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Abstract Kenneth Wilson had an enormous impact on the renormalization group and field
theories in general. I had the great pleasure to work in three fields to which he contributed
essentially: Critical phenomena, gauge-invariance in duality and confinement, and flow equa-
tions and similarity renormalization.
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1 Introduction

I am thankful, that several times Ken and I could work on similar problems. We owe him a
lot in critical phenomena, where he developed a calculational scheme to determine critical
exponents and scaling functions on the basis of renormalization group ideas (Sect. 2).

A second time I came close to his work. I had generalized the Kramers-Wannier duality
of the two-dimensional Ising model to higher-dimensional models. This procedure yields
gauge-invariant models. Wilson generalized these ideas to non-abelian gauge theories and
developed a theory for the confinement of quarks (Sect. 3).

In 1993/94 Głazek and Wilson and independently the present author developed the idea
of a canonical transformation which diagonalizes a many-particle hamiltonian (Sect. 4).

I will shortly report on these developments and imbed them in the state the field had
reached before and add some results grown out of these developments. I apologize to all I do
not mention in this article. There would be simply too many to be cited.

F. J. Wegner (B)
Institute for Theoretical Physics, Ruprecht-Karls-University,
Heidelberg, Germany
e-mail: wegner@tphys.uni-heidelberg.de
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2 Renormalization Group and Critical Phenomena

I have seen Ken Wilson for the first time at the 1970 Mid-winter solid-state research confer-
ence at Newport Beach [45]. It was my first trip to the United States. I was delighted to meet
all the scientists working in critical phenomena, whom I knew from their papers.

What was known before Wilson presented his renormalization group ideas on critical
phenomena in 1971? Initially critical phenomena were only described by molecular field type
theories. The oldest one is due to Van der Waals [63] in 1873 for the gas-liquid transition.
Curie [11] and Weiss [77] formulated it for ferromagnets, and Landau [43,44] for general
systems. They all predicted that the order parameter behaves below Tc like ∝ (Tc − T )β with
β = 1/2. However already in 1900 Verschaffelt [66] observed β = 0.34.. for the difference
of the density of the liquid and the vapor of isopentan, where he had analyzed data by Young
[89]. He also found along the isotherm ρ−ρc ∝ (P − Pc)

1/δ with δ = 4.259 instead of δ = 3
by Van der Waals. Later on many other experiments on gas-fluid systems, ferromagnets and
other systems gave exponents different from molecular type ones. Also the specific heat often
did not show a jump as predicted by molecular field theory, but a divergency or cusp like
|T − Tc|−α or − ln |T − Tc|. Levelt-Sengers [46] has given a useful review on the history of
critical phenomena. Two models showed deviations from molecular field behaviour: The two-
dimensional Ising model (Onsager [52]) gave a logarithmic singularity of the specific heat
and a critical exponent β = 1/8 for the spontaneous magnetization [88]. Berlin and Kac [4]
developed the spherical model, which below dimension 4 showed partly a different behaviour.
For the three-dimensional model one had still β = 1/2, but a kink in the specific heat,α = −1.
The susceptibility χ ∝ (T − Tc)

−γ yields γ = 2 in this model in contrast to the molecular
field value γ = 1. If the dimension d of the system is considered a continuous variable, then
this model shows clearly that the exponents depend on the dimensionality between d = 2
and d = 4. Above four dimensions this model shows molecular field behaviour. Ginzburg
[25] has argued that in three-dimensional systems there is a temperature region, in which
molecular field-theory fails. Extending his arguments to higher dimensions one finds that
only above four dimensions molecular field theory is correct.

Inequalities for critical exponents were established [21,26,27,57]. Widom [80] had the
beautiful idea that the difference of various thermodynamic quantities from their critical
values, e.g. that of the chemical potential, density, and temperature in a fluid, are related by
homogeneous functions. This explains equalities between critical exponents and also equal
exponents above and below the critical temperature Compare Griffiths [28]. Such relations
between exponents had been guessed before. This homogeneity picture was confirmed by
Kadanoff’s cell model [40]. Using his own words: The description is based upon dividing the
Ising model into cells which are microscopically large but much smaller than the coherence
length and then using the total magnetization within each cell as a collective variable. In
this way he considered the effective interaction on different length scales. He introduces the
mapping of the interaction of the original spins to the new cell spins. The critical point is
related to the fixed point of this mapping. Small deviations from the fixed-point interaction
grow (or decay) with certain factors from one length scale to the other. This allows the singular
part of the free energy to be written as a homogeneous function in the sense of Widom.

The experimental observation that real systems are not described by molecular field theory
were supported by the calculation and analysis of series expansions, in particular of high-
temperature expansions. These expansions gave exponents not very far from measured ones.
A good review is volume 3 [16] of the Domb-Green series. These estimates led to the
hypothesis of universality as for example expressed by Fisher et al. [22,29,39]. Accordingly
the exponents depend only on the dimension d of the system, the dimension n of the (easy
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components of the) order parameter, and on the range of interaction, if it decreases slowly
with distance. Watson [67] even argued that certain ratios of amplitudes did not depend on the
lattice of the model but only on the universality class. Soon later two groups introduced the
idea of universality classes to critical dynamics: Ferrell et al. [18,19] as well as Halperin and
Hohenberg who carried over the ideas of Widom and Kadanoff to critical dynamics [31,32].

The calculations of critical exponents in isotropic and anisotropic classical Heisenberg
models by Jasnow and Wortis [39] inspired Eberhard Riedel and myself to derive homogeneity
relations for this model [55], where we introduced the crossover exponent and argued how
the temperature region showing anisotropic behaviour shrinks with the anisotropy. I had done
some work on magnetic ordering [68,69] and on critical spin dynamics [70,71]. In the group
of Wilhelm Brenig and Herbert Wagner in Munich we discussed Kadanoff’s cell model [40]
and the reviews by Fisher [23], Leo Kadanoff et al. [41], and by Heller [34]. Therefore I knew
the fascinating hypotheses and results in critical phenomena and the open problems. In 1971
I spent a year as postdoc in the group of Leo Kadanoff. Although at that time Leo worked on
urban problems, he was much interested in critical phenomena, and I had useful discussions
with him. We wrote a paper [42] in connection with the solution of the eight-vertex-model,
which had just been solved by Baxter [3].

In 1971 Wilson’s two seminal papers [81,82] on the critical behavior of the Ising model
appeared. I became really aware of them, when Ken Wilson’s and Michael Fisher’s paper [86]
on the 4− ε expansion of critical exponents of the n-vector model appeared. I was fascinated
that here was a theory which easily fulfilled the Ginzburg criterion [25]. From then on I
worked on 4 − ε-expansions [30,73,76], partially with colleagues at Brown University, and
I investigated general consequences of the Kadanoff-Wilson renormalization group picture
[72,74]. Much of this work as well as that of other scientists is reported in volume 6 of the
Domb-Green series [16], which after Melville Green’s death was continued by Cyril Domb
and Joel Lebowitz [17]. Wilson’s work gave a clear understanding of critical phenomena
and simultaneously the possibility for explicit calculations starting from the upper critical
dimension four. Once I visited at Cornell and I remember a lively discussion with Ken
Wilson and Michael Fisher on the ε-expansion for the cross-over exponent [24,73]. Shortly
later Eberhard Riedel and myself investigated the tricritical point [56,77] with upper critical
dimension d = 3.

Stanley [59] had shown that the n = ∞-limit of the n-vector model is described by the
spherical model. It did not take long until 1/n-expansions for the n-component spin model
attracted Abe [1], Ma [47], Suzuki [61], Ferrell and Scalapino [20], and also Wilson [84].
Shang-keng Ma gave a review [48]. An elobarate technique was later given by Vasil’ev et al.
[64,65].

Wilson’s early papers on this subject and the review by Wilson and Kogut [87] integrated
over the short wavelength components of the order parameter in the Lagrangian. Very fast
it became clear, that the Landau theory of phase transitions [43,44], which at first glance
gave only molecular field exponents is very useful as field theory and became a basic theory
for critical phenomena. Wilson [83] and Brézin et al. [7] applied Feynman-graph techniques
to this theory and one switched to dimensional regularization. See the review by Brézin
et al. [10]. Similarly di Castro and Jona-Lasinio showed that the multiplicative renormal-
ization group provides scaling laws [13] and critical exponents from the ε-expansion [12].
However, in many cases functional renormalization is very useful [37,51,53,62,79,87]. Wil-
son’s description of critical phenomena was soon applied to critical dynamics. Halperin,
Hohenberg, and Ma derived the consequences for the kinetic Ising model and showed the
improvement over previous techniques [33]. A summary of the various dynamical universal-
ity classes is given in the review [36]. Some other aspects of critical phenomena are finite-size
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scaling (review by Barber) [2], critical surfaces and interfaces (reviews by Binder, Diehl and
Jasnow) [6,14,38], and wetting (review by Dietrich) [15].

Mermin and Wagner [49] had shown that continuous symmetries cannot be broken in d ≤ 2
dimensions at finite temperatures provided the interaction is not too long-range. Migdal [50]
and Polyakov [54] started an expansion for critical exponents from this lower dimensionality
two, work which has been continued by e.g. Brézin et al. [8,9,35]. I became much interested
in this expansion, since Lothar Schäfer and myself [58,75] could map the mobility edge
problem of the Anderson model of particles on disordered lattices on a matrix-model, which
can be investigated in 2 + ε dimensions [5].

It may be remarked that Stanley has compiled many papers on critical phenomena before
and at the beginning of the Wilson era in a bibliography [60].

Wilson gave a beautiful review of the use of the renormalization group in critical phe-
neomena and he solved the s-wave Kondo Hamiltonian by a nondiagrammatic computer
method [85].

Wilson’s work in critical phenomena had an enormous impact on this field, since simulta-
neously it allowed explicite calculations and gave an intuitive picture of the renormalization
group procedure.

3 Duality and Confinement

In 1970–1971 I thought about duality of Ising-like models in dimensions larger than two,
similar to the Kramers-Wannier duality [94] of the two-dimensional Ising model. It occured
to me that such dual models could be expressed as gauge-invariant Ising-models, which may
also show a transition, but without a local order parameter [96]. In four dimension a gauge-
invariant model became self-dual and had the same transition temperature as the ordinary
two-dimensional Ising-model. Instead of a local order-parameter the product of spins along
a closed loop showed a different behavior in both phases. At high temperature it obeyed an
area law, at low temperatures a perimeter law,〈 ∏

i∈loop

Si

〉
=

{
exp(−a/α(T )) T > Tc

exp(−l/ξ(T )) T < Tc
(1)

where a is the enclosed area and l the length of the perimeter.
Ken Wilson generalized this idea to continuous gauge-theories [97], which allowed him

to describe the confinement of quarks, a description, which became very important in high-
energy physics. Other important contributions were by Balian et al. [90–92].

The transition temperature for the Ising gauge model was confirmed by Creutz et al. [93]
numerically to the precision allowed by hysteresis effects at the first-order transition. Many
papers of this subject are compiled in a review volume by Rebbi [95].

4 Flow Equations and Similarity Renormalization

Our work came very close for a third time. Głazek and Wilson [123,124] (GW) and myself
[158] (W) developed independently equations for a unitary hamiltonian flow, which brings the
hamiltonian in diagonal or block-diagonal form. It is also called similarity transformation or
similarity renormalization. Common to both procedures is that one approaches the diagonal
form continuously. This may be written
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dH(
)

d

= [η(
), H(
)] (2)

with the generator η(
) of the unitary transformation and 
 the flow-parameter. One starts
with H(0) = H and reaches diagonalization or block-diagonalization in the limit 
 → ∞.

The main difference is that (GW) in their original formulation eliminate the off-diagonal
matrix elements between states of an energy difference larger than some �E completely,
which shrinks continuously during the flow, whereas (W) suggests a smoother elimination
procedure, given by

η(
) = [Hd(
), H(
)] (3)

where Hd is the diagonal part of the Hamiltonian or some other appropriate Hd derived from
H . (GW) working in high-energy physics take care of the renormalization of ultraviolett
divergencies, whereas (W) starts from solid-state models on a lattice, where such divergencies
no longer show up. Both procedures aim at the infrared problem. These methods are apt for
fermionic and bosonic and even spin models.

Later it was realized that the mathematicians Brockett et al. [111–113] performed similar
transformations in information theory. They call the method double bracket flow and isospec-
tral flow, resp. The notion double bracket flow becomes obvious, when one inserts (3) in (2).
The two-beam coupling in photorefractive media itself obeys the flow equation scheme [98].

It is special for fermionic solid-state systems that the important physics takes place at
the Fermi edge which in dimension d > 1 is no longer restricted to one or two points in
momentum space, but extends over a d − 1 dimensional region. Thus Shankar [153,154]
eliminates states away from the Fermi edge and keeps only those very close to it. Similar
elimination ideas not for the Hamiltonian, but for irreducible vertices in the form of Polchinski
equations [53] were introduced by Zanchi and Schulz [162], Halboth and Metzner [130], and
Salmhofer and Honerkamp [151].

The flow equation scheme was applied in many cases in high-energy physics, nuclear
physics and atomic physics. I mention some work in light front QED [128,133] and in light
front QCD [110,120,161] and in effective nuclear interactions [104,105] and for nuclear few
body problems [102,103].

Głazek and Wilson [126,127] investigated the possibility of limit cycles. The connection
between asymptotic freedom and limit cycles has been studied in [121,122]. Already in 1970
Ken Wilson was interested in systems invariant under a change of energy scale [160]. Conse-
quently Głazek and Wilson investigated systems whose states had energies and interactions
increasing by powers of some factors b > 1 [121,125]. An infrared limit cycle in QCD
was suggested by Braaten and Hammer [106]. A nice example for limit cycles [99–101,149]
are the Efimov states [114,115,156], first investigated for helium3 and tritium. Such states
became of interest in the physics of ultracold atoms [107], when they are tuned to large
scattering lengths [143] close to the Feshbach resonance [118].

There are numerous applications in solid-state physics. The smoothness of the trans-
formation yields smoother results for the elimination of the electron-phonon interaction in
superconductors [147,148] than the transformation by Fröhlich [119]. The flow equation
result comes close to those by Eliashberg [116,117], but in a simpler way. Similar smooth
results are obtained for the Anderson impurity model [137] in contrast to the Schrieffer-Wolf
transformation [152]. A model closely related to the mechanism of dissipation is the spin-
boson model, which in this framework was first treated by Kehrein et al. [138–141]. Various
aspects of the Kondo model can be investigated by this method [132,135,155,157]. Also the
dynamics of spins on certain lattices can be investigated [108,109,142,150].
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Electronic systems in d > 1 dimensions can be brought to the form described by Landau’s
Fermi liquid theory [144–146] by means of flow equations [134,136]. The Hubbard model
was treated in the weak-coupling limit [129,131], where the Hamitonian was not diagonal-
ized, but brought to a block-diagonal form, for which molecular field theory is exact. Thus
various instabilities (antiferromagnetism, d-wave-superconductivity, Pomeranchuk instabil-
ity) can be read from this block-diagonal form. Many applications in solid state theory can
be found in the short review [159] and in the book by Kehrein [136].

5 Concluding Remark

Ken Wilson’s work in field theory and renormalization had an enormous impact. He was
honored by the Nobel prize. Wilson also was engaged in Physics education. I am glad to have
met Ken Wilson.

Acknowledgments I am indebted to Stan Głazek for providing me with a number of useful comments.
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