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Abstract We study regularity and finite time condensation of distributional solutions of the
space-homogeneous and velocity-isotropic Boltzmann equation for Bose–Einstein particles
for the hard sphere model. Global in time existence of distributional solutions had been
proven before. Here we prove that the equation is locally and can be globally (in time) well-
posed for the class of distributional solutions having finite moment of the negative order
−1/2, and solutions in this class with regular initial data are mild solutions in their regularity
time-intervals. By observing a necessary condition on the initial data for the absence of
condensation at some finite time, we also propose a sufficient condition on the initial data
for the occurrence of condensation at all large time, and then using a positivity of a partial
collision integral we prove further that the critical time of condensation can be strictly positive.

Keywords Boltzmann equation · Bose–Einstein particles · Regularity · Condensation ·
Finite time

1 Introduction

It has been known that the time evolution of a dilute Bose gas and the formation of Bose–
Einstein condensation can be described by the Boltzmann equation for Bose–Einstein parti-
cles. Derivations of this important semiclassical model can be found in [3–5,17,19,24]. The
present paper is a continuation of our previous work [15] on the study of space-homogeneous
solutions of the equation for the hard sphere model:

∂

∂t
f =

∫

R3×S2

|(v − v∗) · ω|
(4π)2

[ f ′ f ′∗(1 + f + f∗)− f f∗(1 + f ′ + f ′∗)]dωdv∗. (1.1)
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Here the solution f = f (v, t) ≥ 0 is the number density of particles at time t with the
velocity v; f∗ = f (v∗, t), f ′ = f (v′, t), f ′∗ = f (v′∗, t), and v, v∗ and v′, v′∗ are velocities
of two particles before and after their collision:

v′ = v − ((v − v∗) · ω)ω, v′∗ = v∗ + ((v − v∗) · ω)ω, ω ∈ S
2

which conserves the kinetic energy

|v′|2 + |v′∗|2 = |v|2 + |v∗|2. (1.2)

The main difficulty in investigating Eq.(1.1) comes from the cubic terms f f ′ f ′∗, f∗ f ′ f ′∗,
etc., because their collision integrals (even with a strong cutoff on the collision kernel) over
R

3×R
3×S

2 in the usual weak form (i.e. involving smooth test functions) are unbounded on a
set of non-isotropic functions in {0 ≤ f ∈ C∞

c (R
3) | ‖ f ‖L1(R3) ≤ 1} ([13]). So far the results

about global existence, convergence to equilibrium, singular behavior, kinetics of Bose–
Einstein condensation, numerical analysis, etc. of solutions of Eq.(1.1) and its modifications
have been mainly concerned with isotropic solutions, see e.g. [1,2,6–8,11,13,14,18,20–23].
Recent works [9,10,15] also considered blow up and condensation in finite time for such
solutions (see below).

By velocity translation one can assume that the mean velocity is zero so that the
isotropic solution f (v, t) can be written as f (|v|2/2, t). Accordingly, let ε, ε∗, ε′, ε′∗ stand
for |v|2/2, |v∗|2/2, |v′|2/2, |v′∗|2/2 respectively. Then (1.2) implies that ε, ε′, ε′∗ are inde-
pendent variables and ε∗ = ε′ + ε′∗ − ε, and this 3-degree of freedom is just enough for the
total integration of the cubic isotropic term f f ′ f ′∗ over R

3+. As in the previous work [15], we
are only interested in such solutions that have finite mass and energy, i.e.∫

R3

(1 + |v|2/2) f (|v|2/2, t)dv = 4π
√

2
∫

R+

(1 + ε) f (ε, t)
√
εdε < ∞.

It will be more convenient to write ε, ε∗, ε′, ε′∗ as x, x∗, y, z respectively. Then introducing

w(x, y, z) = min{√x,
√

x∗,
√

y,
√

z }√
x

, x > 0, y ≥ 0, z ≥ 0, x∗ = (y + z − x)+

(1.3)

where (u)+ = max{u, 0}, and using the formula (see e.g. [15])∫

R3×S2

|(v − v∗) · ω|
(4π)2

�
(
|v|2/2, |v′|2/2, |v∗′|2/2

)
dωdv∗ =

∫

R
2+

w(x, y, z)�(x, y, z)dydz

(1.4)

for v ∈ R
3\{0}, x = |v|2/2, the equation (1.1) for isotropic solutions becomes

∂

∂t
f (x, t) = Q( f )(x, t) (1.5)

where Q( f )(x, t) = Q( f (·, t))(x) is the isotropic version of the collision integral in (1.1):

Q( f )(x) =
∫

R
2+

w(x, y, z)[ f ′ f ′∗(1 + f + f∗))− f f∗(1 + f ′ + f ′∗)]dydz, (1.6)

f = f (x), f∗ = f (x∗), f ′ = f (y), f ′∗ = f (z). (1.7)
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The Boltzmann Equation for Bose–Einstein Particles 495

As usual, in order to study kinetic equations, the first step is to extend the concept of
classical solutions to that of mild solutions:

Definition 1.1 Let f (x, t) be a nonnegative measurable function on R+ × [0, T∞) (0 <

T∞ ≤ ∞). We say that f (·, t) is a mild solution of Eq.(1.5) on the time-interval [0, T∞) if
f satisfies

(i) supt∈[0,T ]
∫

R+
(1 + x) f (x, t)

√
xdx < ∞ ∀ 0 < T < T∞,

(ii) there is a null set Z ⊂ R+ (i.e. mes(Z) = 0) such that for all x ∈ R+\Z and all
t ∈ [0, T∞),

∫ t
0 dτ

∫
R

2+ w(x, y, z)[ f ′ f ′∗(1 + f + f∗))+ f f∗(1 + f ′ + f ′∗)]dydz < ∞
and

f (x, t) = f0(x)+
t∫

0

Q( f )(x, τ )dτ.

Here f0 = f (·, 0) denotes the initial datum of f (·, t).

By definition, a mild solution describes only “regular” behavior of a Bose gas in a time-
interval in which there is no condensation. In order to cover the whole time of evolution,
in particular in order to describe the formation, nucleation, and growth of Bose–Einstein
condensation, the class of mild solutions has to be extended, and any extension should
include at least the low temperature equilibria dFbe(x) = fbe(x)

√
xdx + N0δ(x)dx , where

fbe(x) = (ex/κ − 1)−1, κ > 0, N0 ≥ 0, and δ(x) is the Dirac delta function concentrating
at x = 0. Some authors extend mild solution f (·, t) to the solution ( f (·, t), n(t)) of an
equation system where n(t) ≥ 0 is the coefficient of the delta function, i.e., n(t) describes
the condensate, see e.g. [22,23] on the kinetics and structural analysis of ( f (·, t), n(t))
including nucleation of the condensate. See also [1,2] for the global in time existence of such
solutions for the case of low temperature and n(0) > 0. In this paper we (as before) extend
mild solutions to distributional solutions ([13,15]) and we will use the existence result of
distributional solutions to study both mild solutions and condensation.

Multiplying by a bounded smooth function ϕ(x) to Eq. (1.5) and taking integration over
R≥0 with respect to the weighted Lebesgue measure

√
xdx , and then replacing the density

element f (x, t)
√

xdx with a measure element dFt (x), we obtain a weak form (1.8) of Eq.
(1.5) which leads to the definition of distributional solutions ([15]):

Definition 1.2 Let {Ft }t≥0 ⊂ B+
1 (R≥0). We say that {Ft }t≥0, or simply Ft , is a distributional

solution of Eq. (1.5) on the time-interval [0,∞) if

(i) supt∈[0,T ]
∫

R≥0
(1 + x)dFt (x) < ∞ for all T ∈ (0,∞),

(ii) for every ϕ ∈ C1,1
b (R≥0), the function t �→ ∫

R≥0
ϕ(x)dFt (x) belongs to C1([0,∞)),

(iii) for every ϕ ∈ C1,1
b (R≥0),

d

dt

∫

R≥0

ϕdFt =
∫

R
2≥0

J [ϕ]d2 Ft +
∫

R
3≥0

K[ϕ]d3 Ft ∀ t ∈ [0,∞). (1.8)
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Here d2 F = d(F ⊗ F) = dF(y)dF(z), d3 F = d(F ⊗ F ⊗ F) = dF(x)dF(y)dF(z),

J [ϕ](y, z) = 1

2

y+z∫

0

K[ϕ](x, y, z)
√

xdx, K[ϕ](x, y, z) = W (x, y, z)�ϕ(x, y, z),

�ϕ(x, y, z) = ϕ(x)+ ϕ(x∗)− ϕ(y)− ϕ(z), x∗ = (y + z − x)+,

W (x, y, z) =
√

xw(x, y, z)√
xyz

= min{√x,
√

x∗,
√

y,
√

z }√
xyz

if x, y, z > 0,

W (x, y, z) = 1

max{√yz,
√

xz,
√

xy } if xyz = 0, x∗ max{yz, xz, xy} > 0,

W (x, y, z) = 0 others.

Remark 1.1 (a) The spaces of test functions and Borel measures appeared above are taken
as follows

C1,1
b (R≥0) =

{
ϕ ∈ C1(R≥0)

∣∣ ϕ ∈ Cb(R≥0),
d

dx
ϕ ∈ Cb(R≥0) ∩ Lip(R≥0)

}
,

Bk(R≥0) =
{

F ∈ B(R≥0)

∣∣∣ ‖F‖k :=
∫

R≥0

(1 + x)kd|F |(x) < ∞
}
,

B+
k (R≥0) =

{
F ∈ Bk(R≥0)

∣∣ F ≥ 0
}
, k ≥ 0; B+(R≥0) := B+

0 (R≥0),

where Cb(R≥0) is the class of bounded continuous on R≥0, Lip(R≥0) is the class of
functions satisfying Lipschitz condition on R≥0, and B(R≥0) ≡ B0(R≥0) is the class of
signed real Borel measures F on R≥0 satisfying

∫
R≥0

d|F |(x) < ∞ where |F | is the total
variation of F .

(b) Distributional solutions can be also defined on finite time-intervals by replacing [0,∞)

with [0, T ] or [0, T∞). But this is not very necessary because it is different from mild
solutions that the time-intervals of existence of distributional solutions can be always
[0,∞), see Theorem 1.1 below.

(c) Under the the condition (i) in Definition 1.2, the collision integrals t �→ ∫
R

2≥0
J [ϕ]d2 Ft ,

t �→ ∫
R

3≥0
K[ϕ]d3 Ft are well defined on [0,∞) for all ϕ ∈ C1,1

b (R≥0) (see [15]), and

the Corollary of Lemma 4 in [13] insures that if t �→ ∫
R≥0

ϕ(x)dFt (x) is continuous on

[0,∞) for every ϕ ∈ C1,1
b (R≥0), so are t �→ ∫

R
2≥0

J [ϕ]d2 Ft , t �→ ∫
R

3≥0
K[ϕ]d3 Ft on

[0,∞). Therefore under the condition (i), the conditions (ii)–(iii) in Definition 1.2 are
equivalent to the following (ii)′–(iii)′:
(ii)′ for every ϕ ∈ C1,1

b (R≥0), the function t �→ ∫
R≥0

ϕ(x)dFt (x) is continuous on
[0,∞);
(iii)′ for every ϕ ∈ C1,1

b (R≥0) and every t ∈ [0,∞)

∫

R≥0

ϕdFt =
∫

R≥0

ϕdF0 +
t∫

0

⎛
⎜⎜⎝
∫

R
2≥0

J [ϕ]d2 Fτ +
∫

R
3≥0

K[ϕ]d3 Fτ

⎞
⎟⎟⎠ dτ. (1.9)

Before introducing our main results and some recent relevant works, let us recall some
terminologies.
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1.1 Moments

Including negative orders, moments for a positive Borel measure F on R≥0 are defined by

Mp(F) =
∫

R≥0

x pdF(x), p ∈ (−∞,∞). (1.10)

Here for the case p < 0 we adopt the convention 0p = (0+)p = ∞, and we recall that
∞ · 0 = 0. Then it should be noted that

Mp(F) < ∞ and p < 0 �⇒ F({0}) = 0. (1.11)

Moments of orders 0, 1 correspond to the mass and energy and are particularly denoted as

N (F) = M0(F), E(F) = M1(F). (1.12)

Moments for a nonnegative measurable function f on R+ are defined in consistence with
the case of measures: Mp( f ) = Mp(F) with dF(x) = f (x)

√
xdx , i.e.

Mp( f ) =
∫

R+

x p f (x)
√

xdx, p ∈ (−∞,∞). (1.13)

We also denote N ( f ) = M0( f ), E( f ) = M1( f ). And notice that M−1/2( f ) = ∫
R+

f (x)dx .

1.2 Weighted L1 Spaces

We denote by L1(R+, (x)dx) the space of measurable functions f on R+ satisfying∫
R+ | f (x)|(x)dx < ∞, where (x) is a given nonnegative measurable function on R+.

For the case (x) ≡ 1 we denote L1(R+) = L1(R+, dx).

1.3 Kinetic Temperature

Let N = N (F0), E = E(F0). If m is the mass of one particle, then m4π
√

2N , m4π
√

2E
are total mass and kinetic energy of the particle system per unite space volume. The kinetic
temperature T and the critical temperature T c are defined by (see e.g.[13] and references
therein)

T = 2

3kB
· m E

N
,

T

T c
= (2π)1/3[ζ(3/2)]5/3

3ζ(5/2)
· E

N 5/3
(1.14)

where kB is the Boltzmann constant, ζ(·) is the Riemann zeta function.

1.4 Conservative Solutions

Ft is called a conservative distributional solution if it conserves both mass and energy, i.e.,
N (Ft ) = N (F0), E(Ft ) = E(F0) for all t ∈ [0,∞). Similarly f is called conservative
mild solution on the time-interval [0, T∞) if N ( f (t)) = N ( f0), E( f (t)) = E( f0) for all
t ∈ [0, T∞). Since, by definition of J [ϕ] and K[ϕ], J [ϕ] = K[ϕ] = 0 for ϕ(x) ≡ 1 and
ϕ(x) ≡ x , and since the constant ϕ(x) ≡ 1 belongs to the test function space while the
function ϕ(x) ≡ x does not, it follows from Definition 1.2 that every distributional solution
automatically conserves the mass, but does not automatically conserve the energy. In general,

123
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for every distributional solution Ft , the energy t �→ E(Ft ) is non-decreasing on [0,∞) ([13]).
On the other hand, in practice, most of distributional solutions obtained by weak convergence
of conservative approximate solutions satisfy the energy inequality E(Ft ) ≤ E(F0) (∀ t ≥ 0).
These two together imply that the conservation of energy actually holds for such solutions.
Throughout this paper we always assume that N (F0) > 0, N ( f0) > 0. We also assume
that E(F0) > 0 when dealing with conservative distributional solutions. This is because if
E(F0) = 0, then the conservation of mass and energy imply that Ft ≡ F0 is a Dirac mass
concentrating at x = 0, which is a trivial equilibrium. Basic result to be used in the paper on
the existence and conservation law of distributional solutions is the following

Theorem 1.1 ([13,15])

(a) Let F0 ∈ B+
1 (R≥0). Then there exists a conservative distributional solution Ft of Eq.

(1.5) on [0,∞) with the initial datum F0, and Ft has the moment production:

Mp(Ft ) ≤ C p(1 + 1/t)2(p−1), ∀ t > 0, ∀ p ≥ 1. (1.15)

Here 0 < C p = CN ,E,p < ∞ depends only on N = N (F0), E = E(F0) and p.
(b) For every distributional solution Ft of Eq. (1.5) on [0,∞), the energy t �→ E(Ft ) is

non-decreasing on [0,∞). Consequently if E(Ft ) ≤ E(F0) for all t ≥ 0, then E(Ft ) ≡
E(F0).

This theorem is in fact stated in Theorems 3–4 of [13] for distributional solutions F̄t

defined in [13, p. 1611], see also Definition 5.1 in [15]. It is proved in [15] that the two
definitions of distributional solutions are equivalent and the corresponding solutions Ft and
F̄t determine to each other through the functional representation:

4π
√

2
∫

R≥0

ϕ(x)dFt (x) =
∫

R≥0

ϕ(r2/2)dF̄t (r) (1.16)

for all t ≥ 0 and all ϕ ∈ Cb(R≥0). By monotone convergence theorem, (1.16) holds also
for all t ≥ 0 and all 0 ≤ ϕ ∈ C(R≥0). Correspondingly, N , E and N̄ = ∫

R≥0
dF̄0(r), Ē =

1
2

∫
R≥0

r2dF̄0(r) have the relation N̄ = 4
√

2 N , Ē = 4
√

2 E . The conservative distributional

solution F̄t obtained in [13] has the moment production:
∫

R≥0
r2pdF̄t (r) ≤ C̄ p(1+1/t)2(p−1)

for all t > 0, p ≥ 1, where C̄ p = C̄N̄ ,Ē,p < ∞ depends only on N̄ , Ē, and p. If we let

the initial datum F̄0 of F̄t be defined by F0 through (1.16) for t = 0, and let Ft be defined
by F̄t through (1.16), then Ft is a conservative distributional solution of Eq. (1.5) on [0,∞)

with the initial datum F0. Since Mp(Ft ) = 1
4
√

2

∫
R≥0
(r2/2)pdF̄t (r), it follows that Ft also

satisfies (1.15).

1.5 Regular-Singular Decomposition

Let Ft be a distributional solution Ft of Eq. (1.5) on [0,∞). According to measure theory,
Ft at every time t can be uniquely decomposed as the regular part f (·, t) ∈ L1(R+,

√
xdx)

and the singular part μt ∈ B+
1 (R≥0) with respect to the Lebesgue measure: there is a Borel

null set Zt ⊂ R≥0 (i.e. mes(Zt ) = 0) such that

dFt (x) = f (x, t)
√

xdx + dμt (x), μt (R≥0\Zt ) = 0. (1.17)

We say that Ft is regular at time t if dFt (x) = f (x, t)
√

xdx , i.e. μt = 0. In this case, f (·, t)
is called the density or density function of Ft at time t . Similarly Ft is called regular on a
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The Boltzmann Equation for Bose–Einstein Particles 499

time-interval I if dFt (x) = f (x, t)
√

xdx for all t ∈ I , i.e. μt = 0 for all t ∈ I . We say that
Ft has condensation at time t if Ft ({0}) > 0. It is generally believed that if F0 ∈ B+

1 (R≥0)

is regular, then there exists a conservative distributional solution Ft of Eq. (1.5) on [0,∞)

with the initial datum F0 such that for any t ∈ [0,∞) the singular part μt (if not zero) will
be only a condensate, i.e. dμt (x) = n(t)δ(x)dx , where n(t) = Ft ({0}) is the amount of
condensation as mentioned above. But this has not been proven yet. The main difficulty is
that while smooth test functions ϕ kill the singularity of the collision kernel W (x, y, z) so
that the collision integrals are convergent, they also suppress the singular behavior of Ft near
the origin and thus the direct capture of condensation becomes difficult. We then have to
consider some indirect way: we carefully study regular behavior of Ft (this part has its own
interests) and by assuming Ft in some cases has certain regularity in a time-interval we hope
to find some contradiction so as to obtain some information about condensation.

1.6 Main Results

For convenience of statement, results introduced below are only concerned with conservative
solutions. Details and other results will be given in the following sections.

1.6.1 Strong Solutions and Regularity

The definition of strong solutions will be given in Sect. 3. We observe that an important
condition that implies the existence of strong solutions and regularity is M−1/2(F0) < ∞.
Recall that if Ft is regular and f (·, t) is its density, then M−1/2(Ft ) = ∫

R+
f (x, t)dx . In view

of the structure of Q( f )(x) and L∞-bounds 0 ≤ w(x, y, z) ≤ 1, the integrability f (·, t) ∈
L1(R+) is easily produced from a closed form of L1-inequalities. For the case M−1/2(F0) =
∞ and F0 is regular, if (for instance) the density f0 of F0 satisfies f0(x)∼const.xα−3/2 (x →
0+) with 0 < α < 1/2, then the solution Ft cannot be regular on any time-interval I ⊂
(0,∞) (see below), but for the critical caseα = 1/2, for instance if f0(x) ≤ const.x−1 (∀ x >
0), then Ft can be regular on a time-interval. Main results on strong solutions and regularity
are as follows:

• Let Ft be a conservative distributional solution on [0,∞) with the initial datum F0

satisfying M−1/2(F0) < ∞. Then there exists the largest 0 < Tmax ≤ ∞ such that
M−1/2(Ft ) < ∞ for all t ∈ [0, Tmax), and Ft is a unique strong solutions of Eq. (1.5) on
[0, Tmax). Furthermore if M−1/2(F0) is small enough as compared with [N (F0)E(F0)]1/4,
for instance M−1/2(F0) ≤ 1

80 [N (F0)E(F0)]1/4, then Tmax = ∞. In particular if F0

is regular and f0 is its density, then Ft is also regular on [0, Tmax) and its density
f (·, t) is the unique conservative mild solution of Eq. (1.5) on [0, Tmax) satisfying
f ∈ C([0, Tmax); L1(R+)) and f (·, 0) = f0. Finally if in addition f0 ∈ L∞(R+),
then f (·, t) ∈ L∞(R+) for all t ∈ [0, Tmax) including the case Tmax = ∞.

• Let F0 ∈ B+
1 (R≥0) be regular with density f0 satisfying f0(x) ≤ K x−1 (∀ x > 0)

for some K > 0. Then there exist an explicit constant TK > 0 and a conservative
distributional solution Ft of Eq. (1.5) on [0,∞) with the initial datum F0 such that Ft is
a regular strong solution on [0, TK ] and its density f (x, t) satisfies f (x, t) ≤ 5K x−1 for
all (x, t) ∈ R+ × [0, TK ].
As one will see in Sect. 3 that the relative smallness M−1/2(F0) ≤ 1

80 [N (F0)E(F0)]1/4

belongs to the case of very high temperature, T /T c >> 1. For the case of low temperature,
T /T c < 1, we do not know whether the intervals of t satisfying M−1/2(Ft ) < ∞ (or
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500 X. Lu

f (·, t) ∈ L1(R+)) are only finite, but Escobedo and Velázquez proved in [9,10] that this is
the case for mild solutions with initial data f0 ∈ L∞(R+, (1 + x)γ )(γ > 3) if the blow up
is taken in the L∞(R+) norm, see Theorem 1.2 below for details.

1.6.2 Condensation in Finite Time

The main result is based on the propagation of condensation

Ft ({0}) ≥ Fs({0})e
t∫

s
[Lϕ(Fτ )−M1/2(Fτ )]dτ ∀ 0 ≤ s < t < ∞ (1.18)

(see [15], where t �→ Lϕ(Ft ) is a positive function) and the consideration for Lebesgue
derivatives Dα(F0), Dα(F0) of the initial data F0 at the origin x = 0, where

Dα(F) = lim inf
ε→0+

F([0, ε])
εα

, Dα(F) = lim sup
ε→0+

F([0, ε])
εα

, α > 0 (1.19)

and in case Dα(F) = Dα(F) we define Dα(F) = Dα(F) = Dα(F). Notice that if initially
F0({0}) > 0, then (1.18) implies Ft ({0}) > 0 for all t ≥ 0. Thus the most interesting case
for the occurrence of condensation is F0({0}) = 0 as satisfied by all regular initial data.

For the case 0 < α < 1/2, we have proved in [15] that if Dα(F0) > 0, then Ft ({0}) > 0
for all t > 0. A typical example is the regular measure dF0(x) = f0(x)

√
xdx whose density

f0 satisfies f0(x) ∼ const.xα−3/2 (x → 0+). This example shows also that Ft is not regular
for every t > 0.

For the case α > 1/2, it is easily seen that the bigness of Dα(F0) does not destroy the
smallness of M−1/2(F0); we will show in Example 7.1 that there is a large class of regular
initial data F0 satisfying Dα(F0) = ∞ such that Ft are regular for all t ∈ [0,∞) hence there
are no condensation at all.

For the critical caseα = 1/2, an important referential example is the equilibrium Ft ≡ Fbe

at the critical temperature, i.e., Fbe is regular with density fbe(x) = (ex/κ − 1)−1 ∼
κx−1 (x → 0+) hence D1/2(Fbe) = 2κ > 0. Of course there is no condensation. How-
ever by computing we find D1/2(Fbe) = 1.403 . . . [N (Fbe)E(Fbe)]1/4 which indicates that
D1/2(Fbe) is not large as compared with [N (Fbe)E(Fbe)]1/4. This motives us to establish
the following theorem:

• Let N = N (F0), E = E(F0). If [D1/2(F0)D1/2(F0)]1/2 is sufficiently large as compared

with (N E)1/4, then the condensation still occurs in finite time. For instance if

[D1/2(F0)D1/2(F0)]1/2 > 213(N E)1/4 (1.20)

then Ft ({0}) > 0 for all t ≥ 3
4 (N E)−1/2.

Notice that since D1/2(F0), D1/2(F0) are determined only by local behavior of F0 near
the origin, they have almost no influence on macroscopic quantities such as mass, energy
and temperature; we will give a large class of initial data F0 which satisfy (1.20) so that
condensation occurs in finite time, but the corresponding temperature can be arbitrarily
high/low (see Example 7.2).

1.6.3 Critical Time of Condensation

Suppose a distributional solution Ft has condensation in finite time and let tc = inf{t ≥
0 | Ft ({0}) > 0}. It is easily seen from the condensate propagation (1.18) that the time-sets
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of non-condensation and condensation are separated by the single point tc, i.e.

Ft ({0}) = 0 ∀ t ∈ [0, tc); Ft ({0}) > 0 ∀ t ∈ (tc,∞). (1.21)

We call tc the critical time of condensation of Ft . Notice that the case tc = 0 is possible even if
F0({0}) = 0 as shown above. For that case, (1.21) is understood as just the second inequality

appears. From (1.18) one sees also that the function t �→ Ft ({0}) exp{
t∫

0
M1/2(Fτ )dτ } is

monotone non-decreasing on [0,∞), which implies that t �→ Ft ({0}) has both left and right
limits at every t ∈ (0,∞). We also proved in [15] that t �→ Ft ({0}) is at least right-continuous
on [0,∞). In particular it holds limt→tc+ Ft ({0}) = Ftc ({0}) which means that the phase
transition is at least right-continuous, i.e. there is no jump starting from tc in the forward
direction. Our second result on condensation is about the strict positivity of tc, which should
be studied since in general the condensation of a dilute Bose gas takes place only after a
shorter or longer time.

• If a regular measure F0 ∈ B+
1 (R≥0) satisfies (1.20) (with N = N (F0), E = E(F0)) and

its density satisfies f0(x) ≤ K x−1 (∀ x > 0) for some constant K > 0, then there exist
an explicit constant 0 < TK < 3

4 (N E)−1/2 and a conservative distributional solution Ft

of Eq. (1.5) on [0,∞) with the initial datum F0, such that tc ∈ [TK ,
3
4 (N E)−1/2].

In Example 7.3 we will show that the regular data F0 in the above result exist extensively.
We emphasize that the inequality (1.20) and similar ones given in Theorem 6.1 are only

sufficient conditions for the occurrence of condensation in finite time. For the case where
F0 does not satisfy (1.20), in particular for the case where F0 is regular and its density f0 is
bounded (which implies D1/2(F0) = 0), one has to consider different methods, see Theorem
1.2 below.

1.7 Recent Progress

Escobedo and Velázquez recently obtained important results on the blow up and condensation
in finite time ([9,10]). We summarize them as follows using our notations and the definition
of critical time tc in (1.21).

Theorem 1.2 ([9,10])

(I) (Local Well Posedness [9]) For any γ > 3 and any 0 ≤ f0 ∈ L∞(R+, (1 + x)γ ) :=
{g ∈ L∞(R+) | ess supx∈R+ |g(x)|(1 + x)γ < ∞}, there exist 0 < Tmax ≤ ∞ and
a unique conservative mild solution f ∈ L∞

loc([0, Tmax); L∞(R+, (1 + x)γ )) of Eq.
(1.5), with the initial datum f0. And Tmax is the maximal existence time in the sense
that

Tmax < ∞ �⇒ ‖ f (t)‖L∞(R+) → ∞ as t ↗ Tmax. (1.22)

(II) (For Arbitrary Temperature [9]) There exists a universal constant θ∗ > 0 such that for
all N > 0, E > 0, ν > 0, there exist ρ0 = ρ0(N , E, ν) > 0, K ∗ = K ∗(N , E, ν) >
0, T0 = T0(N , E, ν) > 0 depending only on N , E, ν such that the following properties
hold:

(II.1) If 0 ≤ f0 ∈ L∞(R+, (1 + x)γ ) with γ > 3 satisfies N ( f0) = N , E( f0) = E and

sup
0<ρ≤ρ0

min

⎧⎨
⎩ inf

0<ε≤ρ
1

νε3/2

ε∫

0

f0(x)
√

xdx,
1

K ∗ρθ∗

ρ∫

0

f0(x)
√

xdx

⎫⎬
⎭ ≥ 1, (1.23)
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then the maximal existence time Tmax of f obtained in part (I) must be finite: Tmax < T0,
hence f satisfies the L∞- blow up (1.22).

(II.2) If the initial datum F0 of Ft satisfies N (F0) = N , E(F0) = E, and

sup
0<ρ≤ρ0

min

{
inf

0<ε≤ρ
F0([0, ε])
νε3/2 ,

F0([0, ρ])
K ∗ρθ∗

}
≥ 1, (1.24)

then Ft has condensation in finite time and tc ∈ [0, T0]. Furthermore if in addition F0

is regular with density f0 ∈ L∞(R+, (1 + x)γ )(γ > 3), then tc ∈ [Tmax, T0]. [Note:
it is pointed out in [9] that the first condition in (1.24) does not imply the second since
θ∗ might be small.]

(III) (For Low Temperature [10]). Let N , E be the mass and energy of the conservative
solutions appeared below and let T , T c be the kinetic temperature and critical tem-
perature defined in (1.14). Then under only the low temperature condition T /T c < 1,
if t0 in the time-interval of existence is large enough, then the conditions (1.23), (1.24)
are satisfied for f̃0(x) = f (x, t0) and F̃0 = Ft0 respectively and thus one has:

(III.1) If f obtained in part (I) satisfies T /T c < 1, then Tmax < ∞ and f satisfies the
L∞-blow up (1.22).

(III.2) If F0 satisfies T /T c < 1, then Ft has condensation in finite time and there exists
T0 = T0(N , E) > 0 depending only on N , E such that tc ∈ [0, T0]. Furthermore if F0

is also regular with density f0 ∈ L∞(R+, (1 + x)γ )) (γ > 3), then tc ∈ [Tmax, T0].
Part (III.2) of the theorem is a fundamental result in low temperature kinetic theory; it

demonstrates that the occurrence of condensation in finite time does not depend on any local
information of a conservative solution if the temperature is low enough. An application of
part (III.2) will be given in Example 7.4 for dealing with a class of initial data F0 which do
not satisfy (1.20). Part (II.2) of Theorem 1.2 is the key result and is more closer to practical
cases since it includes certain regular measures whose densities are bounded. Initial data
satisfying all conditions of part (II.1) hence part (II.2) have been constructed in [9]. As
for comparison between part (II.2) and our result, the main difference is that our condition
(1.20) is purely local (near the origin) while (1.24) is not; and there is no implication relation
between (1.20) and (1.24) except the subtle case θ∗ = 1/2. In fact, on the one hand, it is
obvious that the condition (1.24) dose not imply (1.20) because the latter excludes all such
regular measures whose densities are bounded near the origin. On the other hand, we will
show in Example 7.5 that θ∗ ≤ 1/2, and if θ∗ < 1/2, then the condition (1.20) does not
imply (1.24); if θ∗ = 1/2 and K ∗ > 214(N E)1/4, the non-implication still holds. We stress
however that both part (II.2) and our results on condensation in finite time are proved for
arbitrary temperature, which may be helpful for the study of Bose–Einstein condensation at
room temperature. Finally we note as pointed out at the end of Remark 2.2 of [15] that the
practical lifetime of condensation Ft ({0}) > 0 is “finite” since limt→∞ Ft ({0}) = 0 for high
temperature T /T c ≥ 1, but it remains unclear whether lim inf t→∞ Ft ({0}) > 0 holds true
for low temperature T /T c < 1.

The rest of the paper is organized as follows. In Sect. 2 we collect and prove some basic
properties of collision integrals and propose suitable approximate solutions which will be
used here to prove some special properties of solutions. In Sect. 3 we prove the local and
global existence of strong solutions and establish stability estimates. In Sect. 4 we prove
the regularity of distributional solutions and the global existence of mild solutions. Section
5 is devoted to the proof of regularity of certain distributional solutions whose initial data
are regular measures with densities satisfying f0(x) ≤ K x−1. In Sect. 6 we study the
condensation in finite time. By observing a necessary condition on the initial datum for the
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absence of condensation at some finite time, we propose some sufficient conditions as (1.20)
for the occurrence of condensation in finite time, and this together with the result of Sect. 5
enables us to prove the existence and the strict positivity of the critical time tc for a class of
solutions. The examples mentioned above are given in Sect. 7.

Throughout this paper, R+ stands for either R≥0 := [0,∞) or R>0 := (0,∞) and they
are only used to denote domains of x in order to distinguish intervals of t .

2 Basic Properties of Collision Integrals and Approximate Solutions

First of all we note that the space B(Rn≥0) of finite Borel measures on R
n≥0 can be treated as a

subspace of B(Rn) by zero-extension: μ̄(E) = μ(Rn≥0 ∩ E) for all Borel sets E ⊂ R
n . Thus

many properties that hold for B(Rn) also hold for B(Rn≥0).
Basic properties of collision integrals of measures proved below will be used in Sect.

3 to study strong solutions. Roughly speaking, “strong” means that the smooth test func-
tions can be replaced by bounded Borel functions, i.e., there is no need of the cancelation
effect resulted from the symmetric difference�ϕ(x, y, z) of smooth functions (see also (3.6)
below). Thus we have to establish integrability conditions with respect to each single term
in the decompositions

J [ϕ] = J +[ϕ] − J −[ϕ], K[ϕ] = K+[ϕ] − K−[ϕ],
where

J +[ϕ](y, z) = 1

2

y+z∫

0

K+[ϕ](x, y, z)
√

xdx, J −[ϕ](y, z) = ϕ(y)+ ϕ(z)

2
J +[1](y, z),

K+[ϕ](x, y, z) = W (x, y, z)[ϕ(x)+ ϕ(x∗)], K−[ϕ](x, y, z) = W (x, y, z)[ϕ(y)+ ϕ(z)]
and ϕ is a locally bounded Borel function on R≥0. To do this we consider measure spaces

Bp,1(R≥0) = {F ∈ B1(R≥0) | Mp(|F |) < ∞}, B+
p,1(R≥0) = Bp,1(R≥0) ∩ B+(R≥0).

It is easily seen that

p < q < 0 �⇒ Bp,1(R≥0) ⊂ Bq,1(R≥0), B+
p,1(R≥0) ⊂ B+

q,1(R≥0).

Let us define

Mp,q(|F |) = Mp(|F |)+ Mq(|F |), −∞ < p, q < ∞.

As usual the notation F1 ⊗ F2 ⊗ · · · ⊗ Fn stands for the product measure of F1, F2, . . . , Fn .
In this paper we denote by L∞

0 (R≥0) the set of bounded Borel functions on R≥0. In general,
for any k ≥ 0, we denote by L∞−k(R≥0) the set of Borel functions ϕ on R≥0 satisfying

‖ϕ‖L∞−k
:= sup

x∈R≥0

|ϕ(x)|(1 + x)−k < ∞.

Lemma 2.1 (a) Let F,G ∈ Bk+1/2(R≥0) with k ∈ [0, 1]. Then for any ϕ ∈ L∞−k(R≥0)

satisfying ‖ϕ‖L∞−k
≤ 1 we have
∫

R
2≥0

|J ±[ϕ]|d(|F | ⊗ |G|) ≤ ‖F‖k+1/2‖G‖k+1/2. (2.1)
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(b) Let F,G, H ∈ B−1/3,1(R≥0). Then for any ϕ ∈ L∞
0 (R≥0) satisfying ‖ϕ‖L∞

0
≤ 1 we

have

∫

R
3≥0

|K±[ϕ]|d(|F | ⊗ |G| ⊗ |H |) ≤ 2M−1/3(|F |)M−1/3(|G|)M−1/3(|H |). (2.2)

In general, for any ϕ ∈ L∞−k(R≥0) satisfying ‖ϕ‖L∞−k
≤ 1 with k ∈ [0, 1], we have

∫

R
3≥0

|K±[ϕ]|d(|F | ⊗ |G| ⊗ |H |) ≤ 2M−1/3(|F |)M−1/3,k−1/3(|G|)M−1/3,k−1/3(|H |)

(2.3)

and if assuming further that F,G, H ∈ B−1/2,1(R≥0), then

∫

R
3≥0

|K±[ϕ]|d(|F | ⊗ |G| ⊗ |H |) ≤ 2a(F,G, H)min{‖F‖k, ‖G‖k, ‖H‖k} (2.4)

where

a(F,G, H) := [M−1/2,1/2(|F |)+ M−1/2,1/2(|G|)+ M−1/2,1/2(|H |)]2. (2.5)

Proof By definition of W (x, y, z) we compute

J +[1](y, z) =
y+z∫

0

W (x, y, z)
√

xdx = y ∧ z

3
√

y ∨ z
1{y∨z>0} + √

y ∨ z. (2.6)

Here a ∧ b = min{a, b}, a ∨ b = max{a, b}; 1{a>b} = 1 if a > b; 1{a>b} = 0 if a ≤ b. From
(2.6) we have

J +[1](y, z) ≤ √
y + √

z ≤ √
1 + y

√
1 + z.

In general, using x + x∗ = y + z for W (x, y, z) > 0 and using 1 + y + z ≤ (1 + y)(1 + z)
we see that if k ∈ [0, 1] and |ϕ(x)| ≤ (1 + x)k (∀ x ∈ R≥0), then

|J ±[ϕ](y, z)| ≤ (1 + y)k+1/2(1 + z)k+1/2, (2.7)

|K±[ϕ](x, y, z)| ≤ 2(1 + yk + zk)W (x, y, z). (2.8)

The inequality (2.1) follows from (2.7).
Next we note that F,G, H ∈ B−1/3,1(R≥0) implies (|F | ⊗ |G| ⊗ |H |)(R3≥0\R

3
>0) = 0

so that
∫

R
3≥0

{· · · }d(|F | ⊗ |G| ⊗ |H |) = ∫
R

3
>0

{· · · }d(|F | ⊗ |G| ⊗ |H |). And by definition of

W (x, y, z) we have

W (x, y, z) ≤ min

{
1

(xyz)1/3
,

1√
yz
,

1√
xz
,

1√
xy

}
∀ (x, y, z) ∈ R

3
>0. (2.9)

123



The Boltzmann Equation for Bose–Einstein Particles 505

From this and elementary calculations we deduce∫

R
3≥0

W (x, y, z)d(|F | ⊗ |G| ⊗ |H |) ≤ M−1/3(|F |)M−1/3(|G|)M−1/3(|H |), (2.10)

∫

R
3≥0

(1+yk +zk)W d(|F | ⊗ |G| ⊗ |H |)≤ M−1/3(|F |)M−1/3,k−1/3(|G|)M−1/3,k−1/3(|H |),

(2.11)

and, assuming further that F,G, H ∈ B−1/2,1(R≥0),∫

R
3≥0

(1 + yk + zk)W d(|F | ⊗ |G| ⊗ |H |) ≤ a(F,G, H)min{‖F‖k, ‖G‖k, ‖H‖k}.

(2.12)

Thus (2.2) follows from (2.10), while (2.3), (2.4) follow from (2.8) and (2.11)–(2.12). ��
According to Lemma 2.1 we can define Borel measures Q±

2 (F,G) ∈ Bk(R≥0) for F,G ∈
Bk+1/2(R≥0) (k ∈ [0, 1]) and Q±

3 (F,G, H) ∈ B1(R≥0) for F,G, H ∈ B−1/3,1(R≥0)

through Riesz representation theorem by∫

R≥0

ϕ(x)dQ±
2 (F,G)(x) =

∫

R
2≥0

J ±[ϕ]d(F ⊗ G), (2.13)

∫

R≥0

ϕ(x)dQ±
3 (F,G, H)(x) =

∫

R
3≥0

K±[ϕ]d(F ⊗ G ⊗ H) (2.14)

for allϕ ∈ Cb(R≥0). It is obvious that (F,G) �→ Q±
2 (F,G) and (F,G, H) �→ Q±

3 (F,G, H)
are bounded bilinear and trilinear operators from [Bk+1/2(R≥0)]2 to Bk(R≥0) (k ∈ [0, 1])
and from [B−1/3,1(R≥0)]3 to B1(R≥0) respectively, and

‖Q±
2 (F,G)‖k ≤ ‖F‖k+1/2‖G‖k+1/2, (2.15)

‖Q±
3 (F,G, H)‖0 ≤ 2M−1/3(|F |)M−1/3(|G|)M−1/3(|H |), (2.16)

‖Q±
3 (F,G, H)‖k ≤ 2M−1/3(|F |)M−1/3,k−1/3(|G|)M−1/3,k−1/3(|H |), (2.17)

‖Q±
3 (F,G, H)‖k ≤ 2a(F,G, H)min{‖F‖k, ‖G‖k, ‖H‖k}. (2.18)

Here in the third inequality (2.18) we assume further that F,G, H ∈ B−1/2,1(R≥0) so that
a(F,G, H) < ∞. Notice that the equalities (2.13), (2.14) hold also for all ϕ ∈ L∞

0 (R≥0).
In connecting with the equation Eq. (1.8) we define

Q±
2 (F) = Q±

2 (F, F), Q2(F) = Q+
2 (F)− Q−

2 (F),

Q±
3 (F) = Q±

3 (F, F, F), Q3(F) = Q+
3 (F)− Q−

3 (F),

Q(F) = Q2(F)+ Q3(F).

We then deduce from

F ⊗ F − G ⊗ G = 1

2
(F − G)⊗ (F + G)+ 1

2
(F + G)⊗ (F − G),

Q±
2 (F)− Q±

2 (G) = 1

2
Q±

2 (F − G, F + G)+ 1

2
Q±

2 (F + G, F − G),
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and (2.15) that for all F,G ∈ Bk+1/2(R≥0) (with k ∈ [0, 1])
‖Q±

2 (F)− Q±
2 (G)‖k ≤ ‖F + G‖k+1/2‖F − G‖k+1/2. (2.19)

Similarly we deduce from

F ⊗ F ⊗ F − G ⊗ G ⊗ G = (F − G)⊗ F ⊗ F + G ⊗ (F − G)⊗ F + G ⊗ G ⊗ (F − G),

‖Q±
3 (F)− Q±

3 (G)‖k ≤ ‖Q±
3 (F − G, F, F)‖k + ‖Q±

3 (G, F − G, F)‖k + ‖Q±
3 (G,G, F − G)‖k

and (2.16), (2.18) that

‖Q±
3 (F)− Q±

3 (G)‖0 ≤ 2[M−1/3(|F |)+ M−1/3(|G|)]2 M−1/3(|F − G|), (2.20)

‖Q±
3 (F)− Q±

3 (G)‖k ≤ b(F,G)‖F − G‖k, k ∈ [0, 1] (2.21)

where for the inequality (2.21) we assume that F,G ∈ B+
−1/2,1(R≥0) so that

b(F,G) := 36[M−1/2,1/2(|F |)+ M−1/2,1/2(|G|)]2 < ∞. (2.22)

Now we turn to the original form of collision integrals, say the case of functions. The following
lemma collects some estimates for the study of mild solutions.

Lemma 2.2 Letw(x, y, z) be given by (1.3) and let f be a nonnegative measurable function
on R+. Then for any x > 0, y ≥ 0, z ≥ 0 we have∫

R+

w(x, y, z)dx ≤ 2
√

yz, (2.23)

∫

R+

w(x, y, z) f (x∗)

⎧⎨
⎩

dx
dy
dz

⎫⎬
⎭ ≤ M−1/2( f ), (2.24)

M1/2( f ) ≤
∫

R
2+

w(x, y, z) f (x∗)dydz ≤ √
x N ( f )+ M1/2( f ). (2.25)

Consequently (with the notation (1.7))∫

R
3+

w(x, y, z)[ f ′ f ′∗(1 + f + f∗)+ f f∗(1 + f ′ + f ′∗)]dxdydz ≤ 4M1/2( f )M−1/2( f )

+ 4[M−1/2( f )]3 (2.26)

Proof (2.23) is obvious by definition ofw(x, y, z) and x∗ = (y+z−x)+. (2.24) follows from
the reflection and translation for the variable y + z − x with respect to x, y, z respectively.
Similarly, to prove (2.25) we use translation to get∫

R
2+

w(x, y, z) f (x∗)dydz =
∫

R+

I (x, y) f (y)dy

and the inner integral I (x, y) is calculated, with z∗ = (x + y − z)+,

I (x, y) =
x+y∫

0

min{√x,
√

y,
√

z∗,
√

z }√
x

dz = 1√
x

(1

3
(x ∧ y)3/2 + √

x ∧ y(x ∨ y)
)

123



The Boltzmann Equation for Bose–Einstein Particles 507

from which we have y ≤ I (x, y) ≤ √
xy + y. This gives the lower and upper bound

estimates in (2.25). The inequality (2.26) follows from (2.23)-(2.25), 0 ≤ w(x, y, z) ≤ 1,
and [N ( f )]2 ≤ M1/2( f )M−1/2( f ). By the way, the lemma can be also proved by using
classical argument: for instance using (1.4) and x∗ = y + z − x , |v′|2 + |v′∗|2 − |v|2 = |v∗|2
with 1

2 |v|2 = x we compute
∫

R
2+

w(x, y, z) f (x∗)dydz = 1

(4π)2

∫

R3×S2

|〈v − v∗, ω〉| f (|v∗|2/2)dωdv∗

= 2π

(4π)2

∫

R3

|v∗ − v| + |v∗ + v|
2

f (|v∗|2/2)dv∗ ≥ 2π

(4π)2

∫

R3

|v∗| f (|v∗|2/2)dv∗

which is equal to M1/2( f ). ��
We next observe a new positivity of the collision integrals, see Lemma 2.3 below, which

enables us to establish Theorem 5.1. In order to prove Theorem 5.1 we have to use suitable
approximate solutions { f n}∞n=1. These are mild solutions of approximate equations of Eq.
(1.5) defined by replacing Q( f ) with Qn( f ), i.e., for each n ≥ 1,

f n(x, t) = f0(x)+
t∫

0

Qn( f n)(x, τ )dτ, (2.27)

Qn( f )(x) =
∫

R
2+

wn(x, y, z)[ f ′ f ′∗(1 + f + f∗))− f f∗(1 + f ′ + f ′∗)]dydz (2.28)

where wn(x, y, z) is given by
√

xwn(x, y, z) = Sn(x, x∗; y, z) and Sn(·, · ; ·, ·) is a well-
constructed cutoff for the original function

√
xw(x, y, z) = min{√x,

√
x∗,

√
y,

√
z}, satis-

fying the following properties (2.33)-(2.39). Two types of such cutoffs and the corresponding
cutoffs Wn(x, y, z) of W (x, y, z) can be chosen as follows:

Sn(x, x∗; y, z) = min{√x,
√

x∗,
√

y,
√

z} min
{

1, n max{x ∧ x∗, y ∧ z}
}
, (2.29)

Wn(x, y, z) = W (x, y, z)min
{

1, n max{x ∧ x∗, y ∧ z}
}
; (2.30)

Sn(x, x∗; y, z) = min{√x,
√

x∗,
√

y,
√

z} min
{

1, n min{x, x∗, y, z}
}
, (2.31)

Wn(x, y, z) = W (x, y, z)min
{

1, n min{x, x∗, y, z}
}
.. (2.32)

It is easily verified that both cutoffs (2.29)–(2.30) and (2.31)–(2.32) satisfy

Sn(x, x∗; y, z) ≤ n min
{√

xyz,
√

x∗yz,
√

xx∗y,
√

xx∗z
}
, (x, y, z) ∈ R

3≥0 (2.33)

0 ≤ W (x, y, z)− Wn(x, y, z) ≤
(1

n

) 1
2 −α (min{x, x∗, y, z})α√

xyz
, (x, y, z) ∈ R

3
>0

(2.34)

(for 0 ≤ α < 1/2) and preserve the collisional symmetries on R
4≥0:

S(ε, ε∗; ε′, ε′∗) = S(ε∗, ε; ε′, ε′∗) = S(ε′, ε′∗; ε∗, ε) = S(ε′, ε′∗; ε, ε∗), (2.35)

S(ε, ε∗; ε′, ε′∗) = 0 if (ε, ε∗, ε′, ε′∗) ∈ R
4≥0\R

4
>0. (2.36)
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From (2.33) we have for all 0 ≤ f, g, h ∈ L1(R+, (1 + x)
√

xdx)

∫

R
3+

Sn(x, x∗; y, z)

{
f (x)g(y)h(z)
f (x∗)g(y)h(z)

}
dxdydz ≤ nN ( f )N (g)N (h), (2.37)

∫

R
3+

x Sn(x, x∗; y, z) f (x)g(y)h(z)dxdydz ≤ nE( f )N (g)N (h) (2.38)

∫

R
3+

x Sn(x, x∗; y, z) f (x∗)g(y)h(z)dxdydz ≤ nN ( f )[E(g)N (h)+ N (g)E(h)]

(2.39)

where the last inequality is due to x ≤ y + z when Sn(x, x∗; y, z) �= 0.
In order to prove the existence of conservative mild solutions f n , one also needs a further

cutoff, for instance Sn,k(x, x∗; y, z)= Sn(x, x∗; y, z)(1+ 1
k max{√x,

√
x∗,

√
y,

√
z})−1 (k ≥

1), which is only used for dealing with the quadratic terms in (2.28) so as to prove the
finiteness and conservation of energy. Let wn,k(x, y, z) be defined by

√
xwn,k(x, y, z) =

Sn,k(x, x∗; y, z) and let Qn,k( f ) correspond to the kernelwn,k(x, y, z). Then for every n, k ≥
1, using the same argument as in [12] it is easily proved that the equation d

dt f = Qn,k( f )with
the initial datum f0 has a conservative mild solution f n,k(x, t) on R+ × [0,∞). Then, for
every fixed n ≥ 1, following the same argument in [12] (proving the L1-weak compactness
of the sequence { f n,k(x, t)

√
x}∞k=1, etc.) we obtain a conservative mild solution f n(x, t) to

the equation d
dt f = Qn( f ) on R+ × [0,∞) with the initial datum f0. Another method for

proving the existence of f n is to go back to the vector version v �→ f n(|v|2/2, t) and use
the first or the second cutoffs:

Bn(v, v∗, ω) = (4π)−2|(v − v∗) · ω| min{1, n max{(|v|2/2) ∧ (|v∗|2/2), (|v′|2/2) ∧
(|v′∗|2/2)}} or Bn(v, v∗, ω) = (4π)−2|(v − v∗) · ω| min{1, n min{|v|2/2, |v∗|2/2, |v′|2/2,
|v′∗|2/2}}. Thanks to the identities (1.2),(1.4), and the inequalities (2.37)–(2.39), the cutoff
kernels Bn(v, v∗, ω) have all main properties presented in [12], and thus by just checking the
proofs in [12], one obtains a conservative mild isotropic solution f n(|v|2/2, t) on R

3×[0,∞)

with the initial datum f0(|v|2/2).
Now let Jn[ϕ],Kn[ϕ],J ±

n [ϕ],K±
n [ϕ] be defined as J [ϕ],K[ϕ],J ±[ϕ],K±[ϕ] by

replacing W (x, y, z) with Wn(x, y, z). Then from (2.37)–(2.39) and the collisional sym-
metries (2.35)–(2.36) we see that all integrals appeared below are absolutely convergent
and thus the weak form (1.9) for the approximate mild solutions f n is rigorously written
(denoting dFn

t (x) = f n(x, t)
√

xdx )

∫

R≥0

ϕdFn
t =

∫

R≥0

ϕdF0 +
t∫

0

dτ
∫

R
2≥0

Jn[ϕ]d2 Fn
τ +

t∫

0

dτ
∫

R
3≥0

Kn[ϕ]d3dFn
τ (2.40)

for all t ≥ 0 and all ϕ ∈ L∞
0 (R≥0). It should be noted that it is the first cutoff (2.29)–(2.30)

that can be used to prove the existence of distributional solutions for general initial data. This
is because the first cutoff (2.29)–(2.30) keeps the possibility of condensation at origin and
insures the pointwise convergence on the whole R

3≥0:

lim
n→∞ |W (x, y, z)− Wn(x, y, z)| = 0 ∀ (x, y, z) ∈ R

3≥0. (2.41)
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And in fact we also have, for all ϕ ∈ C1,1
b (R≥0) (denoting D2ϕ(x) = d2ϕ

dx2 (x)),

|K[ϕ](x, y, z)− Kn[ϕ](x, y, z)| ≤ ‖D2ϕ‖L∞√
n

max{√y,
√

z}, ∀ (x, y, z) ∈ R
3≥0

which is enough for proving the existence of distributional solutions Ft as did in [13].
The second cutoff (2.31)–(2.32) kills the possibility of condensation at the origin, and it

does not satisfy (2.41): for instance

lim
n→∞ |W (0, y, z)− Wn(0, y, z)| = W (0, y, z) �= 0 ∀ y > 0, z > 0.

However if the initial datum F0 is regular and its density f0 has only weaker singularity at
the origin (for instance f0(x) ≤ K x−1 (x > 0)), the second cutoff (2.31)–(2.32) and the
corresponding approximate solutions f n are good ones for proving the existence of some
expected solutions on a finite time-interval [0, T ] (see the proof of Theorem 5.1). This is
because the second cutoff (2.31)–(2.32) as well as the original kernel has the following
positivity:

Lemma 2.3 Let w(x, y, z) be given by (1.3) and let wn(x, y, z) be the second cutoff of
w(x, y, z):

wn(x, y, z) = w(x, y, z)min
{

1, n min{x, x∗, y, z}
}
.

Then for any 0 ≤ f ∈ L1(R+,
√

xdx) (i.e. N ( f ) < ∞) we have∫

R
2+

w(x, y, z)[ f (x∗)( f (y)+ f (z))− f (y) f (z)]dydz ≥ 0 ∀ x > 0, (2.42)

∫

R
2+

wn(x, y, z)[ f (x∗)( f (y)+ f (z))− f (y) f (z)]dydz ≥ 0 ∀ x > 0. (2.43)

Proof First we note that the above integrals make sense since (y, z) �→ w(x, y, z) f (y) f (z)
is integrable, see Lemma 5.1 below. The proofs for (2.42) and (2.43) are the same. Let us
prove (2.43). Recall the second cutoff (2.31), wn(x, y, z) = 1√

x
Sn(x, x∗; y, z) with x∗ =

(y +z−x)+. Using translation of variables y +z−x → z, y +z−x → y for the integrals of
Sn(x, x∗; y, z) f (x∗) f (y), Sn(x, x∗; y, z) f (x∗) f (z) respectively, we compute for any x > 0∫

R
2+

wn(x, y, z)[ f (x∗)( f (y)+ f (z))− f (y) f (z)]dydz

= 1√
x

∫

R
2+

[Sn(x, z; y, y∗)+ Sn(x, y; z, z∗)− Sn(x, x∗; y, z)] f (y) f (z)dydz

where y∗ = (x + z − y)+, z∗ = (x + y − z)+. Now by definition of the second cutoff
Sn(·, · ; ·, ·) in (2.31) and by checking three cases 0 < x ≤ y ∧ z, y ∧ z ≤ x ≤ y ∨ z, and
y ∨ z ≤ x , we obtain

Sn(x, z; y, y∗)+ Sn(x, y; z, z∗)− Sn(x, x∗; y, z)

≥ min{√y(1 ∧ (ny)),
√

z(1 ∧ (nz)),
√

y∗(1 ∧ (ny∗)),
√

z∗(1 ∧ (nz∗))} ≥ 0.

This proves the lemma. ��
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3 Strong Solutions and Stability

On the basis of existence of distributional solutions (Theorem 1.1), our strong solutions is
directly defined from the class of distributional solutions.

Definition 3.1 Let Ft be a distributional solution of Eq. (1.5) on [0,∞). Let 0 < T∞ ≤ ∞.
We say that Ft is a strong solution of Eq. (1.5) on [0, T∞) if it satisfies the following (i)-(iii):

(i) t �→ Ft belongs to C1([0, T∞); B0(R≥0)),
(ii) t �→ Q±

2 (Ft ), t �→ Q±
3 (Ft ) belong to C([0, T∞); B0(R≥0)), and

(iii)

d

dt
Ft = Q(Ft ) in (B0(R≥0), ‖ · ‖0) ∀ t ∈ [0, T∞). (3.1)

Besides, if Ft also conserves the energy on [0, T∞), then Ft is also called a conservative
strong solution of Eq. (1.5) on [0, T∞).
Strong solutions can be also defined on a finite closed time-interval by replacing [0, T∞)
with [0, T ] for 0 < T < ∞.

Remark 3.1 (a) Since d
dt Ft and

∫ b
a Q(Ft )dt as finite Borel measures are defined with the

norm ‖ · ‖0 of B0(R≥0), this gives explicit representations ( d
dt Ft )(E) = d

dt Ft (E),

(
∫ b

a Q(Ft )dt)(E) = ∫ b
a Q(Ft )(E)dt for all Borel sets E ⊂ R≥0. Here we recall that

limn→∞ ‖μn − μ‖0 = 0 is equivalent to the uniform convergence limn→∞ supE⊂R≥0|μn(E)− μ(E)| = 0.
(b) Under the condition (ii), the conditions (i), (iii) are equivalent to the integral equation:

Ft = F0 +
t∫

0

Q(Fτ )dτ ∀ t ∈ [0, T∞) (3.2)

where the integral is taken as the Riemann integral defined with the norm ‖ · ‖0. This then
implies that, under the condition (ii), the integral equation (3.2) is equivalent to its dual form:

∫

R≥0

ϕdFt =
∫

R≥0

ϕdF0 +
t∫

0

dτ
∫

R≥0

ϕdQ(Fτ ) ∀ϕ ∈ L∞
0 (R≥0) (3.3)

for all t ∈ [0, T∞). In fact, the equation in (3.3) holds for all ϕ ∈ Cb(R≥0) and thus it holds
for all ϕ ∈ L∞

0 (R≥0).

Systematic results on strong solutions can be obtained for the case M−1/2(F0) < ∞. A
special case of M−1/2(F0) = ∞,M−1/3(F0) < ∞ is considered in Sect. 5. We now begin
with the following

Lemma 3.1 Let F ∈ B+
1/2(R≥0) and let 0 ≤ ϕ ∈ C1,1

b (R≥0) be convex on R≥0. Then

∫

R
2≥0

J [ϕ]d2 F ≥ −M1/2(F)
∫

R≥0

ϕdF,
∫

R
3≥0

K[ϕ]d3 F ≥ 0. (3.4)
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Proof The second inequality in (3.4) has been proven in [15]. To prove the first one, it suffices
to prove

J [ϕ](y, z) ≥ −1

2
( ϕ(y)

√
z + ϕ(z)

√
y ), ∀ y, z ≥ 0. (3.5)

First, it is easily seen from the assumption on ϕ that ϕ is non-increasing on R≥0. Next we
have

�ϕ(x, y, z) = (x − y)(x − z)

1∫

0

1∫

0

(D2ϕ)(ξs,t )dsdt (3.6)

for all x, y, z ≥ 0 satisfying x ≤ y + z where ξs,t = y + z − x + s(x − z) + t (x − y),

D2ϕ(x) = d2ϕ

dx2 (x). Now given any y, z ≥ 0. By symmetry J [ϕ](y, z) = J [ϕ](z, y)we may
assume y ≤ z. The convexity of ϕ and (3.6) imply�ϕ(x, y, z) ≥ 0 for x ∈ [0, y]∪[z, y + z]
and so by definition of J [ϕ]

J [ϕ](y, z) ≥ 1

2

z∫

y

√
xW (x, y, z)�ϕ(x, y, z)dx .

From this and ϕ ≥ 0 we see that to prove (3.5) we can assume y < z. By definition of
W (x, y, z) and the non-increase of ϕ we deduce for all x ∈ (y, z) that W (x, y, z) = 1√

xz
and ϕ(x∗) ≥ ϕ(z) and so �ϕ(x, y, z) ≥ −ϕ(y). Thus

J [ϕ](y, z) ≥ 1

2
√

z

z∫

y

�ϕ(x, y, z)dx ≥ − 1

2
√

z
ϕ(y)(z − y) ≥ −1

2
ϕ(y)

√
z

and so (3.5) holds true. ��

In order to estimate the moment Mp(F) of negative order p < 0 for F ∈ B+(R≥0) we
will often use a smooth approximation:

M (ε)
p (F) :=

∫

R≥0

(ε + x)pdF(x), ε > 0; lim
ε→0+ M (ε)

p (F) = Mp(F) (3.7)

where the limit is due to the monotone convergence theorem.
A fact that will be frequently used for distributional solutions Ft is that the function t �→

M1/2(Ft ) is continuous on [0,∞) and M1/2(Ft ) ≤ √
N (Ft )E(Ft ) for all t ∈ [0,∞). Another

fact to be used is the following “monotone non-decrease” of the moment t �→ Mp(Ft ) for
p < 0.

Lemma 3.2 Let Ft be a distributional solution of Eq. (1.5) on [0,∞). Then for any p < 0,

the function t �→ Mp(Ft )e
∫ t

0 M1/2(Fτ )dτ is monotone non-decreasing on [0,∞), i.e.,

Mp(Ft ) ≤ Mp(FT )e

T∫
t

M1/2(Fτ )dτ ∀ 0 ≤ t ≤ T < ∞ (3.8)

including the possible case Mp(Ft ) = ∞ for some (or all) t ∈ [0,∞).
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Proof Let M (ε)
p (Ft ) be defined in (3.7). Applying Eq. (1.8) and Lemma 3.1 to the smooth

convex function x �→ ϕε(x) = (ε + x)p (ε > 0) we have

d

dt
M (ε)

p (Ft ) ≥
∫

R
2≥0

J [ϕε]d2 Ft ≥ −M1/2(Ft )M
(ε)
p (Ft ), t ≥ 0.

This implies that t �→ M (ε)
p (Ft )e

∫ t
0 M1/2(Fτ )dτ is monotone non-decreasing on [0,∞), i.e.

M (ε)
p (Ft ) ≤ M (ε)

p (FT )e

T∫
t

M1/2(Fτ )dτ ∀ 0 ≤ t ≤ T < ∞.

Letting ε → 0+ and using the limit (3.7) we obtain (3.8). ��

Lemma 3.3 Let Ft be a distributional solution of Eq. (1.5) on [0,∞) and let M (ε)
−1/2(Ft ) be

defined in (3.7) with p = −1/2. Then

d

dt
M (ε)

−1/2(Ft ) ≤ 2N 2 − M1/2(Ft )M
(ε)
−1/2(Ft )+ [M (ε)

−1/2(Ft )]3 ∀ t ∈ [0,∞). (3.9)

Proof Let ϕ(x) = (ε+ x)−1/2 (ε > 0). Applying the differential equation (1.8) we see that
to prove (3.9) it suffices to prove that for any x, y, z ≥ 0

J [ϕ](y, z) ≤ 2 − 1

2
[ϕ(y)+ ϕ(z)]√y ∨ z, K[ϕ](x, y, z) ≤ ϕ(x)ϕ(y)ϕ(z). (3.10)

By definition of J ±[ϕ](y, z) and (2.6) it is easily deduced J +[ϕ](y, z) ≤ 2 and
J −[ϕ](y, z) ≥ 1

2 [ϕ(y)+ ϕ(z)]√y ∨ z. This gives the first inequality in (3.10). To prove the
second one in (3.10) we can assume that K[ϕ](x, y, z) > 0 for the given x, y, z ≥ 0. In this
case we have x∗ = y + z − x > 0 and (y − x)(z − x) > 0, the latter is due to the convexity
of ϕ and (3.6). Let us denote a = √

ε + x, b = √
ε + x∗, c = √

ε + y, d = √
ε + z. Then

�ϕ(x, y, z) = 1

a
+ 1

b
− 1

c
− 1

d
= ϕ(x)ϕ(x∗)ϕ(y)ϕ(z)[(a + b)cd − (c + d)ab]

and c2d2 − a2b2 = (y − x)(z − x) > 0 i.e. cd > ab which together with a2 + b2 = c2 + d2

implies a + b < c + d and cd + ab ≤ a2 + b2. Thus, by computing derivative with respect
to ε, we conclude that the function ε �→ (a + b)cd − (c + d)ab is decreasing on [0,∞) and
so

�ϕ(x, y, z) ≤ ϕ(x)ϕ(x∗)ϕ(y)ϕ(z)[(
√

x + √
x∗)

√
y
√

z − (
√

y + √
z)

√
x
√

x∗ ].
Then it is easily deduced from definition of W (x, y, z) that

W (x, y, z)ϕ(x∗)[(
√

x + √
x∗)

√
y
√

z − (
√

y + √
z)

√
x
√

x∗ ] ≤ 1.

This gives the second inequality in (3.10) by definition of K [ϕ](x, y, z). ��

Lemma 3.4 Let Ft be a distributional solution of Eq. (1.5) on [0,∞) with the initial datum
F0 satisfying M−1/2(F0) < ∞ and let

TF·,max = sup{t ∈ [0,∞) | M−1/2(Ft ) < ∞}. (3.11)
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Then

TF·,max ≥ TF0 := 1

2
[N 2/3 + M−1/2(F0)]−2 > 0, N := N (F0), (3.12)

sup
0≤t≤T

M−1/2(Ft ) ≤ M−1/2(FT )e

T∫
0

M1/2(Fτ )dτ
< ∞ ∀ T ∈ (0, TF·,max), (3.13)

M−1/2(Ft ) ≤ N 2/3 + M−1/2(F0)√
1 − t/TF0

− N 2/3 ∀ t ∈ [0, TF0), (3.14)

i f t0 := TF·,max < ∞, then lim
t→t0− M−1/2(Ft ) = M−1/2(Ft0) = ∞. (3.15)

Proof Let M (ε)
−1/2(Ft ) be defined in (3.7) with ε ∈ (0, N 2/3). By writing 1 = (ε+ x)1/4(ε+

x)−1/4 and using Cauchy-Schwarz inequality we have N 2 ≤ (
√
εN + M1/2(Ft ))M

(ε)
−1/2(Ft )

so that

2N 2 − M1/2(Ft )M
(ε)
−1/2(Ft )+ [M (ε)

−1/2(Ft )]3 ≤ [N 2/3 + M (ε)
−1/2(Ft )]3.

If we define uε(t) = N 2/3 + M (ε)
−1/2(Ft ), then we deduce from (3.9) that

d

dt
uε(t) ≤ [uε(t)]3, t ≥ 0.

This gives (uε(t))−2 ≥ (uε(0))−2 − 2t for all t ≥ 0. Since uε(0) ≤ N 2/3 + M−1/2(F0), it
follows from definition of TF0 that

M (ε)
−1/2(Ft ) ≤ N 2/3 + M−1/2(F0)√

1 − t/TF0

− N 2/3 ∀ t ∈ [0, TF0).

Letting ε → 0+ we conclude from the limit (3.7) that Ft ∈ B+
−1/2,1(R≥0) for all t ∈ [0, TF0)

and (3.14) holds true. This also proves (3.12).
Next let T (F·) = {t ∈ [0,∞) | M−1/2(Ft ) < ∞}. We will prove that T (F·) =

[0, TF·,max). First, it is easily seen from the monotone inequality (3.8) and TF·,max =
sup T (F·) that T (F·) is an interval and [0, TF·,max) ⊂ T (F·) which also implies (3.13) by
(3.8). Next we prove TF·,max �∈ T (F·). Suppose to the contrary that t0 := TF·,max ∈ T (F·).
Then t0 < ∞ and M−1/2(Ft0) < ∞ and so applying the above result to the distributional
solution t �→ F̃t := Ft+t0 of Eq. (1.5) on [0,∞) with the initial datum F̃0 = Ft0 we
conclude that TF̃0

> 0 and [0, TF̃0
) ⊂ T (F̃·). So M−1/2(Ft+t0) = M−1/2(F̃t ) < ∞ for all

t ∈ [0, TF̃0
), i.e. M−1/2(Ft ) < ∞ for all t ∈ [t0, t0 +TF̃0

). This implies [0, t0 +TF̃0
) ⊂ T (F·)

hence t0 + TF̃0
≤ sup T (F·) = t0 which contradicts TF̃0

> 0. Thus we must have
TF·,max �∈ T (F·). Since TF·,max = sup T (F·), it follows that T (F·) ⊂ [0, TF·,max) and
thus T (F·) = [0, TF·,max).

To prove the blow up (3.15) we denote again t0 := TF·,max < ∞. We have proved that
t0 �∈ T (F·), i.e. M−1/2(Ft0) = ∞. Using the continuity of t �→ M (ε)

−1/2(Ft ) on [0,∞) we
have

M (ε)
−1/2(Ft0) = lim inf

t→t0− M (ε)
−1/2(Ft ) ≤ lim inf

t→t0− M−1/2(Ft ) ∀ ε > 0.

Letting ε → 0+ we conclude from the limit (3.7) that M−1/2(Ft0) ≤ lim inf t→t0− M−1/2(Ft )

and so (3.15) holds true since M−1/2(Ft0) = ∞. ��

123



514 X. Lu

Proposition 3.1 Let Ft be a distributional solution of Eq. (1.5) on [0,∞) with the initial
datum F0 satisfying M−1/2(F0) < ∞. Then Ft is a strong solution of Eq. (1.5) on [0, TF·,max).

Proof Take any T ∈ (0, TF·,max). Using the estimates (2.15), (2.18) for k = 1/2 we have
‖Q±

2 (Ft )‖1/2, ‖Q±
3 (Ft )‖1/2 ≤ CT for all t ∈ [0, T ], where CT < ∞ depends only on

supt∈[0,T ] M−1/2(Ft ) and supt∈[0,T ] ‖Ft‖1. From this and the integral equation (1.9) which
also reads

∫

R≥0

ϕd(Ft − Fs) =
t∫

s

dτ
∫

R≥0

ϕdQ(Fτ ) ∀ϕ ∈ C1,1
b (R≥0) (3.16)

we obtain ‖Ft − Fs‖0 ≤ CT |t − s| for all t, s ∈ [0, T ]. Since ‖Ft − Fs‖1/2 ≤ ‖Ft −
Fs‖1/2

1 ‖Ft − Fs‖1/2
0 by Cauchy-Schwarz inequality, it follows that t �→ Ft also belongs

to C([0, TF·,max); B1/2(R≥0)) and thus we conclude from (2.19)–(2.21) with k = 0 that
t �→ Q±

2 (Ft ), t �→ Q±
3 (Ft ) hence t �→ Q(Ft ) all belong to C([0, TF·,max); B0(R≥0)). Next

for any T ∈ (0, TF·,max), using smooth approximation it is easily deduced that (3.16) with
s = 0 and t ∈ [0, T ] holds for all bounded Borel functions ϕ on R≥0, in particular it holds
for all characteristic functions ϕ(x) = 1E (x) of Borel sets E ⊂ R≥0. Therefore Ft satisfies
the integral equation (3.2) and so, according to the equivalent definition of strong solutions
discussed in Remark 3.1, Ft is a strong solutions of Eq. (1.5) on [0, TF·,max). ��

Now we are going to establish the stability estimate for conservative strong solutions.
The method is similar to those for the space homogeneous measure-valued solutions of the
classical Boltzmann equation (see e.g. [16]). Since we have here the cubic term Q3(Ft )which
determines the Bose–Einstein model, we would like to present a complete proof.

Let F,G, H ∈ B(Rn≥0). Recall that the inequality F ≤ G means F(E) ≤ G(E) for all
Borel sets E ⊂ R

n≥0. Let h(x) be the sign function of H , i.e., h is a real Borel function
satisfying [h(x)]2 ≡ 1 and dH(x) = h(x)d|H |(x), which is equivalent to h(x)dH(x) =
d|H |(x). If we define κ(x) = 1

2 (1 + h(x)) and H+ = 1
2 (H + |H |), then H+ ≥ 0 and

κ(x)dH(x) = dH+(x).
Lemma 3.5 Let F ∈ B+

−1/2,1(R≥0) ∩ B+
3/2(R≥0),G ∈ B+

−1/2,1(R≥0) and H = F − G. Let

κ : R≥0 �→ {0, 1} be the Borel function such that κ(·)dH = dH+. Then for all n ≥ 1∫

R
2≥0

(1 + x ∧ n)κ(x)d(Q(F)− Q(G)) ≤ ‖F‖1/2‖F‖3/2 + 2‖F‖3/2‖H‖0

+ 2‖F‖1‖H‖1/2 + 2b(F,G)‖H‖1, (3.17)

lim sup
n→∞

∫

R
2≥0

(1 + x ∧ n)κ(x)d(Q(F)− Q(G)) ≤ 2‖F‖3/2‖H‖0 + 2‖F‖1‖H‖1/2

+ 2b(F,G)‖H‖1 (3.18)

where b(F,G) is given in (2.22).

Proof Let ϕn(x) = (1 + x ∧ n)κ(x). Since x �→ ϕn(x) is bounded, there is no problem of
integrability in the proof. We have∫

R
2≥0

ϕnd(Q(F)− Q(G)) ≤ Q+
2,n − Q−

2,n + 2b(F,G)‖H‖1, (3.19)
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Q+
2,n :=

∫

R
2≥0

J +[ϕn]d(F ⊗ F − G ⊗ G), Q−
2,n :=

∫

R
2≥0

ϕn(y)J +[1]d(F ⊗ F − G ⊗ G)

where we have used (2.21) for k = 1 to get ‖Q3(F) − Q3(G)‖1 ≤ 2b(F,G)‖H‖1. Recall
that W (x, y, z) > 0 implies x + x∗ = y + z so that ϕn(x)+ϕn(x∗) ≤ 2+ x + x∗ = 2+ y + z.
This gives J +[ϕn](y, z) ≤ (1 + y+z

2 )J +[1](y, z) and so

Q+
2,n≤

∫

R
2≥0

J +[ϕn]d(F ⊗ F − G ⊗ G)+

≤
∫

R
2≥0

(
1 + y + z

2

)
J +[1](y, z)d(F ⊗ F − G ⊗ G)+

=
∫

R
2≥0

(1 + y)J +[1](y, z)d(F ⊗ F − G ⊗ G)+ (3.20)

where the last equality is due to the symmetry J +[1](y, z) = J +[1](z, y) and the equality∫

R
2≥0

ψ(y, z)d(F ⊗ F − G ⊗ G)+ =
∫

R
2≥0

ψ(z, y)d(F ⊗ F − G ⊗ G)+

which holds at least for all bounded Borel functions ψ on R
2≥0 (see e.g. Lemma 5.2 of [16])

and thus it holds for all nonnegative Borel functions on R
2≥0 by monotone convergence. Since

(F ⊗ F − G ⊗ G)+ ≤ F ⊗ H+ + H+ ⊗ G,

1 + y = (y − n)+ + 1 + y ∧ n, and∫

R
2≥0

(y − n)+J +[1]d(F ⊗ F − G ⊗ G)+ ≤ ‖F‖1/2

∫

R≥0

(y − n)+
√

1 + ydF(y) =: en

it follows from (3.20) that

Q+
2,n ≤ en +

∫

R
2≥0

(1 + y ∧ n)J +[1]d(F ⊗ H+)+
∫

R
2≥0

(1 + y ∧ n)J +[1]d(H+ ⊗ G).

(3.21)

For the negative part Q−
2,n , recalling ϕn(y) = (1 + y ∧ n)κ(y) we have

ϕn(y)d(F ⊗ F − G ⊗ G) = ϕn(y)d(F ⊗ H)+ (1 + y ∧ n)d(H+ ⊗ G),

Q−
2,n =

∫

R
2≥0

ϕn(y)J +[1]d(F ⊗ H)+
∫

R
2≥0

(1 + y ∧ n)J +[1]d(H+ ⊗ G). (3.22)

The common terms in the right hand sides of (3.21)–(3.22) cancel each other in Q+
2,n − Q−

2,n
and thus using J +[1](y, z) ≤ √

y + √
z we obtain

Q+
2,n − Q−

2,n ≤ en + 2‖F‖3/2‖H‖0 + 2‖F‖1‖H‖1/2. (3.23)
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Finally by definition of en and the assumption on F we have en ≤ ‖F‖1/2‖F‖3/2, n =
1, 2, 3, . . . ; and limn→∞ en = 0 by dominated convergence theorem. The lemma then fol-
lows from these and (3.19), (3.23). ��

For any given F0 ∈ B+
1 (R≥0) we define a function �F0(ε) on [0,∞) by

�F0(ε) = ε + √
ε +

∞∫

1√
ε

xdF0(x), ε > 0; �F0(0) = 0. (3.24)

Here
∫∞

1√
ε

can be understood as either
∫
( 1√

ε
,∞)

or
∫
[ 1√

ε
,∞)

.

Theorem 3.1 Let Ft ,Gt be conservative distributional solutions to Eq. (1.5) on [0,∞) with
their initial data F0,G0 satisfying M−1/2(F0) < ∞,M−1/2(G0) < ∞. Let TF·,max, TG·,max

be defined in (3.11) for Ft ,Gt respectively. Then for any T ∈ (0, TF·,max ∧ TG·,max)

‖Ft − Gt‖1 ≤ C�F0(‖F0 − G0‖1)e
ct ∀ t ∈ [0, T ] (3.25)

where �F0(·) is defined in (3.24) and C = CT , c = cT are finite positive constants
depending only on N (F0), E(F0), sup0≤t≤T M−1/2(Ft ), and sup0≤t≤T M−1/2(Gt ) with
T ∈ (0, TF·,max ∧ TG·,max).

In particular if F0 = G0, then TF·,max = TG·,max := Tmax and Ft = Gt for all t ∈
[0, Tmax).

Proof The proof is divided into five steps. First of all, according to Proposition 3.1, Ft ,Gt

are strong solutions on [0, TF·,max) and [0, TG·,max) respectively. In Steps 1–3 we assume that
one of the two solutions, e.g. Ft , has the moment production (1.15) for all t ∈ (0, TF·,max).
The existence of such Ft is assured by Theorem 1.1. Let us denote

Ht = Ft − Gt .

By conservation of mass we have ‖Ft ±Gt‖1 ≤ ‖F0‖1+‖G0‖1 for all t ≥ 0. So if ‖H0‖1 ≥ 1,
then ‖Ht‖1 ≤ 2‖F0‖1 + ‖H0‖1 ≤ (2‖F0‖1 + 1)‖H0‖1 for all t ≥ 0. Therefore to prove
(3.25) we can assume ‖H0‖1 < 1. Given any T ∈ (0, TF·,max ∧ TG·,max) and s ∈ (0, T ).

Step 1: We prove that

‖Ht‖0 ≤ ‖H0‖0 + C

t∫

0

‖Hτ‖1dτ, t ∈ [0, T ], (3.26)

‖Ht‖1 ≤ ‖Hs‖1 + C0

t∫

s

(1 + 1/τ)‖Hτ‖0dτ + C

t∫

s

‖Hτ‖1dτ, t ∈ [s, T ]. (3.27)

Here and below the constant 0 < C0 < ∞ depends only on N (F0) and E(F0), while
the constants 0 < C, c < ∞ depend only on N (F0), E(F0), sup0≤t≤T M−1/2(Ft ), and
sup0≤t≤T M−1/2(Gt ). And C0,C may have different value in different places. Also recall
that ‖F0‖1 = N (F0)+ E(F0).

The inequality (3.26) follows from Ht = H0 + ∫ t
0 [Q(Fτ )− Q(Gτ )]dτ and the estimates

(2.19), (2.21) for k = 0. To prove (3.27) we first use |Ht | = Gt − Ft + 2(Ht )
+ and the

conservation of mass and energy to write

‖Ht‖1 = ‖Gs‖1 − ‖Fs‖1 + 2‖(Ht )
+‖1, t ≥ s. (3.28)
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Let x �→ κt (x) ∈ {0, 1} be the Borel function on R≥0 such that κt dHt = d(Ht )
+. Since

t �→ Q(Ft )−Q(Gt ) belongs to C([0, TF·,max ∧ TG·,max); B0(R≥0)), applying Lemma 5.1 of
[16] to the measure equation Ht = Hs + ∫ t

s (Q(Fτ )−Q(Gτ ))dτ, t ∈ [s, TF·,max ∧ TG·,max),

we have

∫

R≥0

ϕ(x)d(Ht )
+ =

∫

R≥0

ϕ(x)d(Hs)+
t∫

s

dτ
∫

R≥0

ϕ(x)κτ (x)d(Q(Fτ )− Q(Gτ ))

for all t ∈ [s, T ] and all ϕ ∈ L∞
0 (R≥0). In particular we have

∫

R≥0

(1 + x ∧ n)d(Ht )
+ ≤ ‖(Hs)

+‖1 +
t∫

s

dτ
∫

R≥0

(1 + x ∧ n)κτ (x)d(Q(Fτ )− Q(Gτ )).

Next applying (1.15) with p = 3/2 we see that the function t �→ ‖Ft‖3/2 ≤ C0(1 + 1/t)
is integrable on [s, T ] and thus we deduce from Lemma 3.5 and the reverse Fatou’s Lemma
that

lim sup
n→∞

t∫

s

dτ
∫

R≥0

(1 + x ∧ n)κτ (x)d(Q2(Fτ )− Q2(Gτ ))(x)

≤ C0

t∫

s

(1 + 1/τ)‖Hτ‖0dτ + C

t∫

s

‖Hτ‖1dτ.

Here the second constant C is obtained by using the conservation of mass and energy which
gives upper bounds M1/2(Ft )+ M1/2(Gt ) ≤ 1

2‖F0‖1 + 1
2‖G0‖1 ≤ ‖F0‖1 + 1

2 , etc. Letting
n → ∞ we conclude

‖(Ht )
+‖1 ≤ ‖(Hs)

+‖1 + C0

t∫

s

(1 + 1/τ)‖Hτ‖0dτ + C

t∫

s

‖Hτ‖1dτ.

This together with (3.28) and ‖Gs‖1 − ‖Fs‖1 + 2‖(Hs)
+‖1 = ‖Hs‖1 gives (3.27).

Step 2: We prove that for any R ≥ 1

‖Ht‖1 ≤ 5R‖H0‖1 + C Rt + 2
∫

x>R

xdF0(x), t ∈ [0, T ]. (3.29)

In fact using |Ht | = Gt − Ft + 2(Ht )
+ and conservation of mass and energy we have

‖Ht‖1 ≤ ‖H0‖1 + 4R‖Ht‖0 + 2
∫

x>R

xdFt (x) (3.30)

and applying (3.3) to the bounded function ψ(x) = 1{x≤R}x we deduce
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∫

x>R

xdFt = E(F0)−
∫

R≥0

1{x≤R}xdFt =
∫

x>R

xdF0 −
t∫

0

dτ
∫

R≥0

1{x≤R}xdQ(Fτ )

≤
∫

x>R

xdF0 + R

t∫

0

‖Q(Fτ )‖0dτ

≤
∫

x>R

xdF0 + C Rt.

This together with (3.30) and ‖Ht‖0 ≤ ‖H0‖0 + Ct (by (3.26)) yields (3.29).
Step 3: If T ≤ ‖H0‖1, we take R = 1√‖H0‖1

and use (3.29) to get

‖Ht‖1 ≤ C
(√‖H0‖1 +

∫

x> 1√‖H0‖1

xdF0(x)
)

≤ C�F0(‖H0‖1), t ∈ [0, T ].

Suppose now ‖H0‖1 < T and let ε > 0 satisfy ‖H0‖1 ≤ ε < T ∧ 1. Taking R = 1√
ε

and
using (3.29) we have

‖Ht‖1 ≤ C
√
ε + 2

∫

x> 1√
ε

xdF0(x) ≤ C�F0(ε), ∀ t ∈ [0, ε]. (3.31)

In particular this inequality holds for t = ε. Thus using (3.27) for s = ε gives

‖Ht‖1 ≤C�F0(ε)+C0

t∫

ε

(1 + 1/τ)‖Hτ‖0dτ+C

t∫

ε

‖Hτ‖1dτ, t ∈ [ε, T ∧ 1] (3.32)

Next, using (3.26) and ‖H0‖0 ≤ ε ≤ t ≤ 1,

t∫

ε

(1 + 1/τ)‖Hτ‖0dτ≤2ε log(1/ε)+ 2C

t∫

ε

1

τ

τ∫

0

‖Hu‖1dudτ

≤2
√
ε + 2C

t∫

0

‖Hu‖1| log u|du, t ∈ [ε, T ∧ 1]. (3.33)

This together with (3.32) and (3.31) gives

‖Ht‖1 ≤ C�F0(ε)+ C

t∫

0

(1 + | log τ |)‖Hτ‖1dτ, t ∈ [0, T ∧ 1]. (3.34)

By Gronwall lemma we then obtain

‖Ht‖1 ≤ C�F0(ε) exp
(

C

t∫

0

(1 + | log τ |)dτ
)

≤ C�F0(ε), t ∈ [0, T ∧ 1]. (3.35)

Now if T ≤ 1, then (3.25) follows from (3.35). Suppose T > 1. Then (3.35) holds for all
t ∈ [0, 1]. In particular ‖H1‖1 ≤ C�F0(ε). On the other hand from (3.27) with s = 1 we
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have ‖Ht‖1 ≤ ‖H1‖1 + c
t∫

1
‖Hτ‖1dτ for all t ∈ [1, T ] and so ‖Ht‖1 ≤ ‖H1‖1ec(t−1) ≤

C�F0(ε)e
ct for all t ∈ [1, T ] by Gronwall Lemma. This together with the estimate for

t ∈ [0, 1] leads to

‖Ht‖1 ≤ C�F0(ε)e
ct , t ∈ [0, T ]. (3.36)

Finally if ‖H0‖1 > 0 then taking ε = ‖H0‖1 in (3.36) gives (3.25). If ‖H0‖1 = 0, then
in (3.36) letting ε → 0+ we conclude ‖Ht‖1 = 0 for all t ∈ [0, T ] and thus (3.25) still
holds true. This proves (3.25) for the case where Ft has the moment production (1.15) for all
t ∈ (0, TF·,max).

Step 4: We prove that if any two conservative distributional solutions Ft ,Gt stated in the
theorem satisfy Ft = Gt for all t ∈ [0, TF·,max ∧ TG·,max), then TF·,max = TG·,max.

Suppose this is not true and let for instance t0 := TF·,max < TG·,max. Then t0 < ∞ and, by
Lemma 3.5, M−1/2(Ft0) = ∞ but M−1/2(Gt0) < ∞. Let M (ε)

−1/2(Ft ), M (ε)
−1/2(Gt ) be defined

in (3.7). By the assumption Ft = Gt for all t ∈ [0, t0) we have M (ε)
−1/2(Ft ) = M (ε)

−1/2(Gt )

for all t ∈ [0, t0). Since t �→ M (ε)
−1/2(Ft ), t �→ M (ε)

−1/2(Gt ) are continuous on [0,∞), letting

t ↗ t0 gives M (ε)
−1/2(Ft0) = M (ε)

−1/2(Gt0), and then letting ε → 0+ and using the limit (3.7)
leads to M−1/2(Ft0) = M−1/2(Gt0) < ∞ which contradicts M−1/2(Ft0) = ∞. Thus we
must have TF·,max = TG·,max.

Step 5: Let Gt be any conservative distributional solution of Eq. (1.5) on [0,∞) having the
same initial datum G0 = F0 of Ft where Ft is used in Steps 1–3. Using (3.25) we conclude
Gt = Ft for all t ∈ [0, TF·,max ∧ TG·,max) and thus Step 4 insures that TF·,max = TG·,max :=
Tmax hence Gt = Ft for all t ∈ [0, Tmax). In particular Gt also has the moment production
(1.15) for all t ∈ (0, Tmax). This proves that the moment condition added on Ft in Steps
1–3 is indeed satisfied for every conservative distributional solution satisfying the condition
in the theorem and thus the stability estimate (3.25) holds true for any two conservative
distributional solutions Ft ,Gt stated in the theorem.

Finally let Ft ,Gt be given in the theorem and suppose F0 = G0. Then (3.25) implies that
Ft = Gt for all t ∈ [0, TF·,max ∧ TG·,max) and Step 4 insures that TF·,max = TG·,max := Tmax

hence Ft = Gt for all t ∈ [0, Tmax). This finishes the proof of the theorem. ��

Now we are going to prove the global existence of strong solutions for a class of initial
data. We will use the Hölder inequality of moments for F ∈ B+(R≥0) (with F(R>0) > 0)

Mr (F) ≤ [Mp(F)]
q−r
q−p [Mq(F)]

r−p
q−p , −∞ < p < r < q < ∞ (3.37)

and the following lemma:

Lemma 3.6 Let Ft be a conservative distributional solution of Eq. (1.5) on [0,∞) satisfying
the moment production (1.15), and let N = N (F0), E = E(F0). Then for all t > 0

M1/2(Ft ) ≥ 1

6

[
1 − exp

(− (
√

N E + N 3/E)t
)] N E√

N E + N 3/E
. (3.38)

Proof By conservation of energy and (3.37) we have E ≤ [M1/2(Ft )]2/3[M2(Ft )]1/3, i.e.

M1/2(Ft ) ≥ E3/2

√
M2(Ft )

∀ t > 0. (3.39)
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Thus to prove (3.38) we need only to prove that M2(Ft ) has the corresponding upper bound.
To do this we must use the differential equation

d

dt
M2(Ft ) =

∫

R
2≥0

J [ϕ]d2 Ft +
∫

R
3≥0

K[ϕ]d3 Ft ∀ t > 0 (3.40)

where ϕ(x) = x2. Of course this ϕ does not belong to the test function space C1,1(R≥0), but
thanks to the moment production (1.15) we are able to prove that (3.40) does hold rigourously.
First, from the moment production (1.15) we have supt≥s ‖Ft‖p < ∞ for all s > 0 and
p ≥ 1 and thus using Corollary of Lemma 4 in [13] to {Ft }t≥s we conclude that the collision
integrals t �→ ∫

R
2≥0

J [ϕ]d2 Ft , t �→ ∫
R

3≥0
K[ϕ]d3 Ft are continuous on [s,∞) (∀ s > 0).

Also we note that the measure t �→ Ft+s is a distributional solution of Eq. (1.5) on [0,∞)

with the initial datum Fs and thus it satisfies the integral equation (1.9). Next in order to
use our test functions in C1,1

b (R≥0) we consider smooth truncations ϕn(x) = x2e−x/n . We
compute supn≥1,x≥0 |D2ϕn(x)| ≤ 4 and, using (3.6),

sup
n≥1

|K[ϕn](x, y, z)| ≤ 4(1 + y)(1 + z), sup
n≥1

|J [ϕn](y, z)| ≤ 2(1 + y)5/2(1 + z)5/2,

lim
n→∞ K[ϕn](x, y, z) = K[ϕ](x, y, z), lim

n→∞ J [ϕn](y, z) = J [ϕ](y, z)

for all x, y, z ≥ 0. Since supt≥s ‖Ft‖5/2 < ∞, it follows from dominated convergence
theorem that the integral equation (1.9) of the solution t �→ Ft+s holds also for the function
ϕ(x) = x2. Since s > 0 is arbitrary, this proves that the function t �→ M2(Ft ) belongs to
C1((0,∞)) and satisfies the differential equation (3.40).

Now let us compute J [ϕ](y, z). By definition of J [ϕ] we have J [ϕ](y, z) = J [ϕ](z, y)
and J [ϕ](0, 0) = 0. Suppose for instance 0 ≤ y ≤ z and z > 0. By considering
J +[ϕ](y, z) = ∫ y

0 + ∫ z
y + ∫ y+z

z we compute

J [ϕ](y, z) =
(

1

2
+ 8

15
· y

z
− 13

210

( y

z

)2
)

yz3/2 + z5/2

3
− 1

2
(y2 + z2)

√
z.

Since 1
2 + 8

15θ − 13
210θ

2 ≤ 102
105 < 1 for all 0 ≤ θ ≤ 1, it follows that

J [ϕ](y, z) ≤ yz3/2 ∨ y3/2z + 1

3
(y5/2 ∨ z5/2)− 1

2
(y2 + z2)

√
y ∨ z ∀ y, z ≥ 0.

From this we obtain ∫

R
2≥0

J [ϕ]d2 Ft ≤ 2E M3/2(Ft )− 1

3
N M5/2(Ft ).

Using the Hölder inequality (3.37) and the conservation of mass and energy M0(Ft ) =
N ,M1(Ft ) = E we have E ≤ √

N
√

M2(Ft ),M3/2(Ft ) ≤ √
E

√
M2(Ft ) and M5/2(Ft ) ≥

[M2(Ft )]3/2/
√

E . Thus∫

R
2≥0

J [ϕ]d2 Ft ≤ 2
√

N E M2(Ft )− N

3
√

E
[M2(Ft )]3/2. (3.41)

Next we estimate the cubic term. Recalling that W (x, y, z) > 0 implies x∗ = y + z − x > 0
and so �ϕ(x, y, z) = x2 + x2∗ − y2 − z2 = 2(yz − xx∗), it follows that

K[ϕ](x, y, z) = 2W (x, y, z)(yz − xx∗) ≤ 2W (x, y, z)yz ≤ 2
√

yz
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for all x, y, z ≥ 0 hence
∫

R
3≥0

K[ϕ]d3 Ft ≤ 2N [M1/2(Ft )]2 ≤ 2N 2 E ≤ 2
N 3

E
M2(Ft ). (3.42)

Here we used M1/2(Ft )
2 ≤ N E and E2 ≤ N M2(Ft ). Combining (3.41) and (3.42) with

(3.40) we obtain

d

dt
M2(Ft ) ≤ AM2(Ft )− B[M2(Ft )]3/2, t > 0 (3.43)

where

A = 2
(√

N E + N 3

E

)
, B = N

3
√

E
. (3.44)

By solving the differential inequality (3.43) we conclude

M2(Ft ) ≤ (A/B)2(1 − e− 1
2 At )−2, t > 0. (3.45)

Therefore the inequality (3.38) follows from (3.39), (3.45) and (3.44). ��
Theorem 3.2 Let F0 ∈ B+

−1/2,1(R≥0) and suppose

M−1/2(F0) ≤ 1

80
[N (F0)E(F0)]1/4. (3.46)

Then there exists a unique conservative distributional solution Ft of Eq. (1.5) on [0,∞) with
the initial datum F0. Moreover Ft is also a strong solution on [0,∞) and satisfies

sup
t≥0

M−1/2(Ft ) ≤ 1

4
[N (F0)E(F0)]1/4. (3.47)

In particular Ft has no condensation for all t ∈ [0,∞).

Proof Denote N = N (F0), E = E(F0) and let Ft be a conservative distributional solution
of Eq. (1.5) on [0,∞) obtained by Theorem 1.1 with the initial datum F0, in particular Ft has
the moment production (1.15). Then, by Lemma 3.6, Ft satisfies (3.38). To prove the theorem,
we need only to prove that TF·,max = ∞ and Ft satisfies (3.47). In fact if TF·,max = ∞ holds
true, then we conclude from Proposition 3.1 and Theorem 3.1 that this Ft is a strong solution
on [0,∞) and Ft is the unique one in the class of conservative distributional solutions of Eq.
(1.5) on [0,∞) having the same initial datum F0.

Let us introduce two numbers which will play important roles:

β = N E

[M−1/2(F0)]4 , γ = E

N 5/3
. (3.48)

Using Hölder inequality (3.37) we have N ≤ (M−1/2(F0))
2/3 E1/3 i.e.

M−1/2(F0) ≥
√

N 3/E . (3.49)

From (3.48), (3.49) we deduce

(γ /β)1/4 = N−2/3 M−1/2(F0), γ ≥ β1/3.
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Then, by Lemma 3.4,

M−1/2(Ft ) ≤ N 2/3

(
1 + (γ /β)1/4√

1 − t/TF0

− 1

)
∀ t ∈ [0, TF0) (3.50)

where TF0 is given in (3.12) which can be also rewritten in terms of (γ /β)1/4 as

TF0 = 1

2N 4/3(1 + (γ /β)1/4)2
.

According to the differential inequality (3.9), in order to obtain an upper bound of M−1/2(Ft )

on [t0,∞) for some 0 < t0 < TF0 , we need to have a lower bound for M1/2(Ft ) on [t0,∞).
The condition (3.46) which now reads β ≥ (80)4 is just designed for this popups. Numerical
computation suggests that a good choice for t0 is given by

1 − exp(−(√N E + N 3/E)t0) = 36

37
i.e. t0 = log(37)√

N E + N 3/E
. (3.51)

We need to prove that this t0 satisfies

t0 ≤ 1

2
TF0 i.e. 4 log(37) ≤

√
N E + N 3/E

N 4/3(1 + (γ /β)1/4)2
. (3.52)

To prove (3.52) we use γ = E/N 5/3 to write
√

N E + N 3/E = N 4/3(
√
γ + γ−1) (3.53)

so that the inequality (3.52) is equivalent to

4 log(37) ≤
√
γ + γ−1

(1 + (γ /β)1/4)2
. (3.54)

Using γ ≥ β1/3 and omitting γ−1 we see that the right hand side of (3.54) is larger than(
γ 1/4/(1 + (γ /β)1/4)

)2 ≥ β1/6
(
1 + β−1/6

)−2
> 4 log(37) where the last inequality is

because β1/6 ≥ (80)2/3. Thus (3.54) holds true. By the way, from γ ≥ β1/3 we also have

E

N 5/3
= γ ≥ (80)4/3. (3.55)

Now applying (3.38) with (3.51), (3.53) and E = N 5/3γ we obtain

M1/2(Ft ) ≥ 6

37
· N E√

N E + N 3/E
= 3M2∗ ∀ t ≥ t0 (3.56)

where

M∗ = N 2/3
(

2
√
γ

37(1 + γ−3/2)

)1/2

. (3.57)

Inserting (3.56) into the differential inequality (3.9) leads to

d

dt
M (ε)

−1/2(Ft ) ≤ 2N 2 − 3M2∗ M (ε)
−1/2(Ft )+ [M (ε)

−1/2(Ft )]3 ∀ t ≥ t0 (3.58)

from which we see that in order to get a global upper bound of (t, ε) �→ M (ε)
−1/2(Ft ), it needs

only to prove the following inequalities (the reason will be clear later):

N 2 ≤ M3∗ , M−1/2(Ft ) ≤ M∗ ∀ t ∈ [0, t0]. (3.59)
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The first inequality in (3.59) is equivalent to
√
γ

1+γ−3/2 ≥ 37/2 which is exactly satisfied since

γ ≥ (80)4/3. To prove the second one in (3.59) we first use (3.50) and t0 ≤ 1
2 TF0 to get

M−1/2(Ft ) ≤ N 2/3
(√

2 (1 + (γ /β)1/4)− 1
)

∀ t ∈ [0, t0].
Then, by definition of M∗ and γ−3/2 ≤ (80)−2, we see that a sufficient condition for the
second inequality in (3.59) to hold is

√
2 (1 + (γ /β)1/4)− 1 ≤

( 2
√
γ

37(1 + (80)−2)

)1/2
.

But this inequality does hold true because β1/4 ≥ 80 and γ 1/4 ≥ (80)1/3.
Now from (3.58), N 2 ≤ M3∗ , 2M3∗ −3M2∗ M +M3 = (M −M∗)2(M +2M∗), and denoting

Mε(t) = M (ε)
−1/2(Ft ) we obtain

d

dt
Mε(t) ≤ (Mε(t)− M∗)2(Mε(t)+ 2M∗) ∀ t ≥ t0.

Since Mε(t0) ≤ M−1/2(Ft0) ≤ M∗, it follows that

(Mε(t)− M∗)+ ≤
t∫

t0

[(Mε(τ )− M∗)+]2(Mε(τ )+ 2M∗)dτ, t ∈ [t0,∞).

Thus we conclude from Gronwall Lemma that (Mε(t) − M∗)+ ≡ 0, i.e. M (ε)
−1/2(Ft ) =

Mε(t) ≤ M∗ for all t ≥ t0 and all ε > 0. Letting ε → 0+ leads to M−1/2(Ft ) ≤ M∗ for all
t ≥ t0. Combining this with the second inequality in (3.59) we conclude that

M−1/2(Ft ) ≤ M∗ ∀ t ∈ [0,∞). (3.60)

This implies that TF·,max = ∞ by definition of TF·,max. Finally since N 2/3γ 1/4 = (N E)1/4,
it follows from (3.57) that M∗ ≤ (N E)1/4

√
2/37 ≤ 1

4 (N E)1/4 and thus we obtain (3.47)
from (3.60). This completes the proof. ��

There are many F0 that satisfy the condition (3.46). For instance for any G0 ∈
B+

−1/2,1(R≥0) with M−1/2(G0) > 0, define F0 = ρG0 with a constant ρ > 0. Then

M−1/2(F0)

[N (F0)E(F0)]1/4 = √
ρ

M−1/2(G0)

[N (G0)E(G0)]1/4 (3.61)

and so F0 satisfies (3.46) when ρ is small enough.
We have proved that the condition (3.46) implies (3.55) i.e. E

N 5/3 ≥ (80)4/3, from which

and (1.14) one sees that the condition (3.46) belongs to the case of high temperature: T /T c >

783.

4 Regularity and Mild Solutions

In this section we use the above results to study regularity of distributional solutions and
prove the existence and stability of mild solutions. Without risk of confusion we use short
notations for the norms of L1(R)+ and L∞(R)+:

‖ f ‖L1 ≡ ‖ f ‖L1(R+), ‖ f ‖L∞ ≡ ‖ f ‖L∞(R+).
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As usual we denote f (t) = f (·, t) when the x-variable has been taken certain integration or
norm, for instance N ( f (t)) = N ( f (·, t)), ‖ f (t)‖L1 = ‖ f (·, t)‖L1 , etc. From Lemma 2.2
and the following propositions one will see that just as M−1/2(Ft ) plays the important role
in the existence of strong solutions, ‖ f (t)‖L1 = M−1/2( f (t)) also controls everything for
the existence and stability of local and global (bounded or unbounded) mild solutions.

Proposition 4.1 Let Ft be a distributional solution of Eq. (1.5) on [0,∞) whose initial
datum F0 is regular and satisfies M−1/2(F0) < ∞, and let TF·,max be defined in (3.11). Then
Ft is regular for all t ∈ [0, TF·,max) and its density f (·, t) is a mild solution of Eq. (1.5)
on [0, TF·,max) satisfying f ∈ C([0, TF·,max); L1(R+)) and f (·, 0) = f0, where f0 is the
density of F0. In particular if Ft is conservative, so is f (·, t) on [0, TF·,max).

Proof Denote Tmax = TF·,max. By Proposition 3.1, Ft is a strong distributional solution on
[0, Tmax), and from the relation (1.11) we have Ft ({0}) = 0 for all t ∈ [0, Tmax), which
means that the origin x = 0 has no contribution with respect to the measure Ft and thus the
integration domain R≥0 can be replaced by R+ = R>0. Let

νt (E) =
∫

E

1√
x

dFt (x), Vt (δ) = sup
mes(U )<δ

νt (U ), 0 ≤ t < Tmax

where E ⊂ R+ is any Borel set, U is chosen from all open sets in R+, and mes(·) denotes the
Lebeague measure. We are going to establish Gronwall inequality for Vt (δ) on t ∈ [0, Tmax).

Given any T ∈ (0, Tmax) and take any open set U ⊂ R+ satisfying mes(U ) < δ. Applying
the integral equation (3.3) to a monotone sequence 0 ≤ ϕn ∈ Cb(R≥0) satisfying

ϕn(x) ↗ ψU (x) := 1√
x

1U (x) (n → ∞) ∀ x ∈ R+

(for instance one may take ϕn(x) = (x+ 1
n )

−1/2(1−exp(−ndist(x,U c)))where U c = R\U )
and then omitting negative parts, we deduce from monotone convergence that

νt (U ) ≤ ν0(U )+
t∫

0

dτ
∫

R
2+

J +[ψU ]d2 Fτ +
t∫

0

dτ
∫

R
3+

K+[ψU ]d3 Fτ .

Next we compute for all x, y, z > 0

J +[ψU ](y, z) ≤ 1√
yz

mes(U ) ≤ 1√
yz
δ ,

K+[ψU ](x, y, z) ≤ 1√
xyz

[1U (x)+ 1U (y + z − x)].

Since R+ ∩ (U + x − z) is open and mes(R+ ∩ (U + x − z)) ≤ mes(U ) < δ, this gives∫

R+

1U (y + z − x)
1√
y

dFτ (y) =
∫

R+∩(U+x−z)

1√
y

dFτ (y) ≤ Vτ (δ).

It follows that

νt (U ) ≤ V0(δ)+
t∫

0

[M−1/2(Fτ )]2dτ δ + 2

t∫

0

[M−1/2(Fτ )]2Vτ (δ)dτ.
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Taking supmes(U )<δ leads to

Vt (δ) ≤ V0(δ)+ 2

t∫

0

[M−1/2(Fτ )]2
( δ

2
+ Vτ (δ)

)
dτ, 0 ≤ t ≤ T

and so, by Gronwall Lemma,

δ

2
+ Vt (δ) ≤

( δ
2

+ V0(δ)
)

exp
(

2

t∫

0

[M−1/2(Fτ )]2dτ
)
, 0 ≤ t ≤ T .

By assumption on F0 we have limδ→0+ V0(δ) = 0 and thus limδ→0+ Vt (δ) = 0 for all
t ∈ [0, T ]. Since T ∈ (0, Tmax) is arbitrary, this proves that νt is absolutely continuous
with respect to the Lebesgue measure for every t ∈ [0, Tmax), and thus there is a unique
0 ≤ f (·, t) ∈ L1(R≥0) such that 1√

x
dFt (x) = dνt (x) = f (x, t)dx . That is, we have proved

that Ft is regular for all t ∈ [0, Tmax) and its density f (·, t) belongs to L1(R+) for all
t ∈ [0, Tmax).

Since ‖ f (t)‖L1 = M−1/2(Ft ) < ∞ for all t ∈ [0, Tmax), it follows from (2.26) and (3.13)
that

sup
0≤t≤T

∫

R
3+

w(x, y, z)[ f ′ f ′∗(1 + f + f∗))+ f f∗(1 + f ′ + f ′∗)]dxdydz

≤ 4 sup
0≤t≤T

(
M1/2( f (t))‖ f (t)‖L1 + ‖ f (t)‖3

L1

)
< ∞ ∀ T ∈ (0, Tmax). (4.1)

From this and that Ft is a strong solution of Eq. (1.5) on [0, Tmax) we conclude that the
equation

∫

R≥0

ϕ(x)
(

f (x, t)− f0(x)−
t∫

0

Q( f )(x, τ )dτ
)√

x dx

=
∫

R≥0

ϕ(x)d
(

Ft − F0 −
t∫

0

Q(Fτ )dτ
)

dx = 0

holds for all t ∈ [0, Tmax) and all ϕ ∈ L∞
0 (R≥0). Thus for any t ∈ [0, Tmax), there is a null

set Zt ⊂ R≥0 such that

f (x, t) = f0(x)+
t∫

0

Q( f )(x, τ )dτ ∀ x ∈ R≥0\Zt .

Now we consider the nonnegative measurable function f̃ (x, t) := | f0(x)+
t∫

0
Q( f )(x, τ )dτ |

on R+ × [0, Tmax). We have f̃ (x, 0) ≡ f0(x) and, by nonnegativity of f , f̃ (x, t) = f (x, t)
for all t ∈ [0, Tmax) and all x ∈ R+\Zt . But the advantage of f̃ is that there is a null set
Z which is independent of t such that for every x ∈ R+\Z the function t �→ f̃ (x, t) is
continuous on [0, Tmax). Thus it follows from Fubini theorem that f̃ (·, t) is a mild solution
of Eq. (1.5) on [0, Tmax). Again, since f̃ (x, t) = f (x, t) for all t ∈ [0, Tmax) and all
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x ∈ R+\Zt , it follows that f̃ (·, t) is also the same density of Ft for t ∈ [0, Tmax). Thus by
rewriting f̃ (·, t) as f (·, t) we conclude that the density f (·, t) of Ft is a mild solution of Eq.
(1.5) on [0, TF·,max).

Finally for any T ∈ (0, Tmax), let CT be the left hand side of (4.1). Then we deduce
from (4.1) and the definition of mild solutions that ‖ f (τ ) − f (t)‖L1 ≤ 2CT |s − t | for all
s, t ∈ [0, T ]. Therefore f ∈ C([0, TF·,max); L1(R+)). ��
Proposition 4.2 Let 0 ≤ f0 ∈ L1(R+) have finite mass and energy and let T ( f0) =
{0 < T ≤ ∞ | Eq. (1.5) has a conservative mild solution f (·, t) on [0, T ) satisfying f ∈
C([0, T ); L1(R+)) and f (·, 0) = f0}, T f0,max = sup T ( f0). Then

(a) T ( f0) is non-empty, T f0,max ∈ T ( f0), and there exists a unique conservative mild
solution f (·, t) of Eq.(1.5) on [0, T f0,max) satisfying f ∈ C([0, T f0,max); L1(R+)) and
f (·, 0) = f0. Besides, if T f0,max < ∞ then ‖ f (t)‖L1 → ∞ as t ↗ T f0,max.

(b) Let F0 ∈ B+
−1/2,1(R≥0) be regular with the density f0. Then there exists a conservative

distributional solution Ft of Eq. (1.5) on [0,∞) such that TF·,max = T f0,max and Ft is
regular on [0, T f0,max) with the density f (·, t) obtained in part (a). And such an Ft is
unique on [0, T f0,max).

(c) Let 0 ≤ g0 ∈ L1(R+) have finite mass and energy and let g(·, t) be conservative
mild solutions of Eq. (1.5) on [0, Tg0,max) satisfying g ∈ C([0, Tg0,max); L1(R+)) and
g(0, ·) = g0. Then for any T ∈ (0, T f0,max ∧ Tg0,max)

‖ f (t)− g(t)‖1 ≤ C� f0(‖ f0 − g0‖1)e
ct , ∀ t ∈ [0, T ] (4.2)

where

‖h‖1 :=
∫

R+

(1 + x)|h(x)|√xdx,

� f0(ε) := �F0(ε) is defined by (3.24) with F0 defined by dF0(x) = f0(x)
√

xdx, and
C = CT , c = cT are finite positive constants depending only on N ( f0), E( f0), sup0≤t≤T
‖ f (t)‖L1 , and sup0≤t≤T ‖g(t)‖L1 .

(d) Suppose T f0,max = ∞ and let f (·, t) be the unique conservative mild solution of Eq.
(1.5) on [0,∞) satisfying f ∈ C([0,∞); L1(R+)) and f (·, 0) = f0 obtained in part
(a). Let F0, Ft ∈ B+

1 (R≥0) be regular measures with densities f0, f (·, t) respectively.
Then Ft is the unique conservative strong solution of Eq. (1.5) on [0,∞) with the initial
datum F0.

Proof (a)–(b): Let F0 ∈ B+
−1/2,1(R≥0) be regular with the density f0, let Ft be a con-

servative distributional solution of Eq. (1.5) on [0,∞) with the initial datum F0, and
let TF·,max be defined in (3.11). By Proposition 4.1, Ft is regular on [0, TF·,max) and
its density f (·, t) is a conservative mild solution of Eq. (1.5) on [0, TF·,max) satisfying
f ∈ C([0, TF·,max); L1(R+)) and f (·, 0) = f0. This implies TF·,max ∈ T ( f0). We claim
TF·,max = T f0,max. Otherwise, TF·,max < T f0,max, then there exists T ∗ ∈ T ( f0) such that
T ∗ > TF·,max and Eq. (1.5) has a conservative mild solution f ∗(·, t) of Eq. (1.5) on [0, T ∗)
satisfying f ∗(·, 0) = f0 and f ∗ ∈ C([0, T ∗); L1(R+)). Take t0 ∈ (TF·,max, T ∗) and let F∗

t
be defined by dF∗

t (x) = f ∗(x, t)
√

xdx, t ∈ [0, t0]. Applying Theorem 1.1 to the initial
datum F∗

t0 , there exists a conservative distributional solution F∗∗
t of Eq. (1.5) on [t0,∞)with

the initial datum F∗∗
t0 = F∗

t0 . Let F̃t = F∗
t for t ∈ [0, t0], F̃t = F∗∗

t for t ∈ [t0,∞). Then F̃t

satisfies (i), (ii)′, (iii)′ in the equivalent definition of distributional solutions Eq. (1.5) proved
in Remark 1.1. So F̃t is a conservative distributional solution of Eq. (1.5) on [0,∞) with the
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initial datum F̃0 = F0. By Theorem 3.1 we conclude TF̃·,max = TF·,max. On the other hand,
from M−1/2(F̃t0) = M−1/2(F∗

t0) = ‖ f ∗(t0)‖L1 < ∞ we have TF̃·,max ≥ t0 > TF·,max. This
contradiction proves TF·,max = T f0,max.

Next let f̃ (·, t) be another conservative mild solution of Eq. (1.5) on [0, T f0,max) satisfying

f̃ (·, 0) = f0 and f̃ ∈ C([0, T f0,max); L1(R+)). Take any T ∈ (0, T f0,max) and let F (T )t be

defined by dF (T )t (x) = f̃ (x, t)
√

xdx, t ∈ [0, T ]. As shown above, F (T )t can be extended
as a conservative distributional solution F̃t of Eq. (1.5) on [0,∞) with the initial datum
F̃0 = F0. By Theorem 3.1 we conclude TF̃·,max = TF·,max = T f0,max and F̃t = Ft for all

t ∈ [0, T f0,max). In particular, F (T )t = F̃t = Ft for all t ∈ [0, T ] and so f̃ (·, t) = f (·, t)
for all t ∈ [0, T ]. Since T is arbitrary in (0, T f0,max), we conclude f̃ (·, t) = f (·, t) for all
t ∈ [0, T f0,max). Thus f (·, t) is the unique conservative mild solution f (·, t) of Eq. (1.5) on
[0, T f0,max) satisfying f (·, 0) = f0 and f ∈ C([0, T f0,max); L1(R+)). The uniqueness of Ft

on [0, T f0,max) follows from Theorem 3.1.
Now assume T f0,max < ∞. Then using Proposition 3.1 and TF·,max = T f0,max < ∞ we

have ‖ f (t)‖L1 = M−1/2(Ft ) → ∞ as t ↗ T f0,max.
(c) Let Gt be the conservative distributional solutions of Eq. (1.5) on [0,∞) obtained in

part (b) corresponding to g(·, t), i.e. Gt is regular on [0, Tg0,max) with the density g(·, t) for
all t ∈ [0, Tg0,max). Since TF·,max = T f0,max, TG·,max = Tg0,max, ‖ f (t)‖L1 = M−1/2(Ft ) for
all t ∈ [0, T f0,max), ‖g(t)‖L1 = M−1/2(Gt ) for all t ∈ [0, Tg0,max), and ‖ f (t) − g(t)‖1 =
‖Ft −Gt‖1 for all t ∈ [0, T f0,max∧Tg0,max), the stability estimate (4.2) follows from Theorem
3.1.

(d) From dFt (x) = f (x, t)
√

xdx and f ∈ C([0,∞); L1(R+)), it is easily seen that
t �→ Q±

2 (Ft ), t �→ Q±
3 (Ft ) belong to C([0,∞); B0(R≥0)) and Ft satisfies the integral

equation (3.3) for all t ≥ 0 and thus Ft is a conservative distributional solution with the
initial datum F0. The conclusion of part (d) then follows from the equivalent definition of
strong solutions (see Remark 3.1) and the uniqueness theorem (Theorem 3.1). ��

As did for the classical Boltzmann equation, the collision integral Q( f ) can be decom-
posed as positive and negative parts:

Q( f )(x) = Q+( f )(x)− Q−( f )(x), (4.3)

Q+( f )(x) =
∫

R
2+

w(x, y, z) f (y) f (z)(1 + f (x∗))dydz, (4.4)

Q−( f )(x) = f (x)L( f )(x), (4.5)

L( f )(x) =
∫

R
2+

w(x, y, z)[ f (x∗)(1 + f (y)+ f (z))− f (y) f (z)]dydz. (4.6)

Notice that, according to Lemma 2.2 and Lemma 2.3, for any 0 ≤ f ∈ L1(R+,
√

xdx), the
function x �→ L( f )(x) is well-defined, nonnegative on R+, and satisfies

M1/2( f ) ≤ L( f )(x) ≤ √
x N ( f )+ M1/2( f )+ 2[M−1/2( f )]2. (4.7)

The following proposition gives an exponential-positive representation (i.e. Duhamel’s for-
mula) for a class of mild solutions.

Proposition 4.3 Let 0 ≤ f0 ∈ L1(R+) have finite mass and energy and let f ∈
C([0, T f0,max); L1(R+)) be the unique conservative mild solution of Eq. (1.5) on [0, T f0,max)
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satisfying f (·, 0) = f0. Then there is a null set Z ⊂ R+ such that for all x ∈ R+\Z and all
t ∈ [0, T f0,max)

f (x, t) = f0(x)e
−

t∫
0

L( f )(x,τ )dτ
+

t∫

0

Q+( f )(x, τ )e
−

t∫
τ

L( f )(x,s)ds
dτ (4.8)

where Q+( f ), L( f ) are defined in (4.4)–(4.6).

Proof By definition of mild solutions and Q( f ) = Q+( f ) − f L( f ) there is a null set
Z ⊂ R+ which is independent of t such that for every x ∈ R+\Z

∂

∂t
f (x, t) = Q+( f )(x, t)− f (x, t)L( f )(x, t) a.e. t ∈ [0, T f0,max). (4.9)

Notice that for every x > 0 the nonnegative function t �→ L( f )(x, t) is locally integrable
on [0, T f0,max). In fact applying (4.7) and f ∈ C([0, T f0,max); L1(R+)) we have

sup
t∈[0,T ]

L( f )(x, t) ≤ sup
t∈[0,T ]

(
√

x N ( f (t))+ M1/2( f (t))+ 2‖ f (t)‖2
L1) < ∞ (4.10)

for all T ∈ (0, T f0,max) and all x > 0. Therefore, for every x ∈ R+\Z , the function

t �→ f (x, t)e

t∫
0

L( f )(x,τ )dτ
is also absolutely continuous on [0, T ] for all T ∈ (0, T f0,max) and

thus the Duhamel’s formula (4.8) follows from the differential equation (4.9). ��
For bounded mild solutions we have the following

Proposition 4.4 Let 0 ≤ f0 ∈ L1(R+) have finite mass and energy and let f ∈
C([0, T f0,max); L1(R+)) be the unique conservative mild solution of Eq. (1.5) on [0, T f0,max)

satisfying f (·, 0) = f0. Suppose in addition f0 ∈ L∞(R+). Then f (·, t) ∈ L∞(R+) for all
t ∈ [0, T f0,max) and there hold two estimates: for all t ∈ [0, T f0,max),

‖ f (t)‖L∞≤max{1 , ‖ f0‖L∞} exp

⎛
⎝2

t∫

0

‖ f (τ )‖2
L1 dτ

⎞
⎠ , (4.11)

‖ f (t)‖L∞≤‖ f0‖L∞ exp

⎛
⎝

t∫

0

[‖ f (τ )‖2
L1 − M1/2( f (τ ))]dτ

⎞
⎠

+
t∫

0

‖ f (τ )‖2
L1 exp

⎛
⎝

t∫

τ

[‖ f (s)‖2
L1 − M1/2( f (s))]ds

⎞
⎠ dτ. (4.12)

Besides, if T f0,max < ∞ then ‖ f (t)‖L∞ → ∞ as t ↗ T f0,max. ��
Proof Let A(t) be the right hand side of (4.11) i.e.

A(t) := max{1, ‖ f0‖L∞}e
2

t∫
0

a(τ )dτ
, a(t) := ‖ f (t)‖2

L1 , t ∈ [0, T f0,max).

By definition of mild solutions and f (x, 0) = f0(x) ≤ A(0) for all x ∈ R+\Z (here and
below Z ⊂ R+ denotes any null set which is independent of time variable) we have for all
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t ∈ [0, T f0,max)

( f (x, t)− A(t))+ =
t∫

0

(Q( f )(x, τ )− 2A(τ )a(τ ))1{ f (x,τ )>A(τ )}dτ.

Taking integration with respect to x ∈ R+ and omitting the negative part Q−( f ) ≥ 0 gives

∫

R+

( f (x, t)− A(t))+dx ≤
t∫

0

dτ
∫

R+

Q+( f )(x, τ )1{ f (x,τ )>A(τ )}dx

−
t∫

0

dτ
∫

R+

2A(τ )a(τ )1{ f (x,τ )>A(τ )}dx .

Next for the integrand of Q+( f )(x, τ ), we have

f (y, τ ) f (z, τ )(1 + f (x∗, τ )) ≤ f (y, τ ) f (z, τ )( f (x∗, τ )− A(τ ))+ + 2A(τ ) f (y, τ ) f (z, τ )

where we used 1 ≤ A(τ ). Then applying the first inequality in (2.24) to ( f (x∗, τ )− A(τ ))+
and recalling a(τ ) = ‖ f (τ )‖2

L1 we deduce

t∫

0

dτ
∫

R+

Q+( f )(x, τ )1{ f (x,τ )>A(τ )}dx ≤
t∫

0

a(τ )dτ
∫

R+

( f (x, τ )− A(τ ))+dx

+
t∫

0

dτ
∫

R+

2A(τ )a(τ )1{ f (x,τ )>A(τ )}dx .

Notice that the common terms
∫ t

0 dτ
∫

R+ 2A(τ )a(τ )1{ f (x,τ )>A(τ )}dx in the right hand sides
of the above successive inequalities cancel each other. It follows that for all t ∈ [0, Tmax)

∫

R+

( f (x, t)− A(t))+dx ≤
t∫

0

a(τ )dτ
∫

R+

( f (x, τ )− A(τ ))+dx .

By Gronwall Lemma we conclude
∫

R+
( f (x, t) − A(t))+dx = 0 for all t ∈ [0, Tmax). This

implies f (·, t) ∈ L∞(R+) and ‖ f (t)‖L∞ ≤ A(t) for all t ∈ [0, Tmax), i.e. (4.11) holds true.
To prove (4.12) we denote b(t) = M1/2( f (t)) and use the first inequality in (2.25) to get

L( f )(x, t) ≥ b(t) for all x > 0. Then we deduce from Duhamel’s formula (4.8) that

f (x, t) ≤ f0(x)e
−

t∫
0

b(τ )dτ
+

t∫

0

a(τ )(1 + ‖ f (τ )‖L∞)e
−

t∫
τ

b(s)ds
dτ

for all x ∈ R+\Z and all t ∈ [0, T f0,max). This gives

‖ f (t)‖L∞e

t∫
0

b(τ )dτ
≤ ‖ f0‖L∞ +

t∫

0

a(τ )(1 + ‖ f (τ )‖L∞)e

τ∫
0

b(s)ds
dτ

for all t ∈ [0, T f0,max) and thus (4.12) follows from Gronwall Lemma.
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Finally by the conservation of mass we have ‖ f (t)‖L1 ≤ 2[N ( f0)]2/3[‖ f (t)‖L∞]1/3 for
all t ∈ [0, T f0,max) and so the L∞-blow up follows from the L1-blow up in part (a) of
Proposition 4.2. ��

Now we turn to the global mild solutions. As explained at the end of Sect. 3, the following
result belongs to the case of high temperature.

Theorem 4.1 Let 0 ≤ f0 ∈ L1(R+) have finite mass and energy and suppose

‖ f0‖L1 ≤ 1

80
[N ( f0)E( f0)]1/4. (4.13)

Then there exists a unique conservative mild solution f (·, t) of Eq. (1.5) on [0,∞) satisfying
f ∈ C([0,∞); L1(R+)) and f (·, 0) = f0. Moreover we have

sup
t≥0

‖ f (t)‖L1 ≤ 1

4
[N ( f0)E( f0)]1/4. (4.14)

Besides, if in addition f0 ∈ L∞(R+), then f (·, t) ∈ L∞(R+) for all t ≥ 0 and

sup
t≥0

‖ f (t)‖L∞ ≤ 2 max{1, ‖ f0‖L∞}. (4.15)

Proof Let F0 be defined by dF0(x) = f0(x)
√

xdx . Then (4.13) says that F0 satisfies the
condition (3.46) in Theorem 3.2 which insures that there exists a unique conservative dis-
tributional solution Ft of Eq. (1.5) on [0,∞) with the initial datum F0. Since Ft is also a
strong solution on [0,∞), and TF·,max = ∞, by Proposition 4.1 and Proposition 4.2 we
conclude that Ft is regular on [0,∞) and its density f (·, t) is the unique conservative mild
solution of Eq. (1.5) on [0,∞) satisfying f (·, 0) = f0 and f ∈ C([0,∞); L1(R+)). Since
‖ f (t)‖L1 = M−1/2(Ft ), N (F0) = N ( f0), E(F0) = E( f0), the estimate (4.14) follows from
(3.46).

Let us denote N = N ( f0), E = E( f0). By Theorem 1.1 and the uniqueness of Ft , Ft has
the moment production (1.15). Thus from Lemma 3.6 and M1/2( f (t)) = M1/2(Ft ) we have
for all t > 0

M1/2( f (t)) ≥ 1

6

[
1 − exp

(− (
√

N E + N 3/E)t
)] N E√

N E + N 3/E
. (4.16)

Now assume further that f0 ∈ L∞(R+). Then, from inequalities (4.14), (4.11) and T f0,max =
∞ we have for all t ≥ 0

‖ f (t)‖2
L1 ≤ 1

16

√
N E =: a, ‖ f (t)‖L∞ ≤ max{1 , ‖ f0‖L∞}e2at . (4.17)

Let us choose t0 satisfying

1 − exp
(− (

√
N E + N 3/E)t0

) = 6

7
i.e. t0 = log 7√

N E + N 3/E
.

Then we deduce from (4.16) that

M1/2( f (t)) ≥ 1

7
· N E√

N E + N 3/E
=: b, ∀ t ≥ t0. (4.18)
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Applying (4.12) to the mild solution t �→ f (·, t + t0) on [0,∞)with the initial datum f (·, t0)
and using the first inequality in(4.17) and (4.18) we have

‖ f (t)‖L∞ ≤ ‖ f (t0)‖L∞e(a−b)(t−t0) + a

t∫

t0

e(a−b)(t−τ)dτ, t ≥ t0. (4.19)

This gives

‖ f (t)‖L∞ ≤ max

{
‖ f (t0)‖L∞ ,

a

b − a

}
, t ≥ t0 (4.20)

provided b > a. But this is true because b > 2a. In fact by definition of a, b in (4.17), (4.18),

it is easily checked that b > 2a is equivalent to E3/2

N 5/2 > 7, and the latter is obvious since the

assumption M−1/2(F0) = ‖ f0‖L1 ≤ 1
80 (N E)1/4 implies (3.55) and so E3/2

N 5/2 ≥ (80)2 > 7.
Thus (4.20) holds true. From (4.20), the second inequality in (4.17) and a/(b − a) < 1 we
obtain

‖ f (t)‖L∞ ≤ e2at0 max{1 , ‖ f0‖L∞}, t ≥ 0.

Finally by definition of t0 and a we have e2at0 ≤ 7
1
8 < 2. This proves (4.15) and completes

the proof of the theorem. ��

5 Regularity for Solutions with f0(x) ≤ K x−1

In this section we study regularity of such a distributional solution Ft whose initial datum
F0 is regular with density f0 satisfying f0(x) ≤ K x−1 (∀ x > 0). It seems very difficult to
prove any expected regularity without using suitable approximate solutions. This is why we
introduced the second cutoff (2.31)–(2.32) and constructed approximate solutions. Theorem
5.1 below is based on the new positivity in Lemma 2.3 and the following two relevant lemmas.

Lemma 5.1 Let f be a nonnegative measurable function on R+ satisfying N ( f ) < ∞. Then∫

R
2+

w(x, y, z) f (y) f (z)dydz ≤ 2
√

2[N ( f )]2x−1 ∀ x > 0. (5.1)

Proof Since w(x, y, z) is symmetric with respect to (y, z) and that w(x, y, z) > 0 implies
y + z > x , it follows that∫

R
2+

w(x, y, z) f (y) f (z)dydz ≤ 2
∫

0<y≤z, z≥x/2

√
y√
x

f (y) f (z)dydz

≤ 2
√

2

x

∫

0<y≤z, z≥x/2

√
y
√

z f (y) f (z)dydz ≤ 2
√

2

x
[N ( f )]2.

��
Lemma 5.2 Let 5/6 < α < 5/4. Then, for all x > 0 we have

Iα(x) :=
∫

R
2+

w(x, y, z)x−α∗ y−αz−αdydz = Iα(1)x
2−3α < ∞. (5.2)
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In particular for α = 1 we have I1(1) < 19 and∫

R
2+

w(x, y, z)x−1∗ y−1z−1dydz = I1(1)x
−1. (5.3)

Proof Fix x > 0. The equality (5.2) follows by changing variables y = xu, z = xv which
gives the constant

Iα(1) = 2
∫

u≥v>0,u+v>1

min{1,√u + v − 1,
√

u,
√
v}

(u + v − 1)αuαvα
dudv.

To prove Iα(1) < ∞ we use min{1,√u + v − 1,
√

u,
√
v} ≤ (u +v−1)1/4v1/4 and change

variables (u, v) = (r2 cos2 θ, r2 sin2 θ) (r > 1, 0 < θ < π/4) to get

Iα(1) ≤ 8

⎛
⎝

∞∫

1

dr

(r2 − 1)α−1/4r4α−7/2

⎞
⎠
⎛
⎝
π/4∫

0

dθ

cos2α−1(θ) sin2α−3/2(θ)

⎞
⎠ .

The two integrals are finite when 5/6 < α < 5/4. Forα = 1, by direct and careful calculation

we have I1(1) = 8
π/2∫
0
θ sin(θ)(1 + cos2(θ))−1/2dθ + 7π2/6 < 19. ��

The following simple lemma is also useful for proving Theorem 5.1.

Lemma 5.3 Let fi , gi ∈ [0,∞), i = 1, 2, . . . , n (n ≥ 2). Then

n∏
i=1

fi ≤
n∏

i=1

fi ∧ gi +
n∑

i=1

( ∏
1≤ j≤n, j �=i

f j

)
( fi − gi )+. (5.4)

Proof Consider
∏n

i=1 fi −∏n
i=1 fi ∧gi and use 0 ≤ fi ∧gi ≤ fi and fi − fi ∧gi = ( fi −gi )+.

The inequality follows easily by induction on the number n. ��
Theorem 5.1 Let F0 ∈ B+

1 (R≥0) be a regular measure with density f0 satisfying

f0(x) ≤ K x−1 ∀ x ∈ R+

for some 0 < K < ∞. Let TK = (6[N (F0)]2 K −1 + 40K 2)−1. Then there exists a conser-
vative distributional solution Ft of Eq. (1.5) on [0,∞) with the initial datum F0 such that
Ft |[0,TK ] is a regular strong solution on [0, TK ] and its density f (x, t) satisfies

f (x, t) ≤ 5K x−1 ∀ (x, t) ∈ R+ × [0, TK ]. (5.5)

In particular Ft has no condensation for all t ∈ [0, TK ].
Proof Step 1: Let f n with f n |t=0 = f0 be conservative mild solutions of the approximate
equations constructed in Sect. 2 (see (2.27) (2.28)) with wn(x, y, z) = 1√

x
Sn(x, x∗; y, z),

where Sn(x, x∗; y, z) are taken as the second cutoff (2.31). Let C1 = I1(1) be given in
Lemma 5.2 and let C0 = 2

√
2[N (F0)]2, λ = C0 K −1 + C1 K 2, and

�(x, t) = (1 − 2λt)−1/2 K x−1, t ∈ [0, TK ].
In this step we prove that f n(x, t) ≤ �(x, t) for all (x, t) ∈ R+ × [0, TK ] and all n ≥ 1.
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First of all by computing differences of coefficients 6 − 4
√

2, 40 − 2I1(1)(> 2) etc., we
have 2λTK < 1 and (1 − 2λTK )

−1/2 < 5. This implies �(x, t) ≤ 5K x−1 for all x > 0, t ∈
[0, TK ]. Next using the absolute continuity of t �→ f n(x, t) and f n(x, 0) = f0(x) ≤ �(x, 0)
we have, for almost every x ∈ R+ and for all t ∈ [0, TK ],

(
f n(x, t)−�(x, t)

)
+ =

t∫

0

(Qn( f n)(x, τ )− ∂τ�(x, τ ))1{ f n(x,τ )>�(x,τ )}dτ. (5.6)

Now consider decomposition Qn( f ) = Q+
n ( f )− f Ln( f ) as given in (4.3)–(4.6) by replac-

ing w(x, y, z) with wn(x, y, z). Thanks to Lemma 2.3 we have Ln( f n)(x, τ ) ≥ 0 hence
Qn( f n)(x, τ ) ≤ Q+

n ( f n)(x, τ ). Multiplying
√

x to both sides of (5.6) and taking integra-
tion over R+ we deduce

N (( f n(t)−�(t))+) ≤
t∫

0

dτ
∫

R+

√
x(Q+

n ( f n)(x, τ )− ∂τ�(x, τ ))1{ f n(x,τ )>�(x,τ )}dx

for all t ∈ [0, TK ]. Notice that there is no problem of integrability because, for all t ∈ [0, TK ],

∂t�(x, t) = λ(1 − 2λt)−3/2 K x−1,

K x−11{ f n(x,t)>�(x,t)} ≤ �(x, t)1{ f n(x,t)>�(x,t)} ≤ f n(x, t),

and (1 − 2λt)−3/2 ≤ (1 − 2λTK )
−3/2 < 53. For convenience of derivation, let us use the

notation (1.7), i.e. f n = f n(x, τ ), f n∗ = f n(x∗, τ ), f n ′ = f n(y, τ ), f n∗ ′ = f n(z, τ ), etc.
For the quadratic term of Q+

n ( f n)(x, τ ) we use Lemma 5.1 and wn(x, y, z) ≤ w(x, y, z) to
get

∫

R
2+

wn(x, y, z) f n ′ f n∗
′dydz ≤ C0x−1

where we have used the conservation of mass and N ( f0) = N (F0). For the cubic term of
Q+

n ( f n)(x, τ ) we use Lemma 5.3 to get

∫

R
2+

wn(x, y, z) f n ′ f n∗
′ f n∗ dydz ≤

∫

R
2+

wn(x, y, z)�′�′∗�∗dydz

+
∫

R
2+

wn(x, y, z)
[

f n∗
′ f n∗ ( f n ′ −�′)+

+ f n ′ f n∗ ( f n∗
′ −�′∗)+ + f n ′ f n∗

′
( f n∗ −�∗)+

]
dydz

and using Lemma 5.2 with α = 1 we have (since wn(x, y, z) ≤ w(x, y, z))

∫

R
2+

wn(x, y, z)�′�′∗�∗dydz ≤ (1 − 2λτ)−3/2 K 3C1x−1, x > 0.
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Combining these with the inequalities (2.37) for cubic terms we deduce
∫

R+

√
x(Q+

n ( f n)(x, τ )− ∂τ�(x, τ ))1{ f n(x,τ )>�(x,τ )}dx

≤
∫

R
3+

Sn(x, x∗; y, z)[ f n∗
′ f n∗ ( f n ′ −�′)++ f n ′ f n∗ ( f n∗

′−�′∗)++ f n ′ f n∗
′
( f n∗ −�∗)+]dxdydz

+
∫

R+

√
x[C0x−1 + C1(1 − 2λτ)−3/2 K 3x−1 − λ(1 − 2λτ)−3/2 K x−1]1{ f n(x,τ )>�(x,τ )}dx

≤ an N (( f n(τ )−�(τ))+)+ b(τ )

where an = 3n[N (F0)]2,

b(τ ) =
∫

R+

√
x[C0 K −1 − (λ− C1 K 2)(1 − 2λτ)−3/2]K x−11{ f n(x,τ )>�(x,τ )}dx .

Now by our choice for λ we have

C0 K −1 − (λ− C1 K 2)(1 − 2λτ)−3/2 = C0 K −1 − C0 K −1(1 − 2λτ)−3/2 ≤ 0

and so b(τ ) ≤ 0 for all τ ∈ [0, TK ]. Thus

N (( f n(t)−�(t))+) ≤ an

t∫

0

N (( f n(τ )−�(τ))+)dτ ∀ t ∈ [0, TK ].

By Gronwall Lemma we conclude N (( f n(t) − �(t))+) = 0 for all t ∈ [0, TK ]. Thus
f n(x, t) ≤ �(x, t) for all t ∈ [0, TK ] and for a.e. x ∈ R+ and so the function f n ∧� is the
same (up to a null set in R+) mild solution restricted on R+ × [0, TK ] with the initial datum
f0. If we rewrite f n ∧� as f n , then the mild solution f n satisfies f n ≤ � on R+ ×[0, TK ].
In particular we have

f n(x, t) ≤ 5K x−1 ∀ (x, t) ∈ R+ × [0, TK ], ∀ n ≥ 1. (5.7)

Step 2: In this step we prove that a subsequence of { f n}∞n=1 (restricted on R+ × [0, TK ])
converges in L1-weak topology to a density of a strong solution Ft on [0, TK ] with the initial
datum F0. To shorten notations we define Fn

t ∈ B+
1 (R≥0) by

dFn
t (x) = f n(x, t)

√
xdx, t ∈ [0, TK ]

and recall that dF0(x) = f0(x)
√

xdx . By conservation of mass and energy we have
∫

R+

(1 + x)dFn
t (x) ≡ N (F0)+ E(F0), t ∈ [0, TK ], n ≥ 1. (5.8)

From (5.7) and
∫

E x−1/2dx ≤ ∫ mes(E)
0 x−1/2dx = 2

√
mes(E) for every measurable set

E ⊂ R+, we have

sup
n≥1,t∈[0,TK ]

∫

E

dFn
t (x) ≤ 10K

√
mes(E) → 0 as mes(E) → 0. (5.9)
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Also we have for all 0 ≤ α < 1/2

sup
n≥1,t∈[0,TK ]

∫

R+

x−αdFn
t (x) ≤ 5K

1∫

0

x−1/2−αdx + N (F0) < ∞.

Taking α = 1/3 and using Wn(x, y, z) ≤ W (x, y, z) and
∫

R≥0

√
xW (x, y, z)dx ≤ √

y + √
z , W (x, y, z) ≤ (xyz)−1/3 (5.10)

we obtain for all ψ ∈ L∞(R≥0)

sup
n≥1,t∈[0,TK ]

( ∫

R
2+

|J ±
n [ψ]|d2 Fn

t +
∫

R
3+

|K±
n [ψ]|d3 Fn

t

)
≤ C‖ψ‖L∞ (5.11)

here and below C denotes any constant that depends only on N (F0), E(F0) and K . Next
using the weak formula (2.40) we have, for all 0 ≤ s < t ≤ TK and all ψ ∈ L∞(R+),

∫

R+

ψd(Fn
t − Fn

s ) =
t∫

s

dτ
∫

R
2+

Jn[ψ]d2 Fn
τ +

t∫

s

dτ
∫

R
3+

Kn[ψ]d3 Fn
τ (5.12)

which together with (5.11) gives the uniform strong continuity on [0, TK ]:
sup
n≥1

‖Fn
t − Fn

s ‖0 ≤ C |t − s| ∀ t, s ∈ [0, TK ]. (5.13)

From (5.8), (5.9), (5.13) and the criterion of L1-weakly relative compactness we conclude
that there exist a subsequence of {Fn

t }∞n=1, still denote it as {Fn
t }∞n=1, and a positive regular

Borel measure Ft ∈ C([0, TK ]; B0(R+)) such that for all t ∈ [0, TK ]

lim
n→∞

∫

R+

ψdFn
t =

∫

R+

ψdFt ∀ψ ∈ L∞(R+). (5.14)

Let f (·, t) be the density of Ft . From (5.14), (5.7) we have f (x, t) ≤ �(x, t) for all t ∈
[0, TK ] and for a.e. x ∈ R+. Let f (x, t) be replaced by f (x, t) ∧ �(x, t) which we still
denote as f (x, t). Then f (·, t) is the same density of Ft for all t ∈ [0, TK ] and satisfies (5.5).
From (5.14) and the conservation of mass and energy for Fn

t we also have

N (Ft ) = N (F0), E(Ft ) ≤ E(F0), t ∈ [0, TK ]. (5.15)

From these and f n(x, t)
√

x ≤ 5K x−1/2, f (x, t)
√

x ≤ 5K x−1/2 on R+×[0, TK ] and (5.14)
we see that the convergence (5.14) can be extended as follows: for all t ∈ [0, TK ] and all
ψ ∈ L∞(R+)

lim
n→∞

∫

R+

ψ(x)(1 + √
x)dFn

t (x) =
∫

R+

ψ(x)(1 + √
x)dFt (x), (5.16)

lim
n→∞

∫

R+

ψ(x)x−1/3dFn
t (x) =

∫

R+

ψ(x)x−1/3dFt (x). (5.17)
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Also from the pointwise convergence (2.34) and (5.10) we have for all (x, y, z) ∈ R
3
>0

lim
n→∞ J ±

n [ψ](y, z) = J ±[ψ](y, z), lim
n→∞ K±

n [ψ](x, y, z) = K±[ψ](x, y, z);
sup
n≥1

|J ±
n [ψ](y, z)|, |J ±[ψ](y, z)| ≤ ‖ψ‖L∞(

√
y + √

z),

sup
n≥1

|K±
n [ψ](x, y, z)|, |K±[ψ](x, y, z)| ≤ 2‖ψ‖L∞(xyz)−1/3.

Thus we deduce from elementary convergence properties of integrals with product measures
(see e.g. Lemma 4 in [12] and its application in the same paper) that

lim
n→∞

∫

R
2+

J ±
n [ψ]d2 Fn

t =
∫

R
2+

J ±[ψ]d2 Ft , lim
n→∞

∫

R
3+

K±
n [ψ]d3 Fn

t =
∫

R
3+

K±[ψ]d3 Ft

for all t ∈ [0, TK ]. From these and the bound (5.11) which also holds for
∫

R
2≥0

|J ±[ψ]|d2 Ft +∫
R

3≥0

|K±[ψ]|d3 Ft we conclude that for all t ∈ [0, TK ] and all ψ ∈ L∞(R+)

∫

R≥0

ψdFt =
∫

R≥0

ψdF0 +
t∫

0

dτ
∫

R
2≥0

J [ψ]d2 Fτ +
t∫

0

dτ
∫

R
3≥0

K[ψ]d3 Fτ . (5.18)

Thus as shown above we have ‖Ft − Fs‖0 ≤ C |t − s| for all t, s ∈ [0, TK ]. And since
x−1/3 f (x, t)

√
x ≤ 5K x−5/6, it follows that supt∈[0,TK ] M−1/3(Ft ) < ∞ and

M−1/3(|Ft − Fs |) ≤ C‖Ft − Fs‖1/3
0 ≤ C |t − s|1/3, s, t ∈ [0, TK ]

from which and the basic estimates of collision integrals (2.19) (with k = 0) and (2.20)
we see that t �→ Q±

2 (Ft ), t �→ Q±
3 (Ft ) belong to C([0, TK ]); B0(R≥0)). These together

with (5.18) imply that the dual form (3.3) holds true. Thus we conclude from the equivalent
definition of strong solutions showed in Remark 3.1 that Ft is a strong solution of Eq. (1.5)
on [0, TK ].

Step 3 (extension): Taking FTK as an initial datum, according to Theorem 1.1, there exists
a conservative distributional Ft of Eq. (1.5) on [TK ,∞) such that Ft |t=TK = FTK . As before,
it is easily seen that the measure Ft defined for all t ∈ [0,∞) in that way is a distributional
solution of Eq. (1.5) on [0,∞). And from (5.15) we have E(Ft ) ≤ E(F0) for all t ∈ [0,∞)

and so it follows from Theorem 1.1(b) that Ft conserves also the energy. Thus Ft is a desired
solution claimed in the theorem. ��

6 Condensation in Finite Time

As mentioned in the Introduction, our strategy for investigating the problem of condensation
in finite time is to assume to the contrary that the distributional solution under consideration
has no condensation at a finite time, then derive some necessary condition on the initial
datum.

Let Dα(F), Dα(F) be defined in (1.19) for F ∈ B+(R≥0). As did in [15], in order to
connect Eq. (1.8), we use a smooth version of Dα(F), Dα(F). For F ∈ B+(R≥0), α ≥ 0,
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and ε > 0, let

Nα(F, ε) = 1

εα
N0(F, ε), N0(F, ε) =

∫

[0,ε]

(
1 − x

ε

)2
dF(x),

Nα(F, ε) = inf
0<δ≤ε Nα(F, δ), Nα(F, ε) = sup

0<δ≤ε
Nα(F, δ),

Nα(F) = lim
ε→0+ Nα(F, ε), Nα(F) = lim

ε→0+ Nα(F, ε) ,

Aα(F, ε) = 1

εα

∫

[0,ε]

( x

ε

)2
dF(x).

It is easily seen that Nα(F), Nα(F) are equivalent to Dα(F), Dα(F) respectively. For
instance for the most interesting case α = 1/2 we have

D1/2(F) ≤ (5/4)2
√

5 N 1/2(F), D1/2(F) ≤ (5/4)2
√

5 N 1/2(F). (6.1)

In fact for any r > 1 and any ε > 0

N1/2(F, rε) ≥ 1√
rε

∫

[0,ε]

(
1 − x

rε

)2
dF(x) ≥ 1√

r

(
1 − 1

r

)2 F([0, ε])√
ε

.

Choosing r = 5 gives the best constant in (6.1).
Notice that the integrand ϕε(x) = [(1− x/ε)+]2 = (1− x/ε)21[0,ε](x) defining Nα(F, ε)

is convex and belongs to C1,1(R≥0). In the following, ϕε always stands for this special
function.

Lemma 6.1 ([15]) Let F ∈ B+(R≥0), α ≥ 0, ε > 0. Then

Nα(F, ε)[A 1−α
2
(F, ε)]2 ≤

∫

R
3≥0

K[ϕε]d3 F f or 0 ≤ α ≤ 1/2 (6.2)

Also we have

F({0}) = 0 �⇒ √
Nα(F, ε) ≤

1∫

0

θα/2−1
√

Aα(F, εθ) dθ. (6.3)

Note To check (6.3) with [15] one may replace the closed interval [0, ε] by (0, ε] and define
N ◦
α(F, ε) = 1

εα

∫
(0,ε]

(1 − x/ε)2dF(x) as used in [15]. Then F({0}) = 0 �⇒ Nα(F, ε) ≡
N ◦
α(F, ε).
The following proposition provides a necessary condition on the initial data for the absence

of condensation at a finite time.

Proposition 6.1 Let Ft be a distributional solution of Eq. (1.5) with the initial datum F0 and
suppose there is T ∈ (0,∞) such that FT ({0}) = 0. Then

√
D1/2(F0)D1/2(F0) ≤ 50

√
5√

T
exp

(2

3

√
N (F0)E(FT ) T

)
. (6.4)
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Proof Applying (6.1) to F = F0 we see that to prove (6.4) it suffices to prove
√

N 1/2(F0)N 1/2(F0) ≤ 25

√
T

exp
(2

3

√
N (F0)E(FT ) T

)
. (6.5)

Define for t ≥ 0, α ≥ 0 and ε > 0

m(t) = exp
( t∫

0

M1/2(Fτ )dτ
)
, N∗

α(t, ε)=m(t)Nα(Ft , ε),

N∗
α(t, ε) = m(t)Nα(Ft , ε) = inf

0<δ≤ε N∗
α(t, δ), N

∗
α(t, ε) = m(t)Nα(Ft , ε) = sup

0<δ≤ε
N∗
α(t, δ).

Notice that since all N
∗
α(t, ε) are nonnegative, the following estimates involving these terms

make sense even if possibly N
∗
α(t, ε) = ∞ for large α.

Step 1: We prove that for any ε > 0 and any α ≥ 0

N∗
α(t, ε) ≥ N∗

α(s, ε)+ 1

εα

t∫

s

m(τ )dτ
∫

R
3≥0

K[ϕε]d3 Fτ , 0 ≤ s < t. (6.6)

Using Eq. (1.8), Lemma 3.1 and recalling
∫

R≥0
ϕεdFt = N0(Ft , ε) we have

∂

∂t
N0(Ft , ε) ≥ −M1/2(Ft )N0(Ft , ε)+

∫

R
3≥0

K[ϕε]d3 Ft , ∀ t ≥ 0

and so by definition of m(t) and N∗
0 (t, ε) = m(t)N0(Ft , ε),

∂

∂t
N∗

0 (t, ε) ≥ m(t)
∫

R
3≥0

K[ϕε]d3 Ft , ∀ t ≥ 0.

Since N∗
α(t, ε) = 1

εα
N∗

0 (t, ε), this gives (6.6).
By the way, applying (6.6) to α = 0 and letting ε → 0+ leads to a weak version of

(1.18): m(t)Ft ({0}) ≥ m(s)Fs({0}) for 0 ≤ s < t . In particular we see that the assumption
FT ({0}) = 0 implies Ft ({0}) = 0 for all t ∈ [0, T ].

Step 2: To prove (6.5) we can assume N 1/2(F0) > 0. Let us define for any λ ∈ (1/2, 1)

Dλ = λN 1/2(F0) if N 1/2(F0) < ∞; Dλ = 1 if N 1/2(F0) = ∞.

Here the case “N 1/2(F0) = ∞′′ is just considered in logic; if (6.5) is true, we must have
N 1/2(F0) < ∞. By definitions of N 1/2(F0, ε) and Dλ, there is ελ > 0 such that

N 1/2(F0, ε) > Dλ ∀ ε ∈ (0, ελ].
We now prove that for any α ≥ 0 and any ε ∈ (0, ελ]

N
∗
1
4 + α

2
(s, ε) ≤ 24

√
Dλ

· ect

√
t − s

(1

2
+ α

)−2
√

N
∗
α(t, ε) ∀ 0 ≤ s < t ≤ T . (6.7)

where c = √
N (F0)E(FT ).

Applying (6.6) to α = 1/2 and s = 0 we have N∗
1/2(t, ε) ≥ N∗

1/2(0, ε) for all t ≥ 0 and
so

N∗
1/2(t, ε) ≥ N∗

1/2(0, ε) = N 1/2(F0, ε) > Dλ ∀ t ≥ 0, ∀ ε ∈ (0, ελ]. (6.8)

123



The Boltzmann Equation for Bose–Einstein Particles 539

Given any α ≥ 0 and 0 ≤ s < t ≤ T . Using (6.6) we have ( omitting N∗
α(s, ε) )

1

εα

t∫

s

m(τ )dτ
∫

R
3≥0

K[ϕε]d3 Fτ ≤ N∗
α(t, ε) ∀ ε ∈ (0, ελ]. (6.9)

While by Lemma 6.1 we have

N 1/2(Fτ , ε)[A 1
4
(Fτ , ε)]2 ≤

∫

R
3≥0

K[ϕε]d3 Fτ . (6.10)

Multiplying 1
εα

m(τ ) to both sides of (6.10) and recalling definition of N∗
α(t, ε) gives

N∗
1/2(τ, ε)

[
A 1

4 + α
2
(Fτ , ε)

]2 ≤ 1

εα
m(τ )

∫

R
3≥0

K[ϕε]d3 Fτ , τ ∈ [s, t].

Then taking integration
t∫

s
and using (6.9) and the lower bound (6.8) of N∗

1/2(τ, ε) we obtain

t∫

s

[A 1
4 + α

2
(Fτ , ε)]2dτ ≤ 1

Dλ
N∗
α(t, ε) ∀ ε ∈ (0, ελ]. (6.11)

On the other hand, using Ft ({0}) ≡ 0 on [0, T ] and Lemma 6.1 we have

√
N 1

4 + α
2
(Fτ , ε) ≤

1∫

0

θ
1
8 + α

4 −1
√

A 1
4 + α

2
(Fτ , εθ) dθ ∀ τ ∈ [s, t].

Multiplying
√

m(τ ) to both sides and noticing that m(τ ) ≤ m(t) we have

√
N∗

1
4 + α

2
(τ, ε) ≤ √

m(t)

1∫

0

θ
1
8 + α

4 −1
√

A 1
4 + α

2
(Fτ , εθ) dθ ∀ τ ∈ [s, t]. (6.12)

By conservation of mass N (Fτ ) ≡ N (F0) and the non-decrease of the energy τ �→ E(Fτ )
on [0,∞) we have M1/2(Fτ ) ≤ √

N (F0)E(FT ) =: c for all τ ∈ [0, T ] and so m(t) ≤ ect .

By taking square of both sides of (6.12) and using Cauchy–Schwarz inequality twice together
with (6.11) we deduce

t∫

s

N∗
1
4 + α

2
(τ, ε)dτ ≤ ect

1
8 + α

4

1∫

0

θ
1
8 + α

4 −1√t − s

√√√√√
t∫

s

[
A 1

4 + α
2
(Fτ , εθ)

]2
dτ dθ

≤ ect

√
Dλ

√
t − s

(1

8
+ α

4

)−2
√

N
∗
α(t, ε) (6.13)

where we used inequalities N∗
α(t, εθ) ≤ N

∗
α(t, εθ) ≤ N

∗
α(t, ε) for all θ ∈ (0, 1). On the

other hand using (6.6) we have N∗
1
4 + α

2
(s, ε) ≤ N∗

1
4 + α

2
(τ, ε) for all τ ∈ [s, t]. This gives

N∗
1
4 + α

2
(s, ε) ≤ 24

√
Dλ

ect

√
t − s

(1

2
+ α

)−2
√

N
∗
α(t, ε) ∀ ε ∈ (0, ελ]. (6.14)
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Since ε �→ N
∗
α(t, ε) is non-decreasing, (6.7) follows from (6.14).

Step 3: We now use an iteration process supplied by the inequality (6.7) to deduce (6.5).
Let us fix any ε ∈ (0, ελ] and consider

αn = 1

2
− 1

2n
, tk =

(
1 − 1

2k

)
T, n = 1, 2, 3, . . . ; k = 0, 1, 2, . . . .

Applying (6.7) to α = αn−k , t = tk, s = tk−1 for k = 1, 2, . . . , n − 1; n ≥ 2, and noticing
that αn−(k−1) = 1

4 + αn−k
2 , 1

2 + αn−k = 1 − 1
2n−k and tk − tk−1 = T

2k , we compute

N
∗
αn−(k−1)

(tk−1, ε) ≤ C2k/2e
− cT

2k
(

1 − 1

2n−k

)−2√
N

∗
αn−k

(tk, ε). (6.15)

where C = 24√
DλT

ecT . For any fixed n ≥ 2 let us denote

Ak := N
∗
αn−k

(tk, ε), Bk := C2k/2e
− cT

2k
(

1 − 1

2n−k

)−2
, k = 0, 1, . . . , n − 1.

Then (6.15) reads

Ak−1 ≤ Bk

√
Ak, k = 1, 2, . . . , n − 1. (6.16)

Since α1 = 0 and the conservation of mass imply that An−1 = N
∗
0(tn−1, ε) ≤ m(T )N (F0),

it follows from (6.16) that Ak are finite (k = 1, 2, . . . , n − 1) and iterating (6.16) gives

A0 ≤
( n−1∏

k=1

(Bk)
1

2k−1
)
(An−1)

1
2n−1 . (6.17)

Also since t0 = 0 hence A0 = N
∗
αn
(0, ε), it follows from (6.17) and An−1 ≤ m(T )N (F0)

that

N
∗
αn
(0, ε) ≤ Pn[m(T )N (F0)]

1
2n−1 , n = 2, 3, 4, . . .

where

Pn =
n−1∏
k=1

(
C2k/2e

− cT
2k
(

1 − 1

2n−k

)−2
) 1

2k−1

.

On the other hand by definition of N
∗
α(t, ε) and αn = 1

2 − 1
2n we have

N
∗
αn
(0, ε) = Nαn (F0, ε) ≥ Nαn (F0, ε) = ε

1
2n N1/2(F0, ε)

and so

N1/2(F0, ε) ≤ (1/ε)
1

2n Pn[m(T )N (F0)]
1

2n−1 , n = 2, 3, 4, . . . .

Letting n → ∞ and computing

lim
n→∞ Pn =

∞∏
k=1

C
2

2k

∞∏
k=1

2
k

2k

∞∏
k=1

e
− 2cT

4k lim
n→∞

n−1∏
k=1

(
1 − 1

2n−k

)−4
2k = C2 · 22 · e− 2cT

3 · 1

we obtain

N1/2(F0, ε) ≤ (2Ce− cT
3 )2 = 210

DλT
e

4
3 cT .
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Since ε ∈ (0, ελ] is arbitrary, taking upper limit lim supε→0+ leads to

N 1/2(F0) ≤ 210

DλT
e

4
3 cT .

This implies N 1/2(F0) < ∞ hence N 1/2(F0) < ∞ and so Dλ = λN 1/2(F0). Thus

N 1/2(F0)N 1/2(F0) ≤ 210

λT
e

4
3 cT .

Since λ ∈ (1/2, 1) is arbitrary, letting λ → 1− gives (6.5) and finishes the proof. ��
As a consequence of Proposition 6.1 we obtain the following

Theorem 6.1 Let Ft be a distributional solution of Eq. (1.5) with the initial datum F0. Then

(a)

D1/2(F0)D1/2(F0) = ∞ �⇒ Ft ({0}) > 0 f or all t > 0.

In general, if
√

D1/2(F0)D1/2(F0) >
50

√
5√

T
exp

(2

3

√
N (F0)E(FT ) T

)
f or some T ∈ (0,∞)

then

Ft ({0}) > 0 f or all t ≥ T .

(b) Suppose Ft also conserves the energy and√
D1/2(F0)D1/2(F0) > 213[N (F0)E(F0)]1/4.

Then

Ft ({0}) > 0 f or all t ≥ 3

4
(N (F0)E(F0))

−1/2.

Proof Part (a) follows directly from Proposition 6.1 and the propagation of condensa-
tion (1.18). Part (b) is a special case of part (a) with E(FT ) = E(F0) and T =
3
4 (N (F0)E(F0))

−1/2 which is the minimizer of 50
√

5√
T

exp( 2
3

√
N (F0)E(F0) T ) with respect

to T ∈ (0,∞). The minimum is 50
√

20e/3 [N (F0)E(F0)]1/4 and 213 > 50
√

20e/3. ��
As a corollary of Theorem 5.1 and Theorem 6.1 we have the following result concerning

the strict positivity of the critical time of condensation.

Theorem 6.2 Let F0 ∈ B+
1 (R≥0) be a regular measure with density f0 satisfying√

D1/2(F0)D1/2(F0) > 213[N (F0)E(F0)]1/4, f0(x) ≤ K x−1 ∀ x ∈ R+

for some 0 < K < ∞. Then for the positive number TK = (6[N (F0)]2 K −1 + 40K 2)−1,
there exists a conservative distributional solution Ft of Eq. (1.5) with the initial datum F0,
such that Ft is regular for all t ∈ [0, TK ] and thus the critical time tc of condensation of Ft

is strictly positive and tc ∈ [TK ,
3
4 (N (F0)E(F0))

−1/2].
Proof By assumption we have 2K ≥ D1/2(F0) ≥

√
D1/2(F0)D1/2(F0) and so 4K 2 >

(213)2[N (F0)E(F0)]1/2 which apparently implies that TK < 3
4 [N (F0)E(F0)]−1/2. The

conclusion of the theorem then follows from Theorem 5.1, Theorem 6.1, and the definition
of the critical time tc (see (1.21)). ��
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7 Some Examples

As applications of main results of the paper we present here several examples mentioned in
the Introduction.

Example 7.1 Here we show that if α > 1/2, then there exist extensively conserva-
tive distributional solutions Ft of Eq. (1.5) on [0,∞) satisfying Dα(Ft ) = ∞ for all
t ∈ [0,∞), but Ft have no condensation for all t ∈ [0,∞). Given any regular measure
G0 ∈ B+

−1/2,1(R≥0) satisfying M−1/2(G0) <
1
85 [N (G0)E(G0)]1/4. For any α > 1/2, take

1/2 < β < α∧1 and consider a local surgery F0 to G0 near the origin: dF0(x) = f0(x)
√

xdx ,
f0(x) = xβ−3/21{0<x≤η} + g0(x)1{x>η} with η > 0, where g0 is the density of G0. We
have limη→0+(M−1/2(F0), N (F0), E(F0)) = (M−1/2(G0), N (G0), E(G0)). So we can fix a
smallη > 0 such that M−1/2(F0) <

1
80 [N (F0)E(F0)]1/4, i.e.‖ f0‖L1 < 1

80 [N ( f0)E( f0)]1/4.
According to Theorem 3.2, Theorem 4.1 and part (d) of Proposition 4.2, there is a unique
conservative distributional solution Ft of Eq. (1.5) on [0,∞) with the initial datum F0, and
Ft is regular with density f (·, t) which is a unique conservative mild solution of Eq. (1.5)
on [0,∞) satisfying f ∈ C([0,∞); L1(R+)) and f (·, 0) = f0. Of course Ft has no con-
densation for all t ≥ 0. On the other hand, using the Duhamel’s formula (4.8) and (4.10) we
deduce

f (x, t) ≥ f0(x)e
−c(x)t a.e. x ∈ R+ for all t ≥ 0

where c(x) = √
x N ( f0)+ 9

8

√
N ( f0)E( f0) (by (4.7), (4.14)). This implies Dβ(Ft ) > 0 and

so Dα(Ft ) = ∞ for all t ≥ 0 because α > β. This shows also that the unboundedness of a
mild solution near the origin does not generally imply the condensation in finite time. ��
Example 7.2 In this example we show that the condensation can happen for arbitrary tem-
perature. Given any G0 ∈ B+

1 (R≥0). As did above we make a surgery to G0 near the
origin: for any K > 1 we define F0 ∈ B+

1 (R≥0) by dF0(x) = K 1/4x−11{0<x≤1/K }
√

xdx +
1{x>1/K }dG0(x). We have ‖F0 − G0‖1 → 0 as K → ∞ and

D1/2(F0) = 2K 1/4, N (F0) ≤ 2K −1/4 + N (G0), E(F0) ≤ 2

3
K −5/4 + E(G0). (7.1)

So for any T ∈ (0,∞) we can choose K large enough such that

D1/2(F0) >
50

√
5√

T
exp

(2

3

√
N (F0)E(F0) T

)
.

Let Ft ,Gt be conservative distributional solutions of Eq. (1.5) on [0,∞) with the ini-
tial data F0,G0 respectively. By Theorem 6.1, Ft ({0}) > 0 for all t ≥ T . Notice that
D1/2(F0) > 0 implies M−1/2(F0) = ∞. So there is no contradiction to the stability
theorem (Theorem 3.1) even if we can assume that the original initial datum G0 satisfies
M−1/2(G0) ≤ 1

80 [N (G0)E(G0)]1/4 so that Gt has no condensation for all t ≥ 0. Notice
also that F0 satisfies Dα(F0) = 0 for all 0 < α < 1/2 and so our previous result Theorem
2.1(b) of [15] cannot apply to Ft . Finally we note that if K is large enough, then F0 has
almost the same temperature as G0 so that it can be arbitrarily high/low as that of G0. ��
Example 7.3 We show that the initial data F0 satisfying the conditions in Theorem 6.2
exist extensively. Take any regular measure G0 ∈ B+

1 (R≥0) and let g0 be its density. As
in Example 7.2, for any K > 1 we define F0 ∈ B+

1 (R≥0) by dF0(x) = f0(x)
√

xdx with
f0(x) = K 1/4x−11{0<x≤1/K } + 1{x>1/K } min{g0(x), K x−1}, x ∈ R+. It is easily seen that
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f0(x) ≤ K x−1 for all x ∈ R+ and (7.1) holds for all K > 1. Thus for K > 1 large
enough, the condition D1/2(F0) > 213[N (F0)E(F0)]1/4 is also satisfied. By Theorem 6.2,
this example shows also that the critical time of condensation can be strictly positive even
for a large class of initial data which are unbounded near the origin. ��

Example 7.4 Consider a family of regular initial data F0 ∈ B+
1 (R≥0), dF0(x) =

f0(x)
√

xdx , given by f0(x) = a[x log(1/x)]−11{0<x≤1/2} + bx−γ 1{x>1/2} with constants
a > 0, b > 0, γ > 5/2. For such an F0 we have D1/2(F0) = 0 and M−1/2(F0) = ∞ so
that neither the condensation results in Sect. 6 nor the regularity results in Sect. 4 can be
used, but f0 satisfies f0(x) ≤ K x−1 (∀ x > 0) with K = max{a(log 2)−1, b2γ−1} and so
by Theorem 5.1 there exists a conservative distributional solution Ft of Eq. (1.5) on [0,∞)

with the initial datum F0 such that Ft is regular on [0, TK ]. To see whether Ft has con-
densation in finite time, we now have no other method but to check the low temperature
condition. Let T , T c be the kinetic temperature and the critical temperature defined in (1.14)
with N = N (F0), E = E(F0). Then, for some explicit constants C2 ≥ C1 > 0 depending
only on γ , we have C1(a ∨ b)−2/3 ≤ T /T c ≤ C2(a ∨ b)−2/3. If a ∨ b is large enough such
that T /T c < 1, then according to part (III.2) of Theorem 1.2, Ft has condensation in finite
time with the critical time tc ∈ [TK ,∞); while if a ∨ b is so small that T /T c ≥ 1, we do
not know whether Ft has condensation in finite time since as mentioned above the results
obtained so far do not work for this case of such F0. ��

Example 7.5 As the last example we discuss the size of the universal constant θ∗ and its
influence on the working area of the condensation condition (1.24).

We first show that θ∗ ≤ 1/2. Assume θ∗ > 1/2. Let 1/2 < β < θ∗ ∧ 1 and let Ft be the
conservative regular distributional solution of Eq. (1.5) on [0,∞) constructed in Example
7.1. In the condition (1.24) let us choose N = N (F0), E = E(F0). From Dβ(F0) > 0 and
3/2 > β, θ∗ > β we have

lim
ρ→0+ inf

0<ε≤ρ
F0([0, ε])
ε3/2 = D3/2(F0) = ∞, lim

ρ→0+
F0([0, ρ])
ρθ∗

= Dθ∗(F0) = ∞

and so F0 satisfies (1.24) sufficiently: the left hand side of (1.24) is ∞. But Ft has no
condensation for all t ≥ 0. This proves θ∗ ≤ 1/2. Another example for proving θ∗ ≤ 1/2 is
the regular equilibrium Ft ≡ Fbe with density fbe(x) = (ex/κ − 1)−1.

Next we show that if θ∗ < 1/2, then for any N > 0, E > 0, the condition (1.20) does not
imply (1.24), and the same holds also true for θ∗ = 1/2 if K ∗ > 214(N E)1/4.

Fix γ ≥ 3 and let a = 107(N E)1/4. Consider a conservative distributional solution Ft of
Eq. (1.5) on [0,∞) with the initial datum F0 ∈ B+

1 (R≥0) given by

dF0(x) = (ax−11{0<x≤η} + bx−γ 1{x≥R})
√

xdx

where

0 < η < η0(N , E) := min

{(
N

4a

)2

,

(
3E

4a

)2/3

,
E

6N

}

and b > 0, R > 0 are determined by the given mass and energy: N (F0) = N , E(F0) = E ,
i.e.,

b = (γ − 3/2)Rγ−3/2 Nη, R = γ − 5/2

γ − 3/2
· Eη

Nη
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where Nη = N − 2aη1/2, Eη = E − 2
3 aη3/2. Notice that our restriction on η and γ ≥ 3

imply Nη > N/2, Eη > E/2, and R > E/(6N ) > η. By construction, F0 satisfies (1.20):
D1/2(F0) = 2a > 213(N E)1/4 and so Ft has condensation in finite time. On the other hand,
let ν > 0, ρ0 = ρ0(N , E, ν) > 0, K ∗ = K ∗(N , E, ν) > 0 be given in part (II) of Theorem
1.2, and suppose first that θ∗ < 1/2. In this case we take any 0 < δ < 1 and let η be further
small:

0 < η < min

⎧⎨
⎩η0(N , E),

(
δν

2a

)2( E

6N

)3

,

(
δK ∗

2a

) 1
1
2 −θ∗

⎫⎬
⎭ .

We show that F0 does not satisfy (1.24):

sup
0<ρ≤ρ0

min

{
inf

0<ε≤ρ
F0([0, ε])
νε3/2 ,

F0([0, ρ])
K ∗ρθ∗

}
≤ δ. (7.2)

In fact, for any 0 < ρ ≤ ρ0, if ρ ≥ R, then ρ > E/(6N ) := ε0 and so (since η < ε0 < R)

inf
0<ε≤ρ

F0([0, ε])
νε3/2 ≤ F0([0, ε0])

νε
3/2
0

= 2a

νε
3/2
0

η1/2 < δ;

while if ρ < R, then

F0([0, ρ])
K ∗ρθ∗

= 2a

K ∗ρθ∗
(η ∧ ρ)1/2 ≤ 2a

K ∗ η
1
2 −θ∗ < δ.

Thus for any 0 < ρ ≤ ρ0, one of the two is less than δ. This proves (7.2).
Finally suppose θ∗ = 1/2. In this case we assume that there is 0 < δ < 1 such that

K ∗ ≥ 214
δ
(N E)1/4 = 2a

δ
. Then for η satisfying

0 < η < min

{
η0(N , E),

(
δν

2a

)2( E

6N

)3
}

the same argument applies and so (7.2) with θ∗ = 1/2 holds also for such δ. ��
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