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Abstract The purpose of this paper is to correct errors presented recently in the paper
[Lv et al. J Stat Phys 149:619–628 (2012)], where the authors analyzed Fractional Fokker–
Planck equation (FFPE) with space–time dependent drift F(x, t) = F(x) f (t) and diffusion
D(x, t) = D(x)d̃(t) coefficients in the factorized form. We show an important drawback
in the derivation of the stochastic representation of FFPE presented in the aforementioned
paper, which makes the whole proof wrong. Moreover, we present a correct proof of their
result in even more general case, when both drift and diffusion can have any, not necessarily
factorized, form.

Keywords Fractional Fokker–Planck equation · Time change · Fractional derivative ·
Subdiffusion · Stable distribution

1 Introduction

In recent paper by Lv et al. [1] authors studied the question of stochastic representation
of anomalous diffusion with space and time dependent drift and diffusion coefficient. This
problem was also studied in [2–6], where the author investigated solution of the anomalous
diffusion equation with space–time dependent forces. In this paper we show that the result of
[1] is true in even more general setting. Namely, the factorization of the space–time dependent
drift and diffusion coefficients into a space dependent part and a time dependent part is not
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1242 M. Magdziarz et al.

necessary. We also point out some drawbacks in the derivation of the main result in [1] and
present the correct proof.

In [1] authors analyzed the following fractional Fokker–Planck equation (FFPE)

∂

∂t
p(x, t) =

{
− ∂

∂x
F(x, t) + 1

2

∂2

∂x2 D(x, t)

}
0 D1−α

t p(x, t), 0 < α < 1, (1)

with initial condition p(x, 0) = δ(x). The operator 0 D1−α
t is the fractional Riemann-

Liouville derivative which is defined as

0 D1−α
t q(t) = 1

�(α)

∂

∂t

t∫
0

(t − s)α−1q(s)ds.

Moreover, the operator in braces is the classical Fokker–Planck operator with F(x, t) and
D(x, t) being the drift and diffusion parameters, respectively.

Equation (1) describes the evolution in time of the the probability density function (PDF)
p(x, t) of some subdiffusive process with sublinear in time mean square displacement. The
operator 0 D1−α

t introduces a convolution integral with a slowly decaying power-law kernel,
which is typical for memory effects in complex systems. Appearance of 0 D1−α

t in Eq. (1)
corresponds to the trapping events in the underlying motion of the test particle. These trapping
events are characterictic for subdiffusive dynamics and result in sublinear in time mean square
displacement [7].

Equation (1) was first derived in [8] in the framework of continuous-time random walk
(CTRW) with heavy-tailed waiting times. In [8] the authors concentrated on the case of
space-dependent drift F(x, t) = F(x) and constant diffusion D(x, t) = const . Since then
FFPE became the standard physical equation describing subdiffusive dynamics [7].

Equation (1) for the case of time-dependent force F(x, t) = F(t) was first derived in [2].
The derivation was based on the generalized master equation with two balance conditions:
the probability conservation in a given state and under transition between different states.
The main difference from the previous space-dependent case was lying in the fact that the
fractional operator 0 D1−α

t appeared to the right of the Fokker–Planck operator, so that it did
not act on the time-dependent force. As a result the force was not modified, which fulfilled
the physical requirement that the external time-dependent force cannot be influenced by the
environment.

The case of space–time dependent coefficients was introduced and derived in [3,6] using
Langevin and CTRW approaches, which finally clarified issues addressed in [9] for space–
time-dependent driving.

In [1], the authors assume that the drift F and diffusion D have the following, very special,
factorized form F(x, t) = F(x) f (t) and D(x, t) = D(x)d̃(t). The main purpose of [1] was
to prove that Eq. (1) describes PDF of the following stochastic process

X (0) = 0

d X (t) = F
(
X (t)

)
f (t)d Sα(t) +

√
D

(
X (t)

)
d̃(t)d B(Sα(t)), (2)

where F(x), D(x) ∈ C∞((−∞,∞)), f (t), d̃(t) ∈ C([0,∞)) and Sα(t) is the inverse
α-stable subordinator [4]

Sα(t) = inf{τ > 0 : Uα(τ ) > t}.
Here, Uα is the α-stable subordinator [10,11] with Laplace transform E

[
e−kUα(τ )

] =
e−τkα

, 0 < α < 1. Moreover, C∞((−∞,∞)) denotes the space of functions with well
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Comment on Fractional Fokker–Planck Equation 1243

defined derivatives of any order on (−∞,∞),whereas C([0,∞)) is the space of continuous
functions on [0,∞).

The process X (t) in (2) can be equivalently represented in the following subordinated
form

X (t) = Y (Sα(t)),

where Y (t) is given by

Y (0) = 0

dY (t) = F(Y (t)) f (Uα(t))dt +
√

D(Y (t))d̃(Uα(t))d B(t), t ≥ 0,

Let us now explain the structure and physical meaning of the process X (t) = Y (Sα(t)).
Note first that subordination is a change of time. The subordinator Sα(t) becomes a new
operational time of the system and it introduces the trapping events to the motion of the
particle (see [3]). Moreover, changing the time does not affect the spatial coefficients F(x)

and D(x), it can only affect the temporal ones. Note that the parent process Y (t) is actually
a diffusion process, except from the fact that Uα(t) appears in the temporal parts of its
drift and diffusion coefficients. Because of this, after subordination the temporal parts of the
drift and diffusion coefficients are given by f (Uα(Sα(t))) and d̃(Uα(Sα(t))). Now, since in
every moment of jump we have Uα(Sα(t)) = t (see [3]), the time-dependent biases acting
on the particle are equal to f (Uα(Sα(t))) = f (t) and d̃(Uα(Sα(t))) = d̃(t). This means
that whenever the particle does not rest in the trap, the coefficients f (t) and d̃(t) are not
modified by the subordinator Sα(t). This fulfills the physical requirement that the external
time-dependent force cannot be influenced by the environment and corresponds to the fact
that the fractional operator 0 D1−α

t in (1) appears to the right of the Fokker–Planck operator.
Summing up, the process X (t) = Y (Sα(t)) describes correctly the subdiffusive motion of
the particle driven by space–time dependent coefficients F(x, t) and D(x, t).

Although the main result presented in [1] is correct, its derivation is wrong. In this paper
we point out problems occurring in the proof of this result. Next, we present the correct
proof in even more general case, when both drift and diffusion can have any, not necessarily
factorized, form.

The paper is organized as follows. In Sect. 2 we point out critical errors in the proof
presented in [1]. In Sect. 3 we present a correct proof of the main result of [1] in general
setting. Applying the method from [6], we derive the stochastic representation of FFPE with
arbitrary drift and diffusion parameters.

2 Problem in the Proof

Let us look at the second part of the proof of Theorem 2 in [1], where the authors consider
the case f (t) �= d̃(t). First of all, the statement that Uα(τ ) ∈ FSα(t) is incorrect. Note that
FSα(t) is the σ -algebra generated by Sα(t) (the family of sets containing all the information
about Sα(t)). Since both sets {Uα(τ ) ≥ t} and {Sα(t) ≤ τ } are equal [4,12], so the σ -
algebra generated by Uα(τ ) must contain all the sets of the form {Sα(t0) ≤ τ }, where
t0 ≥ 0. Therefore, Uα(τ ) is not FSα(t)-measurable. It is rather measurable with respect to the
σ -algebra generated by the whole process Sα . Indeed, to know the value of Uα(τ ) we need
to know the whole trajectory of the process Sα and not only its one particular value Sα(t) at
the single time point t .
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1244 M. Magdziarz et al.

Moreover, the authors incorrectly assumed that both functions G(τ ) = F(Y (τ ))eikY (τ )

and g(τ ) = D(Y (τ ))eikY (τ ) are known integral functions on the finite interval [0, t], if we
condition on σ -algebra FSα(t). As one can see, process Y defined by Eq. (20) in [1] has
another source of randomness apart of Uα(τ ). Namely Brownian motion B(τ ), which is
independent from Uα(τ ). So Y is still a random process, even if we condition on Sα(t). As
a consequence G(τ ) and g(τ ) are complex random processes, so Corollary 1 in [1] does not
apply. Recall that Corollary 1 applies only to deterministic functions, and cannot be easily
extended to random processes. Thus the crucial step from Eq.

∂

∂t
E

⎡
⎣ik

t∫
0

f (t1)F(Y (Sα(t1)))e
ikY (Sα(t1))d Sα(t1)

⎤
⎦ , (3)

to

ik f (t)0 D1−α
t E

[
F(X (t))eik X (t)

]
, (4)

in [1], which is based on Corollary 1, is unjustified. As a consequence, the whole proof of
the authors is incorrect.

3 Stochastic Representation of Generalized FFPE

In this section we give a correct proof of the stochastic representation of FFPE (1) presented
in [1]. Applying the methods presented in [6], we obtain the result in even more general
setting, i.e. when the drift and diffusion are arbitrary functions. In particular, if we choose
D(x, t) and F(x, t) to have factorized form, we obtain the statement from [1].

Theorem 1 Let Sα(t) be the inverse α-stable subordinator, independent of the standard
Brownian motion B(τ ). Let Y (t) be the solution of the stochastic differential equation

Y (0) = 0

dY (t) = F(Y (t), Uα(t))dt + √
D(Y (t), Uα(t))d B(t), t ≥ 0, (5)

where the functions D(x, t) ≥ 0 and F(x, t) are twice differentiable with respect to both
variables and satisfy the usual Lipschitz condition. Then, the PDF of the process

X (t) = Y (Sα(t))

is the solution of the fractional Fokker–Planck equation

∂

∂t
p(x, t) =

{
− ∂

∂x
F(x, t) + 1

2

∂2

∂x2 D(x, t)

}
0 D1−α

t p(x, t), t ≥ 0 (6)

with the initial condition p(x, 0) = δ(x).

Proof We can rewrite Eq. (5) as a system of stochastic equations:

(
dY (t)
d Z(t)

)
=

(
F(Y (t), Z(t))
0

)
dt +

(√
D(Y (t), Z(t))d Bt

dUα(t)

)
. (7)
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Equation (7) belong to the general class of stochastic processes driven by Lévy noise, thus
(see [13]) the infinitesimal generator for the process (7) has the form

A f (y, z) = F(y, z)
∂

∂y
f (y, z) + 1

2
D(y, z)

∂2

∂y2 f (y, z)

+
∞∫

0

[
f (y, z + z′) − f (y, z)

] α

�(1 − α)
z′−1−αdz′. (8)

The infinitesimal generator of the stochastic process (Y (t), Z(t)) is a linear operator
defined as

A f (y, z) = lim
t→0

E
[

f
(

(Y (t), Z(t)) + (y, z)
)

− f (y, z)
]

t
.

The set of functions f : R2 → R for which the above limit exists for all (y, z) ∈ R2

is the domain of A. The generator carries a lot of information about the process. It is an
important and useful tool in analyzing evolution equations. Let qt (y, z) denote the PDF of
the joint distribution (Y (t), Z(t)). Then the standard Fokker–Planck equation for qt (y, z)
can be written as (see [13])

∂

∂t
qt (y, z) = A+qt (y, z), (9)

where A+ is the formal adjoint of A. It is the operator that satisfies 〈Ag, h〉 = 〈g, A+h〉
where 〈·, ·〉 is the inner product in L2(R2) and g, h are sufficiently smooth functions. In
particular we have

∫

R2

A f (y, z)qt (y, z)dydz =
∫

R2

f (y, z)A+qt (y, z)dydz, (10)

for all f ∈ C∞
c (R2)—infinitely differentiable functions from R2 to R with compact support,

also known as bump functions. Using the above relation we will find the operator A+. The
right hand side of Eq. (10) yields

∫

R2

A f (y, z)qt (y, z)dydz =
∫

R2

(
F(y, z)

∂

∂y
f (y, z) + 1

2
D(y, z)

∂2

∂y2 f (y, z)

+
∞∫

0

[
f (y, z + z′)− f (y, z)

] α

�(1−α)
z′−1−αdz′

)
qt (y, z)dydz.

We will deal with each summand separately. Integration by parts and the fact that the
support of f is compact yield

∫

R2

F(y, z)
∂

∂y
f (y, z)qt (y, z)dydz = −

∫

R2

∂

∂y
(F(y, z)qt (y, z)) f (y, z)dydz. (11)
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Similarly we use integration by parts two times to get
∫

R2

1

2
D(y, z)

∂2

∂y2 f (y, z)qt (y, z)d(y, z)

=
∫

R2

∂2

∂y2

(
1

2
D(y, z)qt (y, z)

)
f (y, z)dydz. (12)

For the last summand let us observe that

∞∫
0

[
f (y, z + z′) − f (y, z)

] α

�(1 − α)
z′−1−αdz′ =

− [
f (y, z + z′) − f (y, z)

] z′−α

�(1 − α)

∣∣∣∞
z′=0

+
∞∫

0

∂

∂z′ f (y, z + z′) z′−α

�(1 − α)
dz′,

where

[
f (y, z + z′) − f (y, z)

] z′−α

�(1 − α)

∣∣∣∞
z′=0

= lim
z′→0

f (y, z + z′) − f (y, z)

z′
z′1−α

�(1 − α)
= 0,

since f is differentiable. After substitution z + z′ = w we obtain:

∞∫
0

∂

∂z′ f (y, z + z′) z′−α

�(1 − α)
dz′ =

∞∫
z

∂

∂w
f (y, w)

(w − z)−α

�(1 − α)
dw.

Now we use the above result and Fubini theorem to the following integral:

∫
R

∞∫
0

[
f (y, z + z′) − f (y, z)

]
qt (y, z)

α

�(1 − α)
z′−1−αdz′dz

=
∫
R

∞∫
z

∂

∂w
f (y, w)

(w − z)−α

�(1 − α)
qt (y, z)dwdz

=
∞∫

−∞

∂

∂w
f (y, w)

w∫
−∞

(w − z)−α

�(1 − α)
qt (y, z)dzdw

= −
∞∫

−∞
f (y, w)

∂

∂w

w∫
−∞

(w − z)−α

�(1 − α)
qt (y, z)dzdw. (13)

Since qt (y, z) = 0 when z < 0, we get that

−
∞∫

−∞
f (y, w)

∂

∂w

w∫
−∞

(w − z)−α

�(1 − α)
qt (y, z)dzdw = −

∫
R

f (y, w)0 Dα
wqt (y, w)dw
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and hence

∫

R2

∞∫
0

[
f (y, z + z′) − f (y, z)

] α

�(1 − α)
z′−1−αqt (y, z)dz′dydz

= −
∫

R2

f (y, z)0 Dα
z qt (y, z)dydz. (14)

Thus the adjoint operator has the form

A+ f (y, z) = − ∂

∂y
(F(y, z) f (y, z)) + ∂2

∂y2

(
1

2
D(y, z) f (y, z)

)
− 0 Dα

z f (y, z). (15)

We take advantage of Eq. (9) to obtain

∂

∂t
qt (y, z) = − ∂

∂y
(F(y, z)qt (y, z)) + ∂2

∂y2

(
1

2
D(y, z)qt (y, z)

)
− 0 Dα

z qt (y, z). (16)

Now we denote by pt (x) the PDF of X (t). We need to relate densities pt (x) and qt (y, z).
In order to do this, for each ω ∈ 	 we denote the corresponding trajectories of the processes
as X (t, ω) and (Y (t, ω), Z(t, ω)). Let δI (x) denote the usual indicator function for some
fixed interval I , that is the function having value 1 for x ∈ I and 0 otherwise. Then it is easy
to observe that ∫

I

pt (x)dx = E [δI (X (t, ω))] . (17)

Following [6] we define an auxiliary function

Ht (t
′, ω, u) =

{
δI (Y (t ′, ω)) if Z(t ′−, ω) ≤ t ≤ Z(t ′−, ω) + u
0 otherwise

. (18)

For t ′, ω such that Z(t ′−, ω) ≤ t this function takes value δI (Y (t ′, ω)) only when u is
sufficiently large, that is u must exceed the gap between t and Z(t ′−, ω). Otherwise the
function vanishes. Let 
Z(t, ω) = Z(t, ω) − Z(t−, ω) denote the jumps of the process
Z(t). Now we can write

δI (X (t, ω)) =
∑
t ′>0

Ht (t
′, ω,
Z(t ′, ω)), (19)

since all summands of the above are equal zero except from t ′ = Sα(t, ω), when we have
Y (t ′, ω) = Y (Sα(t, ω), ω) = X (t, ω). In other words this right hand side of (19) expresses
X (t, ω) as a value of Y (t ′, ω), where t ′ is the moment when the process Z(t ′, ω) exceeds the
level t for the first time. One can notice that jumps 
Z form a Poisson point process (Ppp)
with values in (0,∞) and characteristic measure ν. This measure is defined as

ν(A) = 1

t
E

[∑
s≤t

δA (
Z(s))

]
, t > 0

and does not depend on t since Ppp is homogeneous in time. It is a known fact (see [11])
in theory of Lévy processes that the Lévy measure is the characteristic measure of the jump
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process. Since Z(t) = Uα(t), ν has the density α
�(1−α)

u−1−α . This enables us to use the
compensation formula (see [14]) to write

E

[∑
t ′>0

Ht (t
′, ω,
Z(t ′, ω))

]
= E

⎡
⎣

∞∫
0

∞∫
0

Ht (t
′, ω, u)

αu−1−α

�(1 − α)
dudt ′

⎤
⎦ . (20)

Left hand side of Eq. (20) yields

E

[∑
t ′>0

Ht (t
′, ω,
Z(t ′, ω))

]

= E

⎡
⎣

∞∫
0

δI (Y (t ′, ω))δ[0,t]
(
Z(t ′, ω)

) [t − Z(t ′, ω)]−α

�(1 − α)
dt ′

⎤
⎦

=
∫
I

∞∫
0

t∫
0

(t − z)−α

�(1 − α)
qt ′(y, z)dzdt ′dy (21)

Combining Eqs. (17), (19) and (21) gives

∫
I

pt (x)dx =
∫
I

∞∫
0

t∫
0

(t − z)−α

�(1 − α)
qt ′(y, z)dzdt ′dy

=
∫
I

∞∫
0

0 I 1−α
t qt ′(y, t)dt ′dy, (22)

where 0 I 1−α
t denotes the Riemann–Liouville fractional integral of order 1 − α [15]. Since

the above equality holds for each interval I , we have

pt (x) =
∞∫

0

0 I 1−α
t qt ′(x, t)dt ′. (23)

It also follows, using Fubini theorem, that

0 D1−α
t pt (x) = ∂

∂t

t∫
0

∞∫
0

0 I 1−α
u qt ′(x, u)dt ′ (t − u)−1+α

�(α)
du

=
∞∫

0

∂

∂t

t∫
0

0 I 1−α
u qt ′(x, u)

(t − u)−1+α

�(α)
dudt ′

=
∞∫

0

∂

∂t
0 I α

t 0 I 1−α
t qt ′(x, t)dt ′ =

∞∫
0

qt ′(x, t)dt ′. (24)

Differentiation of Eq. (23) with respect to t yields

∂

∂t
pt (x) =

∞∫
0

∂

∂t
0 I 1−α

t qt ′(x, t)dt ′ =
∞∫

0

0 Dα
t qt ′(x, t)dt ′. (25)
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Taking into account Eq. (16), the facts that limt ′→∞ qt ′(x, t) = 0 and also q0(x, t) =
δ(0,0)(x, t), we obtain for t > 0

∂

∂t
pt (x)

=
∞∫

0

(
∂2

∂x2

(
1

2
D(x, t)qt ′(x, t)

)
− ∂

∂x
(F(x, t)qt ′(x, t)) − ∂

∂t ′
qt ′(x, t)

)
dt ′

= ∂2

∂x2

⎛
⎝1

2
D(x, t)

∞∫
0

qt ′(x, t)dt ′
⎞
⎠ − ∂

∂x

⎛
⎝F(x, t)

∞∫
0

qt ′(x, t)dt ′
⎞
⎠ . (26)

Finally, from Eq. (24) we get that

∂

∂t
pt (x) = ∂2

∂x2

(
1

2
D(x, t)0 D1−α

t pt (x)

)
− ∂

∂x

(
F(x, t)0 D1−α

t pt (x)
)
, (27)

which ends the proof.

4 Conclusions

In this paper we have proved the stochastic representation of FFPE (1). In the proof we
have applied the methods presented in [6] to the case of arbitrary drift F(x, t) and diffusion
D(x, t) coefficient. Our result extends the one presented in [1], where the special factorized
form of drift F(x, t) and diffusion D(x, t) was assumed. Moreover, we have pointed out
some drawbacks in the derivation of the stochastic representation of FFPE studied in [1] and
presented the correct proof in the general case.
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