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Abstract Phase diagram based on the mean square displacement (MSD) and the distribution
of diffusion coefficients of the time-averaged MSD for the stored-energy-driven Lévy flight
(SEDLF) is presented. In the SEDLF, a random walker cannot move while storing energy, and
it jumps by the stored energy. The SEDLF shows a whole spectrum of anomalous diffusions
including subdiffusion and superdiffusion, depending on the coupling parameter between
storing time (trapping time) and stored energy. This stochastic process can be investigated
analytically with the aid of renewal theory. Here, we consider two different renewal processes,
i.e., ordinary renewal process and equilibrium renewal process, when the mean trapping
time does not diverge. We analytically show the phase diagram according to the coupling
parameter and the power exponent in the trapping-time distribution. In particular, we find
that distributional behavior of time-averaged MSD intrinsically appears in superdiffusive as
well as normal diffusive regime even when the mean trapping time does not diverge.

Keywords Anomalous diffusion · Distributional ergodicity · Stochastic model

1 Introduction

In normal diffusion processes, the diffusivity can be characterized by the diffusion coefficient
in the mean square displacement (MSD). However, many diffusion processes in nature show
anomalous diffusion; that is, the MSD does not grow linearly with time but follows a sublinear
or superlinear growth with time,

〈x2
t 〉 ∝ tβ (β �= 1), (1)
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where xt is a position in one-dimensional coordinate, t is time, and 〈·〉 means an ensemble
average. In particular, anomalous diffusion in biological systems has been found by single-
particle tracking experiments [13,19,20,22,40,43,44]. Thus, the power-law exponent β is
one of the most important quantities characterizingthe underlying diffusion process. Espe-
cially, anomalous diffusion with β < 1 is called subdiffusion and that with β > 1 is called
superdiffusion.

Although anomalous diffusion can be characterized by the power-law exponent β in the
MSD, the exponent cannot reveal the underlying physical nature in itself. This is because the
same power-law exponent in the MSD does not imply that the physical mechanism in the
anomalous diffusion is also the same. Therefore, clarifying the origin of anomalous diffusion
is an important subject, and many researches on this issue have been conducted extensively
[23,29,30,32,41]. One of the key properties characterizing anomalous diffusion is ergodicity,
i.e., time-averaged observables being equal to a constant (the ensemble average). In some
experiments [19,20,22,40,44], (generalized) diffusion coefficients for time-averaged MSDs
show large fluctuations, suggesting that ergodicity breaks.

In stochastic models of anomalous diffusion, continuous-time random walk (CTRW)
shows a prominent feature called distributional ergodicity [21,27,33,34]; that is, the time-
averaged observables obtained from single trajectories do not converge to a constant but the
distribution of such time-averaged observables converges to a universal distribution (conver-
gence in distribution). More precisely, the distribution of the time-averaged MSD (TAMSD),
which is defined by

δ2(�; t) ≡ 1

t −�

∫ t−�

0
(xt ′+� − xt ′)

2dt ′, (2)

converges to the Mittag-Leffler distribution of order α [5,21]. This statement can be repre-
sented by

δ2(�; t)

〈δ2(�; t)〉
⇒ Mα as t → ∞, (3)

for a fixed � (� t), where Mα is a random variable with the Mittag-Leffler distribution
of order α. We note that the diffusion coefficients in the TAMSDs are also distributed
according to the Mittag-Leffler distribution because the TAMSD shows normal diffusion,
i.e, δ2(�; t) � Dt� [33,34], where we refer to Dt as the diffusion coefficient. In stochastic
models, such distributional behavior originates from the divergent mean trapping time. In
diffusion in a random energy landscape such as a trap model [11], the trapping-time distri-
bution follows a power law, w(τ) ∝ τ−1−α , if heights of the energy barrier are distributed
according to the exponential distribution. The exponent α smaller than 1 implies a divergence
of the mean. In dynamical systems, this divergent mean brings an infinite measure [4]. Thus,
such distributional behavior of time-averaged observables is also shown in infinite ergodic
theory [1,5]. Moreover, large fluctuations of time-averaged observables, related to distribu-
tional ergodicity, have been observed in biological experiments [19,20,22,40,44] as well as
quantum dot experiments [12,39].

Recently, we have shown that the distribution of the diffusion coefficients of the TAMSDs
in the stored-energy-driven Lévy flight (SEDLF) is different from that in CTRW [6]. The
SEDLF is a CTRW with jump lengths correlated with trapping times [24,26,28]. One of
the most typical examples for such a correlated motion can be observed in Lévy walk [38].
However, Lévy walk and SEDLF are completely different stochastic processes in that a
random walker cannot move while it is trapped in SEDLF, whereas it can move with constant
velocity in Lévy walk. In other words, in SEDLF, a random walker does not move while
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storing a sort of energy, and it jumps using the stored energy (see Fig. 1). When the trapping-
time distribution follows a power-law, the jump length distribution also follows a power-law,
the same as in Lévy flight. Since we consider a power-law trapping-time distribution, we refer
to our model as the stored-energy-driven Lévy flight. We note that the MSD does not diverge
in SEDLF, whereas it always diverges in Lévy flight. Although the ensemble-averaged MSDs
show subdiffusion as well as superdiffusion, the TAMSDs always increase linearly with time
in SEDLF [6]. This behavior is completely different from that in Lévy walk [2,17]. Moreover,
the distribution of the TAMSD with a fixed � converge to a time-independent distribution
which is not the same as a universal distribution in CTRW (Mittag-Leffler distribution):

δ2(�; t)

〈δ2(�; t)〉
⇒ Yα,γ as t → ∞, (4)

where Yα,γ is a random variable and γ is the coupling parameter between trapping time and
jump length. We note that such coupling effects become physically important in turbulent
diffusion [38], diffusion of cold atoms [10], and nonthermal systems such as cells [13,43].
In such enhanced diffusions, it has been known that the coupling between jump lengths and
waiting times follows a power-law fashion like SEDLF [10,38], although a particle is always
moving, which is different from SEDLF. Furthermore, it will also be important in complex
systems such as finance [31] and earthquakes [14,25] because jump lengths are correlated
with the waiting times in such systems.

In terms of an ensemble average, SEDLF exhibits a whole spectrum of diffusion: sub-,
normal-, and super-diffusion, depending on the coupling parameter [6,24,26,28].Because
distributional behavior of the time-averaged observables such as the diffusion coefficients in
SEDLF is different from that in CTRW, it is important to construct a phase diagram in terms
of the power-law exponent of the MSD as well as the form of the distribution function of the
TAMSD. Here, we provide the phase diagram for the whole parameters range in SEDLF.

2 Model

SEDLF is a cumulative process, which is a generalization of a renewal process [15]. Equiv-
alently, SEDLF is a CTRW with a non-separable joint probability of trapping time and jump
length. Therefore, the SEDLF can be defined through the joint probability density function
(PDF)ψ(x, t), whereψ(x, t)dxdt is the probability that a random walker jumps with length
[x, x +dx) just after it is trapped for period [t, t +dt) since its previous jump [11,37]. Here,
we consider the following joint PDF

ψ(x, t) = w(t)
δ(x − tγ )+ δ(x + tγ )

2
, (5)

where w(t) is the PDF of trapping times and 0 ≤ γ ≤ 1 is a coupling strength. This kind of
coupling has been introduced in [24,37]. The SEDLF with γ = 0 is just a separable CTRW.
In addition, we consider that the PDF of trapping times follows a power law:

w(t) � c0

t1+α , (6)

as t → ∞. Here, α ∈ (0, 2) is the stable index, a constant c0 is defined by c0 = c/|	(−α)|
with a scale factor c. We note that the mean trapping time diverges for α ≤ 1. For γ > 0, the
PDF of jump length also follows a power law:
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-t the first true trapping time

the first jump length

t0

a

the first apparent trapping time

Fig. 1 Trajectory of SEDLF in an equilibrium renewal process. A measurement starts at t = 0 while the
process starts at −ta . An equilibrium process means a process with ta → ∞ if there exist an equilibrium
distribution for the first apparent trapping time and the second moment of the first jump length

l(x) =
∫ ∞

0
ψ(x, t)dt = |x | 1

γ
−1

2γ
w

(
|x | 1

γ

)
� c0

2γ

1

|x |1+α/γ . (7)

Thus, the second moment of the jump length diverges for 2γ ≥ α. Because Lévy flight also
has a power law distribution of jump length, we call this random walk the stored-energy-driven
Lévy flight. In numerical simulations, we set the PDF of the trapping time asw(t) = αt−1−α
(t ≥ 1). Thus, the jump length PDF is given by l(x) = α/(2γ |x |1+α/γ ) from Eq. (7), and
〈l2〉 = α/(α − 2γ ) for 2γ < α.

Because the mean trapping time is finite for α > 1, we consider two typical renewal
processes; ordinary renewal process and equilibrium renewal process [15]. Equilibrium
renewal process is assumed to start −ta = −∞ (see Fig. 1). The PDF of the first jump
length x and the first apparent trapping time (the forward recurrence time) t , ψ0(x, t), is
given by

ψ0(x, t) = 1

μ

∫ ∞

t
w(t ′) δ(x − t ′γ )+ δ(x + t ′γ )

2
dt ′, (8)

whereμ is the mean trapping time. See Appendix for the derivation. Generally, the first (true)
trapping time is longer than the first apparent trapping time. Integrating Eq. (8) in terms of
x , we have the PDF of the first apparent trapping time:

w0(t) = 1

μ

∫ ∞

t
w(t ′)dt ′. (9)

Note that the Eq. (9) is consistent with the result obtained in renewal theory, i.e., the PDF
of the forward recurrence time [15]. Thus, the joint PDF of the first jump length and the
first apparent trapping time, ψ0(x, t), is not given by the form in Eq. (5). This is because the
first jump length x is determined by the time elapsed since a random walker’s last jump (the
first true trapping time) and thus it is not directly related to the first apparent trapping time,
i.e., the time elapsed since the beginning of the measurement at t = 0. For ordinary renewal
process, we just set w0(t) = w(t) and ψ0(x, t) = ψ(x, t). For α ≤ 1, we only consider an
ordinary renewal process because there is no equilibrium ensemble due to divergent mean
trapping time which causes aging [7,9,36].
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3 Generalized Renewal Equation

The spacial distribution P(x, t) of SEDLFs with starting from the origin satisfies the gener-
ized renewal equations:

P(x, t) =
∫ t

0
dt ′
(t − t ′)Q(x, t ′)+
0(t)δ(x), (10)

Q(x, t) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′ψ(x ′, t ′)Q(x − x ′, t − t ′)+ ψ0(x, t), (11)

where Q(x, t)dtdx is the probability of a random walker reaching an interval [x, x + dx)
just in a period [t, t + dt), and 
(t) [
0(t)] is the probability of being trapped for longer
than time t just after a renewal (after the measurement starts at t = 0). 
(t) and 
0(t) are
defined as follows:


(t) = 1 −
∫ ∞

−∞
dx ′

∫ t

0
ψ(x ′, t ′)dt ′ = 1 −

∫ t

0
w(t ′)dt ′, (12)


0(t) = 1 −
∫ ∞

−∞
dx ′

∫ t

0
ψ0(x

′, t ′)dt ′ = 1 −
∫ t

0
w0(t

′)dt ′. (13)

Then, the Laplace transforms of these functions are given by


̂(s) = 1 − ŵ(s)

s
, 
̂0(s) = μs − 1 + ŵ(s)

μs2 . (14)

In an ordinary renewal process, ψ0(x, t) is the same as ψ(x, t). On the other hand, the first
jump length x is not determined by the first apparent trapping time t in an equilibrium renewal
process, while the first jump length is not independent of the first apparent trapping time.
Fourier-Laplace transform with respect to space and time (x → k and t → s, respectively),
defined by

P̂(k, s) ≡
∫ ∞

−∞
dx

∫ ∞

0
dt P(x, t)eikx e−st , (15)

gives

P̂(k, s) = 
̂(s)ψ̂0(k, s)+ 
̂0(s)[1 − ψ̂(k, s)]
1 − ψ̂(k, s)

, (16)

where ψ̂0(k, s) and ψ̂(k, s) are Fourier-Laplace transforms of ψ0(x, t) and ψ(x, t), respec-
tively. In what follows, we use the notations Po(x, t) and P̂o(k, s) for the ordinary renewal
process, and Peq(x, t) and P̂eq(k, s) for the equilibrium renewal process.

For ordinary renewal process, i.e.,ψ0(t) = ψ(t) and
0(t) = 
(t), we have the following
generalized renewal equation in the Fourier and Laplace space:

P̂o(k, s) = 1

s

1 − ŵ(s)

1 − ψ̂(k, s)
, (17)

where we used Eq. (14). For equilibrium renewal process (α > 1), we have

P̂eq(k, s) = 1

s
− 1 − ŵ(s)

μs2

1 − ψ̂(k, 0)

1 − ψ̂(k, s)
, (18)
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where we used Eq. (14) and

ψ̂0(k, s) = ψ̂(k, 0)− ψ̂(k, s)

μs
. (19)

The derivation of Eq. (19) is shown in Appendix.
Thus we expressed P̂o(k, s) and P̂eq(k, s) with ψ̂(k, t) and ŵ(s) [Eqs. (17) and (18)].

Now, we derive the explicit forms of these functions. From Eq. (5), ψ̂(k, s) is given by

ψ̂(k, s) =
∫ ∞

0
e−st cos

(
ktγ

)
w(t)dt. (20)

Note that ψ̂(0, s) = ŵ(s). In addition, from Eq. (6), the asymptotic behavior of the Laplace
transform ŵ(s) for s → 0 is given by

ŵ(s) =

⎧⎪⎨
⎪⎩

1 − csα + o(sα), (0 < α < 1)

1 + c0s ln s + o(s ln s), (α = 1)

1 − μs + csα + o(sα), (1 < α < 2)

where μ = 〈t〉 = ∫ ∞
0 tw(t)dt .

4 Mean Square Displacement

The asymptotic behavior of the moments of position xt for t → ∞ can be obtained using

the Fourier-Laplace transform P̂(k, s). Because ∂ P̂(k,s)
∂k

∣∣∣
k=0

= 0, 〈xt 〉 = 0 for both renewal
processes.

In ordinary renewal process, the Laplace transform of the second moment, i.e., the
ensemble-averaged MSD (EAMSD), is given by

〈x2
s 〉o = −∂

2 P̂o(k, s)

∂k2

∣∣∣∣∣
k=0

= −1

s

ψ̂ ′′(0, s)

1 − ŵ(s)
, (21)

where the ensemble average 〈. . .〉o is taken with respect to an ordinary renewal process. For
α ∈ (0, 1), we obtain the EAMSD [6]:

〈x2
t 〉o �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
l2

〉
c	(1 + α)

tα, (0 < 2γ < α)

1

|	(−α)|	(1 + α)
tα log t, (2γ = α)

	(2γ − α)

|	(−α)|	(1 + 2γ )
t2γ , (α < 2γ ≤ 2)

(22)

where we used
〈
t2γ

〉 = 〈
l2

〉 = ∫ ∞
−∞ x2l(x)dx when 〈l2〉 < ∞.

For α = 1, the EAMSD is given by

〈x2
t 〉o �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈
l2

〉
c0

t

log t
, (0 < 2γ < 1)

t, (2γ = 1)
	(2γ − 1)

	(2γ + 1)

t2γ

log t
, (1 < 2γ ≤ 2)

(23)
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Finally, for α ∈ (1, 2), the EAMSD is given by

〈x2
t 〉o �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
l2

〉
μ

t
[
1 + ct1−α

μ	(3−α)
]
, (0 < 2γ < 1)

〈
l2

〉
μ

t + ct2−α
μ	(3−α)

[ 〈
l2

〉
μ

− α

]
, (2γ = 1)

〈
l2〉
μ

t + c0
μ

	(2γ−α)
	(2γ−α+2) t

2γ−α+1, (1 < 2γ < α)

c0
μ

t log t, (2γ = α)

c0	(2γ−α)
μ	(2γ−α+2) t

2γ−α+1. (α < 2γ ≤ 2)

(24)

These results are consistent with a previous study [24]. We note that the EAMSD for γ = 1
is smaller than that in Lévy walk, whereas the scaling exponent 3 − α is the same as that
in Lévy walk [45]. This is because SEDLF is a wait and jump model, while Lévy walk is a
moving model.

In equilibrium renewal process (α > 1),

〈x2
s 〉eq = −∂

2 P̂eq(k, s)

∂k2

∣∣∣∣∣
k=0

= ψ̂ ′′(0, 0)

μs2 . (25)

Eq. (25) is valid only for 0 < 2γ < α − 1, otherwise the second moment of the first jump
length diverges, i.e., the EAMSD diverges. This is very different from Lévy walk process
because there exists an equilibrium renewal process in Lévy walk with α > 1. Because
ψ̂ ′′(0, 0) = 〈

l2
〉

for 0 < 2γ < α − 1, the EAMSD is given by

〈x2
t 〉eq = 〈l2〉

μ
t. (26)

In SEDLF, the leading order of the EAMSD in an ordinary renewal process is the same
as that in an equilibrium renewal process (α > 2γ + 1). On the other hand, in Lévy walk,
the proportional constant of the EAMSD in a non-equilibrium ensemble such as an ordinary
renewal process differs from that in an equilibrium one [16–18,45]. We note that the TAMSD
coincides with the EAMSD in an equilibrium ensemble as the measurement time goes to
infinity. Significant initial ensemble dependence of statistical quantity has been also observed
in non-hyperbolic dynamical systems [3].

5 Time-Averaged Mean Square Displacement

In normal Brownian motion, the TAMSD defined by Eq. (2) converges to the MSD with an
equilibrium ensemble:

δ2(�; t) → 〈x2
�〉eq as t → ∞. (27)

Such ergodic property does not hold in various stochastic models of anomalous diffusion
such as CTRW and Lévy walk [17,21,27]. Here, we derive the TAMSD in the SEDLF. In
wait and jump random walks with random waiting times such as CTRW and SEDLF, the
TAMSD can be represented using the total number of jumps, denoted by Nt , and hk =
�l2

k + 2
∑k−1

m=1 lklmθ(�− tk + tm) [6,34,35]:
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δ2(�; t) � 1

t

Nt∑
k=0

hk (t → ∞), (28)

where lk is the k-th jump length, tk is the time when the k-th jump occurs, and θ(t) is a step
function, defined by θ(t) = 0 for t < 0 and t otherwise. For γ > 0, one can show that∑Nt

k=0(hk −�l2
k )/

∑Nt
k=0 l2

k → 0 as t → ∞ [6]. Therefore, the TAMSD can be written as

δ2(�; t) � Dt� (� � t and t → ∞), (29)

where Dt = ∑Nt
k=0 l2

k /t . We note that the relation (28) does not hold if the random walker
moves with constant speed as in Lévy walk because (xt+� − xt )

2 is simply zero in SEDLF
but not in Lévy walk. In fact, the TAMSD does not increase linearly with time in Lévy walk
[16–18].

To investigate an ergodic property of the time-averaged diffusion coefficient Dt , we derive
the PDF P2(z, t) of Zt ≡ ∑Nt

k=0 l2
k . Because l2

k and Nt are mutually correlated, we use the
generalized renewal equation for Zt :

P2(z, t) =
∫ t

0
dt ′
(t − t ′)Q2(z, t ′)+
0(t)δ(z), (30)

Q2(z, t) =
∫ ∞

0
dz′

∫ t

0
dt ′φ(z′, t ′)Q2(z − x ′, t − t ′)+ φ0(z, t), (31)

where the joint PDF φ(z, t) is given by

φ(z, t) = w(t)δ(z − t2γ ) (32)

The joint PDF of the first squared jump length z = l2
0 and apparent trapping time t , φ0(z, t),

is given by φ0(z, t) = φ(z, t) for the ordinary ensemble, whereas

φ0(z, t) = 1

μ

∫ ∞

t
dt ′w(t ′)δ(z − t ′2γ ), (33)

for equilibrium ensemble, which can be derived in the same way as the derivation ofψ0(x, t)
given in Appendix. The double Laplace transform with respect to z and time t is defined by

P̂2(k, s) ≡
∫ ∞

0
dz

∫ ∞

0
dt P2(z, t)e−kze−st . (34)

From the generalized renewal equations (30) and (31), we obtain

P̂2(k, s) = 
̂(s)φ̂0(k, s)+ 
̂0(s)[1 − φ̂(k, s)]
1 − φ̂(k, s)

, (35)

where the double Laplace transform of φ(z, t) is given by

φ̂(k, s) =
∫ ∞

0
e−st e−kt2γ

w(t)dt, (36)

and that of φ0(z, t) is given by φ0(z, t) = φ(z, t) for the ordinary process, and by

φ̂0(k, s) = φ̂(k, 0)− φ̂(k, s)

μs
, (37)

for the equilibrium process. Note that φ̂(0, s) = ŵ(s).
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5.1 Ordinary Renewal Process

In ordinary renewal process, the Laplace transform P̂o
2 (k, s) is given by

P̂o
2 (k, s) = 1

s

1 − ŵ(s)

1 − φ̂(k, s)
. (38)

Thus, we have the Laplace transform of 〈Zt 〉o as follows:

〈Zs〉o = −∂ P̂o
2 (k, s)

∂k

∣∣∣∣∣
k=0

= −φ̂′(0, s)

s[1 − ŵ(s)] = 〈
x2

s

〉
o , (39)

where we used −φ̂′(0, s) = −ψ̂ ′′(0, s) and Eq. (21). Then, averaging Eq. (29) over an
ordinary ensemble, we have

〈δ2(�; t)〉o � 〈Dt 〉o � = 〈x2
t 〉o

t
� (40)

Therefore, using Eqs. (22)–(24), we have the leading terms of the mean diffusion coefficient,
〈Dt 〉o = 〈x2

t 〉o/t , for t → ∞ as follows:

〈Dt 〉o �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
l2

〉
c	(1+α) t

α−1 (0 < 2γ < α)

1
|	(−α)|	(1+α) t

α−1 log t (2γ = α)

	(2γ−α)
|	(−α)|	(1+2γ ) t

2γ−1 (α < 2γ ≤ 2)

(41)

for 0 < α < 1,

〈Dt 〉o �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈
l2〉
c0

1
log t + o

(
1

log t

)
. (0 < 2γ < 1)

1 + O
(

1
log t

)
, (2γ = 1)

	(2γ−1)
	(2γ+1)

t2γ−1

log t , (1 < 2γ ≤ 2)

(42)

for α = 1, and

〈Dt 〉o �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
l2〉
μ

[
1 + ct1−α

μ	(3−α)
]
, (0 < 2γ < 1)

〈
l2〉
μ

+ ct1−α
μ	(3−α)

[ 〈
l2〉
μ

− α

]
, (2γ = 1)

〈
l2

〉
μ

+ c0
μ

	(2γ−α)
	(2γ−α+2) t

2γ−α, (1 < 2γ < α)

c0
μ

log t, (2γ = α)

c0	(2γ−α)
μ	(2γ−α+2) t

2γ−α (α < 2γ ≤ 2)

(43)

for 1 < α < 2. It follows that the mean diffusion coefficient diverges as t goes to infinity for
1 < α < 2 and α < 2γ < 2.

Similarly, the Laplace transform of 〈Z2
t 〉 is given by

〈Z2
s 〉o = 1

s[1 − ŵ(s)]

{
2φ̂′(0, s)2

1 − ŵ(s)
+ φ̂′′(0, s)

}
. (44)
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It follows that the leading order of the second moment of Dt is given by

〈D2
t 〉o �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
〈
l2

〉2
c2	(2α+1)

t2(α−1), (0 < 2γ < α)

2
	(2α+1)|	(−α)| (t

α log t)2 , (2γ = α)

	(4γ−α)|	(−α)|+2	(2γ−α)2
	(4γ+1)|	(−α)|2 t4γ−2, (α < 2γ ≤ 2)

(45)

for 0 < α < 1,

〈D2
t 〉o �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈
l2〉2
c2

0

1
(log t)2

+ o
(

1
(log t)2

)
, (0 < 2γ < 1)

1 + O
(

1
log t

)
, (2γ = 1)

	(4γ−1)
	(4γ+1)

t4γ−2

log t . (1 < 2γ ≤ 2)

(46)

for α = 1, and

〈D2
t 〉o �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
l2〉2
μ2 + 4c

〈
l2〉2
μ3

t1−α
	(4−α) , (0 < 2γ < 1)

〈
l2〉2
μ2 + K t1−α

	(4−α) , (2γ = 1)
〈
l2

〉2
μ2 + c0

μ
	(4γ−α)
	(4γ−α+2) t

4γ−α−1,
(
1 < 2γ < α+1

2

)
〈
l2〉2
μ2 + c0

2μ, (2γ = α+1
2 )

c0	(4γ−α)
μ	(4γ−α+2) t

4γ−α−1,
( 1+α

2 < 2γ ≤ 2
)

(47)

for α > 1

(
K := 4

〈
l2

〉
c

μ2

{ 〈
l2

〉
μ

− α

}
+ c0	(2−α)

μ

)
.

Now, we study the relative standard deviation (RSD) of Dt ,σEB(t)≡
√

〈D2
t 〉 − 〈Dt 〉2/〈Dt 〉

[21,33,34], to measure the ergodicity breaking. First, for 0 < α < 1, RSD σEB(t) does not
converge to zero but to a finite value as t → ∞. Therefore, the diffusion coefficients remain
random even when the measurement time goes to infinity [6]. Second, for α = 1, we expect
usual ergodic behavior for 0 < 2γ ≤ 1, because the RSD goes to zero as t → ∞. However,
for 1 < 2γ < 2, the RSD diverges as t → ∞:

σ 2
EB(t) ∼ log t.

Finally, for 1 < α < 2, we have

σ 2
EB(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1−α, (0 < 2γ ≤ 1)

t4γ−α−1,
(
1 < 2γ < α+1

2

)
μc0

2〈l2〉2 ,
(
2γ = α+1

2

)

t4γ−α−1,
(
α+1

2 < 2γ < α
)

tα−1

(log t)2
, (2γ = α)

tα−1, (α < 2γ ≤ 2)

(48)
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Fig. 2 Histograms of the normalized diffusion coefficients D ≡ Dt/〈Dt 〉 for different γ and α (t = 106).

We calculate Dt by δ2(�; t)/� in numerical simulations with � = 10. The dashed line segments represent
power-law distributions with exponent −2 and −3 for reference

Thus, TAMSDs show ergodic behavior when the parameters satisfy 0 < 2γ < α+1
2 because

the RSD goes to zero as t → ∞. On the other hand, the RSD converges to a finite value
for γ = α+1

4 , and diverges for α+1
2 < 2γ ≤ 2. Numerical simulations suggest that this

divergence of the RSD for the case of α+1
2 < 2γ ≤ 2 will be attributed to a power-law with

divergent second moment in the PDF of Dt/〈Dt 〉o (see Fig. 2). Because the RSD is defined
using the second moment of Dt , it diverges, whereas the PDF converges to a power-law
distribution. Thus, the RSD,σEB(t), is not helpful to characterize the ergodicity breaking in
this case. Using the relative fluctuation defined by R(t) ≡ 〈|Dt −〈Dt 〉|〉/〈Dt 〉 [8,42] instead
of the RSD, we can clearly see the ergodicity breaking in the case of α+1

2 < 2γ ≤ 2: we
numerically found that the relative fluctuation, R(t) = 〈|Dt/〈Dt 〉o − 1|〉o, converges to a
constant as t → ∞ because Dt/〈Dt 〉o does not converge to one but converges in distribution.
Thus, the ergodicity in TAMSD breaks down for α+1

2 ≤ 2γ ≤ 2.
For α > 1, the asymptotic behavior of the Laplace transform of 〈Zn

t 〉o at s → 0 (n > 1)
is given by

〈Zn
s 〉o �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)n
ψ̂
(n)
2 (0, s)

s[1 − ŵ(s)] , (2γ ≥ 1+α
2 )

n!〈l2〉n

μn
. (2γ < 1+α

2 )

(49)

It follows that the leading order of the nth moment of Dt is given by

〈Dn
t 〉o �

⎧⎪⎪⎨
⎪⎪⎩

c0	(4nγ − α)

μ	(4nγ − α + 2)
t2nγ−α−1, (2γ ≥ 1+α

2 )

n!〈l2〉n

μn
. (2γ < 1+α

2 )

(50)

By numerical simulations, we confirm that the scaled diffusion coefficient Dt/〈Dt 〉o con-
verges in distribution to a random variable Sα,γ :
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Dt

〈Dt 〉o
⇒ Sα,γ as t → ∞, (51)

for α+1
2 < 2γ ≤ 2. The distribution depends on γ and α (see Fig. 2). We note that the

distribution obeys a power-law with divergent second moment because all the n-th moments
(n > 1) of Dt/〈Dt 〉o diverge as t goes to infinity. In fact, as shown in Fig. 2, the power-law
exponents are smaller than 3.

For α ≤ 1, we obtained all the higher moments of Dt [6]. In particular, for 2γ < α, all
the moments are given by

〈Dn
t 〉o � n! 〈l2

〉n
cn	(n + α)

tn(α−1). (52)

Therefore, the distribution of the scaled diffusion coefficient converges to the Mittag-Leffler
distribution:

Dt

〈Dt 〉o
⇒ Mα (t → ∞), (53)

where

〈ezMα 〉 =
∞∑

n=0

	(1 + α)nzn

	(1 + nα)
. (54)

Moreover, for 2γ > α, the distribution of Dt〈Dt 〉o
also converges to a time-independent non-

trivial distribution as t → ∞ [6]:

Dt

〈Dt 〉o
⇒ Yα,γ (t → ∞). (55)

5.2 Equilibrium Renewal Process

In an equilibrium renewal process, i.e., 1 < α < 2 and 0 < 2γ < α − 1, the Laplace
transform P̂eq

2 (k, s) is given by

P̂eq
2 (k, s) = 1

s
− 1 − ŵ(s)

μs

1 − φ̂(k, 0)

1 − φ̂(k, s)
. (56)

Thus, we have the Laplace transform of 〈Zt 〉eq as follows:

〈Zs〉eq = −∂ P̂eq
2 (k, s)

∂k

∣∣∣∣∣
k=0

=
〈
l2

〉
μs2 = 〈

x2
s

〉
o . (57)

Averaging Eq. (29) over equilibrium ensemble, we have

〈δ2(�; t)〉eq � 〈Dt 〉eq � = 〈Zt 〉eq

t
� =

〈
l2

〉
μ
�, (58)

where the second moment of the first jump length is finite for 0 < γ < α− 1, otherwise the
ensemble average of the TAMSD diverges. The second moment of the diffusion constant is
also derived in the similar way:

〈Z2
s 〉eq = ∂2 P̂eq

2 (k, s)

∂k2

∣∣∣∣∣
k=0

� 2
〈
l2

〉2
μ2s3 + 2c

〈
l2

〉2
μ3s4−α , (59)

and thus we have
〈
D2

t

〉
eq =

〈
l2

〉2
μ2 + 2c

〈
l2

〉2
μ3	(4 − α)

t1−α, (60)
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Fig. 3 Phase diagram of the SEDLF in ordinary and equilibrium renewal processes. Solid lines divide the
phase of the EAMSD in the ordinary renewal process. The dashed lines divide the phase of the distribution
function of the TAMSD. Only below the dotted line 2γ < α − 1, the equilibrium process exists

for 0 < γ < α − 1. From these results, RSD is given by

σ 2
EB(t) � 2c

μ

t1−α

	(4 − α)
. (61)

6 Discussion

We have shown the phase diagram based on the power-law exponent of anomalous diffusion
and the distribution of TAMSDs in SEDLF. The results are summarized in Fig. 3. Although
SEDLF is closely related to CTRW, Lévy walk, and Lévy flight, its statistical properties on
anomalous diffusion are different form them. In particular, while the visit points in SEDLF
are the same as the turning points of a random walker in Lévy walk [38], a random walker
cannot move while it is trapped in SEDLF, which is completely different from Lévy walk.
This discrepancy makes the scaling of TAMSD different. In fact, TAMSDs in SEDLF increase
linearly with time even when the EAMSD shows superdiffusion. On the other hand, TAMSDs
show superlinear scaling (superdiffusion) in Lévy walk. Because a particle is always moving
and there is a power-law coupling between waiting times and moving length in turbulent
diffusion and diffusion of cold atoms [10,38], a moving model of SEDLF can be applied to
them. On the other hand, a wait and jump model (SEDLF) will be important in finance and
earthquakes. In particular, SEDLF will be applied to describe dynamics of energy released
in earthquake because energy is gradually accumulated and released in earthquake. Since
TAMSDs can not be represented by Eq. (28) in a moving model such as Lévy walk and a
moving model of SEDLF, to investigate ergodic properties of TAMSDs in a moving model
of SEDLF is left for future work.
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7 Conclusion

In conclusion, we have shown the phase diagram in SEDLF for a wide range of parame-
ters, where the EAMSD shows normal diffusion, subdiffusion and superdiffusion, and the
distribution of the TAMSD depends on the power-law exponent α of the trapping-time dis-
tribution as well as the coupling parameter γ . We consider two typical processes: ordinary
renewal process and equilibrium renewal process. An equilibrium distribution for the first
renewal time (the forward recurrence time) exists in renewal processes when the mean of
interoccurrence time between successive renewals does not diverge. However, even when the
mean does not diverge, an equilibrium distribution does not exist in the SEDLF because of
divergence of the second moment of the first jump length. Therefore, we have found that the
TAMSDs remain random in some parameter region even when the mean trapping time does
not diverge. In particular, it is interesting to note that this distributional ergodicity is observed
even when the EAMSD shows a normal diffusion, i.e., α+1

2 < 2γ < α and 1 < α < 2. In
this regime, both the mean trapping time and the second moment of jump length are finite.
Therefore, this result provides a novel route to the distributional ergodicity, because so far the
distributional ergodicity has been found only in systems with the divergent mean trapping
time or the divergent second moment of jump length, which break down the law of large
numbers.
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8 Appendix: Derivation of ψ0(x, t)

Here, we derive the joint PDFψ0(x, t) of the first jump length x and the first apparent trapping
time t for an equilibrium renewal process (α > 1). Letψ0,n(x, t; ta) be the joint PDF that the
first jump and the first apparent trapping time after time ta given that the number of jumps
in [0, ta] is n. The joint PDF can be represented by

ψ0,n(x, t; ta) = 1

2
〈δ(x − (tn+1 − tn)

γ )δ(t − (tn+1 − ta))I (tn < ta < tn+1)〉

+ 1

2
〈δ(x + (tn+1 − tn)

γ )δ(t − (tn+1 − ta))I (tn < ta < tn+1)〉 (62)

The Fourier and double Laplace transform with respect to x, t and ta is given by

ψ̂0,n(k, s; sa) ≡
∫ ∞

−∞
dx

∫ ∞

0
dt

∫ ∞

0
dtaeikx e−st e−sa taψ0,n(x, t; ta) (63)

=
〈∫ tn+1

tn
dta

eikτγn+1 + e−ikτγn+1

2
e−s(tn+1−ta)e−sa ta

〉
(64)

= 1

s − sa
〈e−sa tn 〉 〈

(e−saτn+1 − e−sτn+1) cos(kτγn+1)
〉

(65)

= 1

s − sa
ŵ(sa)

n[ψ̂(k, sa)− ψ̂(k, s)]. (66)
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Therefore, the Fourier and double Laplace transform of the joint PDF of the first jump
length x and the first apparent trapping time t after time ta , is given by

ψ̂0(k, s; sa) =
∞∑

n=0

ψ̂0,n(k, s; sa) = 1

sa − s

ψ̂(k, sa)− ψ̂(k, s)

1 − ŵ(sa)
. (67)

Therefore, the Laplace transform of ψ0(x, t) is given by

ψ̂0(k, s) = lim
sa→0

saψ̂0(k, s; sa) = ψ̂(k, 0)− ψ̂(k, s)

μs
. (68)

Through the inverse Fourier-Laplace transforms of ψ̂0(k, s), we obtain Eq. (8).
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