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A sign misprint in the statement of Proposition 3.1 in [1] has a consequence in the statement of
the main Theorem 1.1 in [1]. We write a short note in which we present the correct statements.

The correct version of Proposition 3.1 in [1] is the following one.

Proposition 0.1 Let A : R
3 → R

3. For any φ = φ(x) ∈ C∞
0 (R3; C

2), the following identity
holds∫

R3
r |σ · ∇Aφ|2 =

∫
R3

r
∣∣∣∂ A

r φ

∣∣∣2
dx (0.1)

+
∫

R3
r

∣∣∣∣1

r
(σ · L A + 1) φ

∣∣∣∣
2

dx −
∫

R3

|φ|2
r

dx

+
∫

R3
〈σ · [∂r (x ∧ A)]φ, φ〉 dx −

∫
R3

〈σ · (x ∧ ∇ Ar ) φ, φ〉 dx

The online version of the original article can be found under doi:10.1007/s10955-014-0915-0.
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where r := |x |, ∂ A
r := x

r · ∇A, and Ar := A · x
r .

The main difference between Proposition 3.1 in [1] and the proposition above is the
negative sign in from of the last term in (0.1).

We also underline that the identity (0.1) follows by the identities (3.7) and (3.11) in [1],
whose proof given in [1], is correct.

In order to present a correct version of Theorem 1.1 in [1] we first need the following
version of Proposition 2.1 in [1].

Proposition 0.2 Let B : R
3 \ {0} → R

3, and assume that there exists a vector potential
A : R

3 → R
3 such that the following holds

A · x = 0, A(λx) = λ−1 A(x), curl A(x) = B(x), (0.2)

for all x ∈ R
3 \ {0}, λ 	= 0. Then we have

∂r (x ∧ A) − x ∧ ∇
(

A · x

r

)
= 0 (0.3)

for ∈ R
3 \ {0}.

Proof The proof is quite immediate. Due to the first condition in (0.2), one has x ∧ ∇
(A · x/r) = 0. Moreover, since A is homogeneous of degree −1, then x ∧ A is homogeneous
of degree 0, hence ∂r (x ∧ A) ≡ 0. ��

We can now state the new and correct version of Theorem 1.1 in [1].

Theorem 0.1 Let B : R
3 \ {0} → R

3, and assume that there exists a vector potential
A : R

3 → R
3 such that the following holds

A · x = 0, A(λx) = λ−1 A(x), curl A(x) = B(x), (0.4)

for all x ∈ R
3 \ {0}, λ 	= 0. Then, for any φ = φ(x) ∈ C∞

0 (R3; C
2), the following inequality

holds

μ1

∫
R3

|φ|2
|x | dx ≤

∫
R3

1

|x | |(σ · L A + 1) φ|2 dx ≤
∫

R3
|x | |σ · ∇Aφ|2 dx, (0.5)

where μ1 = μ1(A) = inf {spec(σ · L A + 1) ∩ [0,∞)}.
Proof The proof is an immediate corollary of Propositions 0.1 and 0.2, and the usual radial
Hardy inequality. ��
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