)

〈∑N
n=1 δ(c − Cn)δ(E − λn)

〉
of the level curvatures for GOE matrices H with

eigenvalues λn and mean density of eigenvalues ρ̄(E) can be represented as[19,20]

PE (c) ∝
∫ +∞

−∞
dω eiωc

〈
| det(E − H)| det1/2(E − H)

det1/2(E + iω
N − H)

〉
G O E,N→∞

(5)

where the required random matrix average in the right-hand side was independently eval-
uated by several alternative methods in [19,20]. Note that heuristic arguments appealing
to Gaussianity of GOE eigenvectors in the large-N limit suggest universality of the level
curvature distribution for a “generic” choice of V , and a rigorous proof of this fact is
under consideration[27].

• Statistics of S-matrix poles. Various questions related to the statistics of quantum chaotic
resonances (poles of the scattering matrix in the complex energy plane [28]) in the regime
of a weakly open scattering system can be related to evaluation of the averages〈

det H2

det1/2(H2 + ω2

N 2 )

〉

G O E,N→∞
and

〈
det1/2

(
H2 + ω2

N 2

)〉
G O E,N→∞

(6)

where ω is considered as N -independent parameter. The first of these averages features
in the statistics of resonance widths change under influence of a small perturbation of
the Hamiltonian H → H + αV akin to that considered above for the level curvature
case. Such change reflects the intrinsic non-orthogonality of the associated resonance
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On Random Matrix Averages Involving Half-Integer Powers 735

eigenfunctions [29]. Another manifestation of the same non-orthogonality is the statistics
of the so-called Petermann factor which again can be related to random matrix averages
involving half-integer powers of characteristic polynomials, see [30]. The second average
in (6) arose in a recent attempt of clarifying the statistics of resonance widths beyond
the standard first-order perturbation theory, see [31]. Evaluating both averages featuring
in (6) in a uniform way by a systematic procedure was one of our motivations behind
writing the present paper.

• Statistics of Wigner K -matrix. In the theory of quantum chaotic scattering the Wigner
K -matrix is essentially defined as a certain projection of the resolvent of H . More pre-
cisely this is an M × M matrix with entries Kab = W T

a (E − H)−1Wb , with Wa being an
N -component vector of coupling amplitudes Wia between N energy levels of the closed
system (modelled for a chaotic system by an N×N random matrix Hamiltonian H ) and M
scattering channels open at a given energy E of incoming waves. Note that the more stan-
dard M × M unitary S-matrix is related to K via a simple Cayley transform S = I−i K

I+i K . In
the random matrix approach one usually assumes for the amplitudes Wia either the model
of fixed orthogonal channels with W T

a Wb = γaδab [32] or independent Gaussian channels
where the amplitudes are taken to be i.i.d. Gaussian variables with 〈W T

a Wb〉 = γaδab [33].
The quantities Kab are of direct experimental relevance and can be measured in
microwave experiments as they are related to the real part of the electromagnetic
impedance [34,35]. For real E in the bulk of the spectrum the statistics of the diagonal
entries Kaa is long known to be given by the same Cauchy distribution for all β = 1, 2, 4,
see e.g. [36,37], and very recently was actually shown to be very insensitive to spectral
properties of H under rather general conditions [38]. Similarly, one can consider the
probability density P(Kab) of the individual off-diagonal entries Ka �=b for β = 1. For
the model of Gaussian channels one arrives to the Fourier transformed P(Kab) in the
form:
∫ ∞

−∞
eix Kab P(Kab) d Kab = lim

N→∞

〈
| det(E − H)|

det1/2[(E − H)2 + γaγb x2

N 2 ]

〉

G O E

= RE (x). (7)

Note that the average featuring in the right-hand side does not follow from either C(bulk)
1,2

or C(bulk)
2,2 as a special case, but is rather a limiting case of the more general correlation

function C(bulk)
2,4 as it can be seen from the following representation:

RE (x) = lim
ε→0

lim
N→∞

〈
det2(E − H)

det1/2
(
(E − H)2 + γaγb x2

N 2

)
det1/2

(
(E − H)2 + ε2

N 2

)
〉

G O E

.

(8)

To the best of our knowledge the probability density P(Kab) for a �= b (or its
Fourier transform) was not yet given explicitly in the literature1 and we will find it
below for the center of the GOE spectrum, see Eq. (22). Note that it is expected
that statistics of the K -matrix entries for a GOE Hamiltonian H is the same for
the two choices of the coupling W as long as M stays finite for N → ∞.
As to the M × M matrix K as a whole, the probability density P(K ) for β = 1 and E

1 The distribution of the off-diagonal entries Sa �=b of the scattering matrix S is also experimentally relevant
[39,40] and has been calculated very recently in [41]. However it remains a challenge to extract the statistics
of Ka �=b from it in a manageable form.
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736 Y. V. Fyodorov, A. Nock

in the bulk of the spectrum is expected to be given by a Cauchy-like expression:

P(K ) ∝ det[λ2 + (K − 〈K 〉)2]− M+1
2 (9)

with E-dependent mean 〈K 〉 and the width parameter λ. This distribution was conjectured
in 1995 by P. Brouwer on the experience of working with H from the so-called Lorentzian
ensemble, see [42]. A similar formula for invariant ensembles of complex Hermitian
random matrices H ( i.e. β = 2) was proved rigorously very recently in [18], and in the
same paper it was mentioned that for β = 1 and the case of random Gaussian coupling
the following relation holds2:

∫
eiTr(K X)P(K )d K = lim

N→∞

〈
M∏

c=1

det1/2(E − H)
[
sgn det(E − H)

](−xc)

det1/2(E + iγc xc
N − H)

〉

G O E
(10)

where (−xc) = 1 for negative xc and is zero otherwise. Although our attempts to verify
Brouwer’s conjecture for β = 1, M = 2 along these lines were not fully successful yet,
we discuss partial results, see (24)–(26) below.

• A particular type of the correlation functions (1) was investigated in [43] where it has
been shown that for any integer k > 0 and fixed real δ holds 3

〈
1

detk/2(iδ/N − H) detk/2(−iδ/N − H)

〉
G O E,N→∞

∝ ekδ

∫ ∞

1

dλ1e−δλ1√
λ2

1 − 1
. . .

∫ ∞

1

dλke−δλk√
λ2

k − 1

k∏
i< j

|λi − λ j |. (11)

1.3 The Results

• As it has been mentioned above, we were not yet able to reveal nice mathematical
structures for (1) at finite values of the matrix size N beyond the simplest case K =
1, L = 1, where the methods outlined below yielded a determinantal structure which we
give here for completeness:

C1,1(μF ;μB) =
(

J 2

2N

)N/4 [−i sgn(Im(μB))]N+1

�(N/2)

× det

⎛
⎝ HN−1

(√
N

J μF

)
FN/2−1

( √
N√
2J

μB

)
HN

(√
N

J μF

)
FN/2

( √
N√
2J

μB

)
⎞
⎠ (12)

where �(x) is the Euler Gamma-function, HN (z) = i N√
2π

∫∞
−∞ dt t N exp[− 1

2 (t + i z)2]
is a Hermite polynomial and the function

FN (z) = [i sgn(Im(z))]N
∫ ∞

0
dt t N exp[− 1

2 (t2 + 2i sgn(Im(z))zt)]

2 The corresponding formula in [18] was written not accurately enough and did not show the dependence on
sgn det factors.
3 Note also that an ensemble average closely related to the left-hand side of (11) was evaluated explicitly in
[44], with the general circular β−ensemble replacing the GOE. The result was expressed for all β > 0 and
all integer N ≥ 1 in terms of a certain generalised hypergeometric function. The δ → 0 asymptotics for large
N � 1 of the latter function does agree with the one following from the right-hand side of (11).
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On Random Matrix Averages Involving Half-Integer Powers 737

may be associated with the Cauchy transforms of Hermite polynomials [2].
• The explicit forms for the “bulk” correlation functions C(bulk)

1,2 (ωF1;ωB1, ωB2) (see Eq.

(2)) and C(bulk)
2,2 (ωF1, ωF2;ωB1, ωB2) (see Eq. (3)) depend very essentially on the signs

of ωB1 and ωB2. In particular, if sgn ωB1 = sgn ωB2 the first correlation function is given
by

C(bulk, sgn ωB1=sgn ωB2)

1,2 (ωF1;ωB1, ωB2) ≈ e
2ωF1−ωB1−ωB2

4J2 (i E+sgn ωB
√

4J 2−E2)
, (13)

whereas for sgn ωB1 = − sgn ωB2 the same object takes instead the form

C(bulk, sgn ωB1=− sgn ωB2)

1,2 (ωF1;ωB1, ωB2) ≈ (−i)N

π
√

2Nρ(2J )N+1
e
− i E

4J2 (ωB1+ωB2−2ωF1)

×
{
[Ae−πρωF1 − (−1)N A∗e+πρωF1 ](ωB1 + ωB2 − 2ωF1)K0

(
πρ
2 |ωB1 − ωB2|

)

+ [Ae−πρωF1 + (−1)N A∗e+πρωF1 ]|ωB1 − ωB2|K1
(

πρ
2 |ωB1 − ωB2|

) }
(14)

with
A(E, N ) = (2π J 2ρ + i E)N−1/2 e

iπ N
2 ρE , (15)

where we introduced ρ = 1
2π J 2

√
4J 2 − E2 for the mean eigenvalue density of large

GOE matrices in the bulk of the spectrum and used the standard notation Km(z) for
the modified Bessel (Macdonald) functions of second kind and index m. Note that
the asymptotic expression (14) shows an interesting “parity effect”: it behaves dif-
ferently depending on whether N is even or odd for arbitrary large values of N .
Similarly the second correlation function for sgn ωB1 = sgn ωB2 is given by

C(bulk, sgn ωB1=sgn ωB2)

2,2 (ωF1, ωF2;ωB1, ωB2) ≈
(

J√
N

)N 3H̃N

(√
N E
J

)
[πρ(ωF1 − ωF2)]3 e

i E(ωF1+ωF2)

2J2 e
− i E(ωB1+ωB2)

4J2 e− πρ(|ωB1 |+|ωB2 |)
2

× [πρ(ωF1 − ωF2) cosh (πρ(ωF1 − ωF2)) − sinh (πρ(ωF1 − ωF2))], (16)

where H̃N

(√
N E
J

)
= √

2
( i N

2J

)N
e−N/2 e

N
4J2 E2 [(−1)N A(E, N ) + A∗(E, N )] is the

appropriate large-N asymptotic of the N -th Hermite polynomial, with A(E, N ) defined
in Eq. (15). In the case sgn ωB1 = − sgn ωB2 we get instead

C(bulk, sgn ωB1=− sgn ωB2)

2,2 (ωF1, ωF2;ωB1, ωB2) ≈√
2N

π

J N+1e−N/2

(ωF1 − ωF2)3 e
N

4J2 E2
e

i E(ωF1+ωF2)

2J2 e
− i E(ωB1+ωB2)

4J2

{
[(ωF1 + ωF2)(ωB1 + ωB2) − 2ωF1ωF2 − 2ωB1ωB2]K0

(
πρ
2 |ωB1 − ωB2|

)

× [πρ(ωF1 − ωF2) cosh (πρ(ωF1 − ωF2)) − sinh (πρ(ωF1 − ωF2))]

+ πρ(ωF1 − ωF2)
2|ωB1 − ωB2| sinh (πρ(ωF1 − ωF2)) K1

(
πρ
2 |ωB1 − ωB2|

) }
.

(17)

Note that the parity of N plays no role for the large-N behaviour of this correlation
function.
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Let us now discuss a few special cases motivated by applications mentioned above.

• The characteristic function of the “level curvatures”, Eq. (5) can be represented as a
special limit of C(bulk)

2,2 ,
〈 | det(E − H)| det(E − H)1/2

det(E + iω/N − H)1/2

〉
G O E,N→∞

= lim
ε→0

C(bulk)
2,2 (ε,−ε;−ε, ω)

∝ e
− i E

4J2 ω|ω|K1

(√
4J 2−E2

4J 2 |ω|
)
. (18)

The Fourier transform of this result (for brevity we choose E = 0, J = 1) yields the
curvature distribution,

P(c) = 1

4π

∫ ∞

−∞
dω|ω|K1

( 1
2 |ω|) exp(iωc) = (1 + 4c2)−3/2, (19)

which coincides with the expression found in earlier works by alternative methods [19,
20].

• The two averages featuring in Eq. (6) can be recovered as special cases from C(bulk)
2,2 and

are for the choice J = 1 given by〈
det2 H

det1/2(H2 + ω2

N 2 )

〉

G O E,N→∞
= C(bulk)

2,2 (0, 0;ω,−ω)

≈ 2

√
2N

π
e−N/2

[
ω2

3
K0 (|ω|) + |ω|K1 (|ω|)

]
, (20)

〈
det(H2 + ω2

N 2 )1/2
〉
G O E,N→∞ = C(bulk)

2,2 (ω,−ω;ω,−ω)

≈
√

2N

π
e−N/2

[(
cosh(2ω) − sinh(2ω)

2ω

)
K0(|ω|) + sinh(2|ω|)K1(|ω|)

]
. (21)

The above formulas have been already presented in [29,31], with derivation relegated to
the present paper. We tested the validity of (21) by direct numerical simulations of GOE
matrices of a moderate size, see Fig. 1.

• For the characteristic function of an off-diagonal element Kab of the K -matrix, see
Eq. (7), we choose to present the corresponding result only for the so-called “perfect
coupling” case, i.e. E = 0 and γa = γb = 1, the case of general γa �= γb following by a
trivial rescaling. It is given by

lim
N→∞

〈
| det H |

det(H2 + x2

N 2 )1/2

〉

G O E

= 2

π

( |x |
J

K0(|x |/J ) +
∫ ∞

|x |/J
dy K0(y)

)
. (22)

The ensuing distribution P(Kab) is then consequently given by its Fourier transform,

P(Kab) = 2

π2(1 + K 2
ab)

⎛
⎝1 + arsinh(Kab)

Kab

√
1 + K 2

ab

⎞
⎠. (23)

In the Appendix A we verify that this result is in complete agreement with Brouwer’s
conjecture claiming that K for the “perfect coupling” case is distributed as P(K ) ∝
det[1 + K 2]−(M+1)/2. We also check these expressions against direct numerical simula-
tions, see Fig. 2.
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Fig. 1 The correlation function C(bulk)
2,2 (ω, −ω;ω, −ω) from Eq. (21) against numerical results obtained from

a sample of 40,000 GOE-matrices of size 80 × 80
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Fig. 2 Distribution of an off-diagonal K -matrix element Kab (left) and its characteristic function (right). The
numerical results were obtained from samples of 40,000 GOE-matrices of size 80 × 80

• The M = 2 case of Eq. (10) features the correlation function
〈

det(E − H) sgn det(E − H)(−x1x2)

det1/2(E + iγ1x1
N − H) det1/2(E + iγ2x2

N − H)

〉

G O E

. (24)

Assume that x1x2 > 0 so that (−x1x2) = 0 and the sign-factor is immaterial. The
correlation function then takes the form of

C(bulk)
1,2 (0; γ1x1, γ2x2) ≈ e

−γ1x1−γ2x2
4J2 (i E+sgn x1

√
4J 2−E2)

, (25)

which simplifies even further to e
−|x1 |−|x2 |

2J for the “perfect coupling” case E = 0, γ1 =
γ2 = 1. In the opposite case x1x2 < 0 on the other hand the correlation function takes
the form 〈

| det(E − H)|
det1/2(E + iγ1x1

N − H) det1/2(E + iγ2x2
N − H)

〉

G O E

, (26)
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which is again a special case of C(bulk)
2,4 . In the particular case γ1x1 = −γ2x2 ≡ γ x , the

above expression assumes the same form as one needed for extracting the distribution
of a single off-diagonal element Kab, see Eqs. (7) and (22). While a full proof that K is
distributed according to the Cauchy distribution, Eq. (9), requires the knowledge of the
above expression for arbitrary values of x1 and x2, one can show that our partial results
for γ1x1 = −γ2x2 ≡ γ x are indeed consistent with Eq. (9), see Appendix B.

• Finally we notice that an interesting special case of C(bulk)
1,2 is the average of the sign of

the GOE characteristic polynomial given asymptotically by

〈sgn det(E − H)〉G O E,N→∞ = lim
ε→0

C(bulk)
1,2 (0; ε,−ε)

≈ 2J 2(−i/(2J ))N

√
π N (4J 2 − E2)3/4

[A(E, N ) + (−1)N A∗(E, N )],
(27)

where A(E, N ) is defined in Eq. (15).

2 Derivation of the Main Results

2.1 Evaluation of the Correlation Functions Eqs. (2) and (3)

At present the only systematic method for evaluating the ensemble averages C(bulk)
1,2 and C(bulk)

2,2
seems to be the so-called supersymmetric formalism, see [45] and references therein. Within
RMT framework several variants of that method are by now well-developed and we will
follow one of them proposed in [46]. We only outline the major steps of the procedure below
referring the interested reader to the cited literature and leaving technical detail for [47].
To that end we start with replacing the square roots of determinants in the denominator by
Gaussian integrals over N -component real vectors xi , and the determinants in the numerator
by integrals over vectors ζi whose N components are complex anticommuting (Grassmann)
variables. In that way the correlation function C(bulk)

1,2 can be represented by

C(bulk)
1,2 ∝

〈 ∫
dx1 e

i
2 s1xT

1 (E+iωB1/N−H)x1

∫
dx2 e

i
2 s2xT

2 (E+iωB2/N−H)x2

×
∫

d2ζ e− i
2 ζ †(E+iωF1/N−H)ζ

〉
, (28)

and similarly for C(bulk)
2,2 where we have to introduce one more integration over a vector of N

anticommuting components. Note that we have to introduce si ≡ sgn ωBi in order to render
the integrals over the commuting variables convergent.

The ensemble average can now easily be performed and yields for C(bulk)
2,2 the result,

〈e− i
2 [s1xT

1 Hx1+s2xT
2 Hx2−ζ

†
1 Hζ1−ζ

†
2 Hζ2]〉 = e− J2

4N [tr(Q B L)2− 1
2 tr Q2

F +ζ T
1 ζ2ζ

†
2 ζ ∗

1 −2ζ
†
1 Bζ1−2ζ

†
2 Bζ2]

,

(29)
where we introduced the N × N matrix B = s1x1 ⊗ xT

1 + s2x2 ⊗ xT
2 as well as the 2 × 2

matrices

QF =
[
ζ

†
1 ζ1 ζ

†
1 ζ2

ζ
†
2 ζ1 ζ

†
2 ζ2

]
, Q B =

[
xT

1 x1 xT
1 x2

xT
2 x1 xT

2 x2

]
, L =

[
s1 0
0 s2

]
. (30)
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A similar expression for C(bulk)
1,2 can be obtained from the above by replacing all terms con-

taining ζ2 with 0 so that QF becomes a scalar in this case. At the next step we employ a
Hubbard-Stratonovich transformation for the anticommuting variables only by exploiting the
identity

exp

(
J 2

8N
tr Q2

F

)
∝
∫

d Q̂F exp

(
− tr Q̂2

F + J√
2N

tr Q̂F QF

)
, (31)

where Q̂F =
[

q11 q12

q∗
12 q22

]
is a Hermitian 2 × 2 matrix of commuting variables for C(bulk)

2,2

and a single scalar variable Q̂F ≡ q for C(bulk)
1,2 . For C(bulk)

2,2 we also need to bilinearise the

term ζ T
1 ζ2ζ

†
2 ζ ∗

1 which can be achieved by introducing an auxiliary Gaussian integral over a
complex variable u, with u∗ standing for its conjugate:

exp

(
− J 2

4N
ζ T

1 ζ2ζ
†
2 ζ ∗

1

)
=
∫

d2u exp

(
−u∗u − i J

2
√

N
(uζ

†
1 ζ ∗

2 + u∗ζ T
2 ζ1)

)
. (32)

With the integrand being bilinear in the Grassmann vectors it is easy to perform the integration
over the anticommuting variables explicitly. The resulting expression in both cases depends
on the x-vectors only via the eigenvalues of the matrix Q B L . This allows us to follow the
route explained in detail in [43,46] and to employ the identity from Appendix D of [48]:∫

dx1 . . .

∫
dxn F(Q B) ∝

∫
Q̂ B>0

d Q̂ B(det Q̂ B)
N−n−1

2 F(Q̂ B), (33)

which helps one to replace the integration over n real vectors of dimension N by an integral
over a positive definite real symmetric matrix Q̂ B of dimension n × n, where in both our
cases actually n = 2. In the first case this procedure leads us after a trivial rescaling of the
integration variables to

C(bulk)
1,2 ∝

∫ ∞

−∞
dq q N−2 e

− N
2J2 (q−i E+ ωF

N )2
∫

Q B>0
d Q B(det Q B L)

N−3
2 det (q − Q B L)

× e
− N

4J2 tr(Q B L)2
e

i N
2J2 tr Q B L MB , (34)

where for notational convenience we omitted the hats here and henceforth. Similarly, in the
second case we arrive at

C(bulk)
2,2 ∝

∫
Q B>0

d Q B(det Q B L)
N−3

2 e
− N

4J2 tr(Q B L)2+ i N
2J2 tr Q B L MB

∫
d2u e

− N
J2 u∗u

×
∫

d QF e
− N

2J2 tr Q2
F − i N

J2 tr QF MF + N
2J2 tr M2

F
[
det QF − u∗u

]N−2

×
2∏

j=1

[
det QF − u∗u + λ

( j)
B tr QF + (λ

( j)
B )2

]
. (35)

Here we introduced the 2 × 2 matrices MB(F) = E12 + i
N diag(ωB1(F1), ωB2(F2)) and used

λB1 and λB2 for the real eigenvalues of the 2 × 2 non-selfadjoint matrix Q B L , see [43,46]
for technical details.

Setting aside the issue of performing the integration over the matrix Q B for the time being,
in the first case the procedure leaves us with a single q-integration whereas in the second case
we have to deal with an integral over the 2 × 2 Hermitian matrix QF which contains four
independent variables, and in addition with integrals over the complex variable u. To simplify
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742 Y. V. Fyodorov, A. Nock

the integrand we then use that QF can be diagonalised by a unitary transformation QF =
U diag(qF1, qF2)U †. The integration over the unitary group can then be performed using
the Itzykson–Zuber–Harish–Chandra (IZHC) formula[14,15] which reduces the integration
variables to the set qF1, qF2, u and u∗. Next we note that by introducing a matrix R =[

qF1 u
u∗ qF2

]
one can express the integrand in terms of R (note e.g. that det QF −u∗u = det R,

tr Q2
F +2u∗u = tr R2 etc.). This latter matrix is Hermitian as well, so can also be diagonalized

by a unitary transformation R = U2 diag(r1, r2)U
†
2 . Although the group integral is not of

the IZHC type in this case, it still can be performed explicitly. Following this procedure the
correlation function simplifies to

C(bulk)
2,2 ∝ e

N
2J2 tr M2

F

(ωF1 − ωF2)3

∫
Q B>0

d Q B(det Q B L)
N−3

2 e
− N

4J2 tr(Q B L)2+ i N
2J2 tr Q B L MB

×
∫ ∞

−∞
dr1

∫ ∞

−∞
dr2 e

− N
2J2 (r2

1 +r2
2 )− i N E

J2 (r1+r2)+ 1
2J2 (r1+r2)(ωF1+ωF2)

× (r1 − r2)(r1r2)
N−2(r1 + λ

(1)
B )(r2 + λ

(1)
B )(r1 + λ

(2)
B )(r2 + λ

(2)
B )

×
[

(r1 − r2)(ωF1 − ωF2)

2J 2 cosh

(
(r1 − r2)(ωF1 − ωF2)

2J 2

)

− sinh

(
(r1 − r2)(ωF1 − ωF2)

2J 2

)]
. (36)

At the final step we aim at simplifying the integral over Q B , which in both cases is a 2 × 2
real symmetric positive definite matrix. As the integrands in (34) and (36) actually depend
on the combination Q B L we change the integration from Q B to Q B L . Recall that the matrix
L = diag(sgn ωB1, sgn ωB2) reflects the signs of ωB1 and ωB2 and this fact will play now
a crucial role. If ωB1 and ωB2 are of the same sign, L is proportional to the identity and
hence Q B L is still positive definite real symmetric and can be diagonalized by an orthogonal
transformation Q B L = ±O diag(p1, p2)OT . If, however, the signs are different (we may
assume for definiteness ωB1 > 0 and ωB2 < 0), then the matrix Q B L will have an underlying
hyperbolic symmetry and can be parametrised as [43,46]

Q B L =
[ p1−p2

2 + p1+p2
2 cosh θ

p1+p2
2 sinh θ

− p1+p2
2 sinh θ

p1−p2
2 − p1+p2

2 cosh θ

]
, (37)

where p1, p2 > 0 and θ ∈ (−∞,∞). The only term in the integrands (34) and (36) which
actually depends on θ is tr Q B L MB = E(p1 − p2) + i

2N [(p1 − p2)(ωB1 + ωB2) + (p1 +
p2)(ωB1 − ωB2) cosh(2θ)]. For the sgn ωB1 = sgn ωB2 case one obtains the same type of
expression with p2 → −p2 and cosh(2θ) → cos(2θ). The θ -integration can be performed
explicitly using

∫ 2π

0
dθ e

− ωB1−ωB2
4J2 (p1−p2) cos(2θ) = 2π I0

(
ωB1 − ωB2

4J 2 (p1 − p2)

)
, (38)

∫ ∞

−∞
dθ e

− ωB1−ωB2
4J2 (p1+p2) cosh(2θ) = 2K0

(
ωB1 − ωB2

4J 2 (p1 + p2)

)
, (39)

where I0(x) and K0(x) stand for the modified Bessel function of the first and second kind,
respectively. in this way we arrive at the final expression which is exact for arbitrary value
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of N ,

C(bulk,+−)
1,2 ∝

∫ ∞

−∞
dq q N−2 e

− N
2J2 (q−i E)2− ωF

J2 (q−i E)− ω2
F

2N J2

×
∫ ∞

0
dp1

∫ ∞

0
dp2 (p1 p2)

N−3
2 e

− N
4J2 (p2

1+p2
2)+ i N E

2J2 (p1−p2)− ωB1+ωB2
4J2 (p1−p2)

× K0

(
(ωB1 − ωB2)(p1 + p2)

4J 2

)
(q − p1)(q + p2)(p1 + p2). (40)

and

C(bulk,+−)
2,2 ∝ e

N
2J2 tr M2

F

(ωF1 − ωF2)3

∫ ∞

0
dp1

∫ ∞

0
dp2 (p1 p2)

N−3
2 e

− N
4J2 (p2

1+p2
2)+ i N E

2J2 (p1−p2)

×
∫ ∞

−∞
dr1

∫ ∞

−∞
dr2 (r1r2)

N−2 e
− N

2J2 (r2
1 +r2

2 )− i N E
J2 (r1+r2)

× (r1 − r2)(p1 + p2)(r1 + p1)(r2 + p1)(r1 − p2)(r2 − p2)

× e
(r1+r2)(ωF1+ωF2)

2J2 e
− (p1−p2)(ωB1+ωB2)

4J2 K0

(
(ωB1 − ωB2)(p1 + p2)

4J 2

)

×
[

(r1 − r2)(ωF1 − ωF2)

2J 2 cosh

(
(r1 − r2)(ωF1 − ωF2)

2J 2

)

− sinh

(
(r1 − r2)(ωF1 − ωF2)

2J 2

)]
. (41)

The superscript +− is to remind us that the expression corresponds to the choice ωB1 > 0
and ωB2 < 0. The expression for equal signs can be obtained from the above by replacing
p1 → + sgn(ωB1)p1, p2 → − sgn(ωB1)p2, p1 + p2 → |p1 − p2| and K0 → I0.

So far our manipulations were exact and did not use any approximation. As was explained
in the introduction we are mainly interested in extracting the “bulk” large-N asymptotic of
these correlation functions. The most natural way to proceed from here is by performing
a saddle-point analysis. We believe with due effort such analysis can be done with full
mathematical rigor, see e.g. a recent paper [49], but we do not attempt it here concentrating
on explaining the gross structures of the saddle-point analysis which yield the correct results.

For the case of different signs the saddle points of the integrand are given by

pS P
1 = i E + √

4J 2 − E2

2
, pS P

2 = −i E + √
4J 2 − E2

2
,

q S P = r S P
1,2 = −i E ± √

4J 2 − E2

2
. (42)

For p1 and p2 only solutions with positive real parts are contributing to the asymptotics.
There is no such restriction for q or r1 and r2, respectively, and we have two saddle points
contributing in each of these variables. Hence for C(bulk,+−)

1,2 the final expression is given

by the sum of two different saddle-point contributions. For C(bulk,+−)
2,2 there are in principle

four different contributions. However, the contributions from the saddle points satisfying
r S P

1 = r S P
2 are actually negligible due to the factor r1 − r2 in the integrand. Moreover the

integrand is invariant under exchanging r1 and r2, and hence the two remaining contributions
are identical. It therefore suffices to choose for r S P

1 the solution with positive real part and for
r S P

2 the one with negative real part. One may further notice that the integrand itself vanishes
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when evaluated at the saddle points due to the factors (q − p1)(q + p2) and (r1 + p1)(r2 +
p1)(r1 − p2)(r2 − p2) . This fact makes it necessary to expand the integrand to a higher order
around the saddle points. The corresponding calculation is rather tedious, but managable. We
refrain from presenting it here and refer the interested reader to [47] for technical detail. The
outcome of the analysis are precisely the formulae given in Eqs. (14) and (17).

The case of same signs looks quite different. Here the saddle points are given by

pS P
1 = pS P

2 = is E + √
4J 2 − E2

2
, q S P = −r S P

1,2 = i E ± √
4J 2 − E2

2
, (43)

where s ≡ sgn ωB1 = sgn ωB2. Again we must choose pS P
1 and pS P

2 to have a positive

real part, so that two contributions arise for C(bulk)
1,2 and four for C(bulk)

2,2 . However, the term

(q−sp1)(q−sp2) is only nonvanishing if we choose q S P = −spS P
1 , contributions for all other

choices becoming subdominant. For C(bulk)
2,2 the same arguments as before suggest to choose

for r S P
1 the solution with positive real part and for r S P

2 with negative real part neglecting the
other three contributions. While the integrand still vanishes at he saddle points due to the
factor |p1 − p2| and for C(bulk)

2,2 due to the factors (r1 +sp1)(r2 +sp1)(r1 +sp2)(r2 +sp2), the
saddle point analysis is now much simpler than in the previous case. Indeed, when extracting
the leading-order contribution one has to replace p1 = pS P

1 + ξ1 (with ξ1 parametrizing the
integration around the relevant saddle point) and similarly for the other variables, and then
expand the N -independent part of the integrand to zero-th order in ξ1 etc. (apart from the
factors which come naturally in first order like |p1 − p2| = |ξ1 − ξ2|). It is then readily seen
that the corresponding integrals yield a nonvanishing contribution rather straightforwardly
without need to expand the integrand to higher orders like it was necessary in the previous
case of opposite signs. The results of such saddle-point analysis is then much simpler and is
given in Eqs. (13) and (16).

2.2 Distribution of Kab via Eq.(8)

For the correlation function (8) associated with the distribution of an individual off-diagonal
K -matrix element we consider for simplicity only the perfect coupling case E = 0 and
γa = γb = 1, see Eq. (22)). For evaluating the ensemble average we first tried to follow
the same method as described in the previous section. In this way we started with writing

det(H2 + x2

N 2 )1/2 = det(H + i x
N )1/2 det(H − i x

N )1/2 and | det H | = (det H)2/| det H | =
limε→0(det H)2 det(H + iε

N )−1/2 det(H − iε
N )−1/2 and then replaced the square roots of

characteristic polynomials in the denominator by four Gaussian integrals over real commuting
vectors and those in the numerator by Gaussian integrals over two vectors with anticommuting
components. The ensemble averaging then yields a 4 × 4 Q B-matrix, but we found no
efficient ways of evaluating the ensuing group integral over the diagonalizing matrices. We
also attempted a direct saddle-point analysis for large N along the same lines as before, and
found it to become very tedious as not only the zero-th and first, but also the second order
of the integrand expansion in fluctuations around the relevant saddle points turned out to be
vanishing at the saddle points. Expanding to an even higher order with the group integrals
still present did not seem to us as a viable option.

Confronted with those difficulties we followed a different method (inspired by the insights
from [30]) which avoids introducing anticommuting variables altogether. We demonstrate it
first for the correlation function C(bulk)

1,2 . For brevity we will consider only the simplest case
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E = 0 where such object can be written as

C(bulk)
1,2 (ωF ;ωB1, ωB2) =

〈
det( iωF

N − H)

det1/2(H2 − ωB1ωB2
N 2 − i H ωB1+ωB2

N )

〉
G O E,N→∞

. (44)

We start with representing only the denominator by a Gaussian integral over a real
N -component vector S and hence get

C(bulk)
1,2 =

∫
dS e

ωB1ωB2
2N2 S2

�(S, ωF , ωB1 + ωB2), (45)

where

�(S, ωF , ωB1+ωB2)=
〈

det( iωF
N −H)

(2π)N/2 exp

[
−1

2
ST

(
H2−i H

ωB1+ωB2

N

)
S
]〉

G O E,N→∞
.

(46)
Note that the above integral is well-defined only for ωB1 and ωB2 having different signs,
otherwise the term ωB1ωB2/N 2 > 0 would render the integral divergent.

Let us further assume that ωB1 = −ωB2 ≡ ωB , such that the linear term −i H ωB1+ωB2
N

vanishes. Such assumption is not necessary to make the method functional but helps to sim-
plify the presentation considerably. Next we parametrize the vector S of integration variables
as S = |S|Oe1, where e1 = [1, 0, . . . , 0] is an N -dimensional unit vector and O is an orthog-
onal matrix: O−1 = OT . Since both the determinant factor and the GOE probability density
P(H) in (46) are invariant under orthogonal transformations H → O−1 H O the matrices
O, OT can be omitted. The term eT

1 H2e1 then suggests that it is advantageous to decompose
H as

H =
[

H11 hT

h HN−1

]
, (47)

where h is a real N − 1-component vector, HN−1 is the (N − 1) × (N − 1) subblock of H
and H11 is the first element of H . With such a decomposition one is able to integrate out the
variable H11 as well as the vector h, which leads to

C(bulk)
1,2 ∝

∫
dS

iωF
N I1 − 1

|S|2+ N
J2

I2

(
|S|2 + N

J 2

) N−1
2
(
|S|2 + N

2J 2

)1/2
exp

[
− ω2

B

2N 2 |S|2
]
, (48)

where we have introduced the short-hand notations I1 = 〈det( iωF
N − HN−1)〉N−1 and

I2 =
〈
det( iωF

N − HN−1) tr( iωF
N − HN−1)

−1
〉

N−1
where the ensemble average should be

performed over the (N − 1) × (N − 1) GOE matrix HN−1. Moreover, it actually suffices to
know only I1 since I2 = −i N d I1

dωF
. As is well-known I1 is proportional to the Hermite polyno-

mial: I1 ∝ HN−1(iωF/(
√

N J )), so that asymptotically we have I1 ∝ eωF /J +(−1)N e−ωF /J .
It remains to perform the S-integration for which it is advantageous to introduce rescaled
polar coordinates, such that |S|2 = N 2 R. The problem then reduces to performing the single
integral

C(bulk)
1,2 ∝

∫ ∞

0

d R

R

ωF I1 + 1
R(1+ 1

N J2 R
)

d I1
dωF

(1 + 1
N J 2 R

)
N−1

2 (1 + 1
2N J 2 R

)1/2
exp

[
−ω2

B

2
R

]
. (49)
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For large N � 1 it is easy to verify that the leading contribution to the integral can be written
as

C(bulk)
1,2 ∝

∫ ∞

0

d R

R

(
ωF I1 + 1

R

d I1

dωF

)
exp

[
−ω2

B

2
R − 1

2J 2 R

]

∝
(

e
ωF

J + (−1)N e− ωF
J

)
ωF K0

( |ωB |
J

)
+
(

e
ωF

J − (−1)N e− ωF
J

)
|ωB |K1

( |ωB |
J

)
,

(50)

which indeed coincides with the earlier derived expression for C(bulk)
1,2 (ωF ;ωB ,−ωB) from

Eq. (14).
Now we follow the same route for evaluation of the correlation function (8). We will only

outline the key steps and differences from the previous case, but refrain from presenting
intermediate results relegating them to [47]. One starts with replacing only the square roots
of the characteristic polynomials in the denominator by Gaussian integrals, which leads us
to

R(x) = lim
ε→0

1

(2π)N

∫
dS1

∫
dS2 e

− 1
2N2 (x2ST

1 S1+ε2ST
2 S2)

�(S1, S2), (51)

where S1 and S2 are two real N -component vectors, and

�(S1, S2) =
〈
det H2 e− 1

2 tr H2 Q
〉
, Q = S1 ⊗ ST

1 + S2 ⊗ ST
2 . (52)

In contrast to a single vector S in the previous case we now have to deal with two real
vectors S1 and S2, which we can conveniently combine into the matrix Q. Such a rank-
two N × N matrix has two nonzero eigenvalues which we call q1 and q2, all other N −
2 eigenvalues being identically zero. Being real symmetric Q can be diagonalised by an
orthogonal transformation: Q = O diag(q1, q2, 0, . . . , 0)OT and the orthogonal matrices
can be omitted from the integrand by the same invariance reasons as before. Owing to this
structure we can conveniently decompose H into its upper left 2 × 2 block, its lower right
(N −2)×(N −2) block HN−2 and the two ensuing off-diagonal blocks. It is easy to integrate
out all variables apart from those entering HN−2 and get, with a slight abuse of notations:

�(S1, S2) → �(q1, q2) = (2π)3/2

√
a1a2a3

(
4π2

√
c1c2

)N/2 〈
det H2

N−2

{
1

a1a2
+ 3

(a1 + a2)2

+
(

1

a2c2
1

+ 1

a1c2
2

) [
2trA2 + (trA)2]+ 2

c1c2(a1 + a2)

[
3trA2 − (trA)2]

+ 1

c2
1c2

2

(
(trA)4 − 8trA trA3 + 7(trA2)2 + 2(trA)2 trA2 − 2trA4)

}〉
G O E,N−2

(53)

where we used the notations

A = H−1
N−2, a1,2 = q1,2 + N

J 2 , c1,2 = q1,2 + 2
N

J 2

The result then reduces to performing ensemble averages over expressions det H2
N−2

multiplied with various powers of traces of the inverse matrices H−k
N−2 for a few instances

of positive integers k. One may notice that all the required averages can be represented as
derivatives of the correlation function of two GOE characteristic polynomials, using e.g. the
identities
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det H2
N−2

(
(trH−1

N−2)
2 − trH−2

N−2

)
= lim

ξ1,ξ2→0

∂2

∂ξ2
1

[
det(HN−2 − ξ1) det(HN−2 − ξ2)

]

det H2
N−2

(
(trH−1

N−2)
2
)

= lim
ξ1,ξ2→0

∂2

∂ξ1∂x2

[
det(HN−2 − ξ1) det(HN−2 − ξ2)

]

and similarly for the higher powers. As a result for the object featuring in (53) we have:

�(q1, q2) = lim
ξ1,ξ2→0

Dξ1,ξ2(q1, q2)[〈det(HN−2 − ξ1) det(HN−2 − ξ2)〉G O E,N−2, (54)

where the differential operator Dξ1,ξ2(q1, q2) is explicitly given by

Dξ1,ξ2(q1, q2) = (2π)3/2

√
a1a2(a1 + a2)

(
4π2

c1c2

) N
2 −1

{(
1

a2c2
1

+ 1

a1c2
2

)(
3

∂2

∂ξ1∂ξ2
− 2

∂2

∂ξ2
1

)

+ 2

c1c2(a1 + a2)

(
2

∂2

∂ξ1∂ξ2
− 3

∂2

∂ξ2
1

)
+
(

1

a1a2
+ 3

(a1 + a2)2

)

+ 1

3c2
1c2

2

(
∂4

∂ξ4
1

+ 18
∂4

∂ξ2
1 ∂ξ2

2

− 16
∂4

∂ξ3
1 ∂ξ2

)}
. (55)

The ensemble average of the product of two GOE characteristic polynomials is known
and for large N is given asymptotically by (see e.g. [50])

〈det(HN−2 − ξ1) det(HN−2 − ξ2)〉G O E ∝
sinh

(
ξ1−ξ2

J

)
− ξ1−ξ2

J cosh
(

ξ1−ξ2
J

)
(ξ1 − ξ2)3 . (56)

Using this result, and taking the necessary derivatives and the limits ξ1, ξ2 → 0, we finally
get an explicit expression for �(q1, q2).

The last step is to perform the integrals over S1 and S2, see Eq. (51). In the previous case we
could reduce integration over S1 to a single integration in polar coordinates. Similarly we can
now exploit the invariance of the integrand and exploit the identity (33). In this way we can
restrict the integration to the manifold of positive definite real symmetric 2×2 matrices with
eigenvalues q1 and q2. Extracting the leading large-N -asymptotics is then a straightforward
exercise and we finally end up with the integral representation

R(x) ∝
∫ ∞

0
dq1

∫ ∞

0
dq2

|q1 − q2|
q1q2

√
q1 + q2

I0

[
(x2 − ε2)(q1 − q2)

4J 2

]

× exp

[
−1

2

(
1

q1
+ 1

q2
+ (q1 + q2)(x2 + ε2)

2J 2

)]

×
{

(1 + q1)(1 + q2)

q2
1 q2

2

+ 3

(q1 + q2)2 + 2

q1q2(q1 + q2)

}
. (57)

Note that here the limit ε → 0 is implied, which can now trivially be performed. It turns out
that this rather complicated-looking integral is actually proportional to

R(x) ∝ |x |
J

K0 (|x |/J ) +
∫ ∞

|x |/J
dy K0(y). (58)

A way to verify this claim is to differentiate both equations (assuming for definiteness x > 0,
J = 1) with respect to x . The derivative of Eq. (58) is x K1(x), and the derivative of (57) is
x times a certain two-fold integral which with some efforts can be shown to be proportional
to K1(x). The details of this calculation are relegated to [47].
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3 Conclusions and Open Problems

In this paper we have started the program of systematic evaluation of correlation functions
(1) involving half-integer powers of the characteristic polynomials of N × N GOE matrices.
Motivated by diverse applications outlined in the introductory section we mainly concentrated
on extracting the asymptotic behaviour of several objects of that type as N → ∞. Our
calculations were based on variants of the supersymmetry method or related techniques.
The method in a nutshell amounts to replacing the initial average involving the product of
K characteristic polynomials divided by L square roots of characteristic polynomials of
N × N GOE matrices H with an average over the sets of K × K matrices QF and L × L
matrices Q B > 0 with Gaussian weights augmented essentially with the factors det Q B and
det QF raised to powers of order N , see e.g. (35). As we are eventually mostly interested
in K , L fixed but N → ∞ this replacement is very helpful as it allows to employ saddle-
point approximations. In this paper we managed to perform all steps of such a procedure
successfully only for relatively small values of K and L , but we hope that the general case
can eventually be treated along similar lines. One reason and guiding principle for a moderate
optimism is as follows. An inspection of a somewhat simpler example of β = 2 shows, see
in particular [2], that the success of our method is deeply connected to the existence of the
so-called duality relations for Gaussian ensembles, see [51] for a better understanding of such
dualities. In particular, the Proposition 7 of the latter paper shows that one of such duality
relations exists for general Gaussian β-ensembles with β > 0 for an object involving the
ensemble average of the product of the corresponding characteristic polynomials raised to
the power −β/2. For the GOE with β = 1 that object (see Proposition 2 in [51]) is exactly the
particular case of (1) with K = 0 and arbitrary integer L which makes a contact to the present
context; e.g. one can employ such a duality to reproduce the relation (11) in an alternative
way. A deeper understanding of connections between the supersymmetric approach and the
duality relations for Gaussian ensembles will certainly be helpful in dealing efficiently with
asymptotics of (1) for arbitrary integer values K and L . The problem of revealing possible
Pfaffian-determinant structures behind (1) for finite matrix size N remains at the moment
completely outstanding. It may well be that the methods of [6,7] or relations to generalized
hypergeometric functions noticed for some particular instances in [44] could be useful for
clarifying that issue.
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Appendix A: Evaluation of the Distribution for Kab Using Brouwer’s Conjecture

We show that the matrix Cauchy-type probability density P(K ) ∝ det[1+K 2]−(M+1)/2 leads
to the same answer for the distribution of an off-diagonal matrix element as the Hamiltonian
approach, given in Eq. (23). Without loss of generality we may choose M = 2 when we have
explicitly

P(K ) ∝ [
(1 + K 2

11)(1 + K 2
22) + 2K 2

12(1 − K11 K22) + K 4
12

]−3/2
. (59)
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In order to obtain the probability density for K12 we need to integrate out the other two
variables. We start with integrating out the variable K22. The integrand is of the form (aK 2

22 +
bK22 + c)−3/2 =

[
a(K22 + b

2a2 )2 − b2

4a + c
]−3/2

with a = 1 + K 2
11, b = −2K11 K 2

12, c =
1+ K 2

11 +2K 2
12 + K 4

12. Now we change variables
√

a
D (K22 + b

2a2 ) → K22 where we denoted

D = c − b2

4a = (1+K 2
11+K 2

12)2

1+K 2
11

> 0. The joint probability density of K11 and K12 is then given

by

P(K11, K12) ∝ 1√
aD

∫ +∞

−∞
d K22(

1 + K 2
22

)3/2 = 2√
aD

=
2
√

1 + K 2
11(

1 + K 2
11 + K 2

12

)2 . (60)

To integrate out K11 we change variables K11 = y
a

√
1

1−y2/a2 , with a = K12√
1+K 2

12

. As the

integrand is even the integral transforms to

∫ +∞

−∞
d K11

√
1 + K 2

11(
1 + K 2

11 + K 2
12

)2 ∝ 1

K12
(
1 + K 2

12

)3/2

∫ a

0

dy(
1 − y2

)2 . (61)

The integration on the right-hand side can be easily performed as
∫ a

0

dy

(1 − y2)2 = a

1 − a2 −
∫ a

0

y2

(1 − y2)2 dy = 1

2

(
a

1 − a2 +
∫ a

0

dy

1 − y2

)
, (62)

with the last integral on the right yielding artanh a. In this way we arrive at the probability
density for K12 in the form

P(K12) ∝ 1

K12
(
1 + K 2

12

)3/2

(
a(K12)

1 − a2(K12)
+ artanh a(K12)

)
. (63)

It can be finally brought to the form of Eq. (23) by reinserting a(K12) = K12√
1+K 2

12

and

employing the identity artanh
(

x√
1+x2

)
= arsinh x .

Appendix B: Consistency Between Eq. (26) and Brouwer’s Conjecture

We show that the characteristic function of the probability density P(K ) in the case M = 2
given in Eq. (26) is fully consistent with the claim that P(K ) ∝ det[1 + K 2]−3/2. For the
particular choice γ1x1 = −γ2x2 ≡ γ x the expression Eq. (26) is equivalent to Eq. (22) (for
brevity we choose γ = 1). Our task then amounts to demonstrating that∫

d K e
i
2 Tr K X det[1 + K 2]−3/2 ∝ x K0(x) +

∫ ∞

x
dyK0(y), (64)

where X can be chosen diagonal, X = diag(x,−x). Since K is symmetric we can diagonalise
it by an orthogonal transformation, K = O diag(k1, k2)OT . Choosing for O the standard
parametrization of a 2 × 2 orthogonal matrix, the left-hand side of Eq. (64) then simplifies to

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

|k1 − k2|
(1 + k2

1)3/2(1 + k2
2)3/2

∫ 2π

0
dφ e

i
2 x(k1−k2) cos(2φ). (65)
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The integral over the angle yields a Bessel function, and can also be rewritten in the form∫ 2π

0 dφ e
i
2 x(k1−k2) sin(2φ). Now note that 1

2 (k1 −k2) sin(2φ) ≡ −K12, which allows to present
Eq. (65) in the form ∫

d K e−i x K12 det[1 + K 2]−3/2. (66)

This is precisely the Fourier transform of P(K12), which due to Appendix A is proportional
to x K0(x) + ∫∞

x dyK0(y). This shows the validity of the claim (64).
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