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Abstract In this paper we provide a connection between the geometrical properties of the
attractor of a chaotic dynamical system and the distribution of extreme values. We show
that the extremes of so-called physical observables are distributed according to the classical
generalised Pareto distribution and derive explicit expressions for the scaling and the shape
parameter. In particular, we derive that the shape parameter does not depend on the cho-
sen observables, but only on the partial dimensions of the invariant measure on the stable,
unstable, and neutral manifolds. The shape parameter is negative and is close to zero when
high-dimensional systems are considered. This result agrees with what was derived recently
using the generalized extreme value approach. Combining the results obtained using such
physical observables and the properties of the extremes of distance observables, it is possible
to derive estimates of the partial dimensions of the attractor along the stable and the unstable
directions of the flow. Moreover, by writing the shape parameter in terms of moments of
the extremes of the considered observable and by using linear response theory, we relate the
sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the
partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer-
ical investigations provide encouraging results on the applicability of the theory presented
here. The results presented here do not apply for all combinations of Axiom A systems and
observables, but the breakdown seems to be related to very special geometrical configurations.
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1 Introduction

Extreme value theory (EVT) is gaining more and more prominence in a vast range of scientific
fields because of its theoretical relevance in mathematical and physical sciences, and because
it addresses the problem of understanding, modeling, evaluating risk factors such as those
related to instabilities in the financial markets and to natural hazards related to seismic,
climatic and hydrological extreme events. Even if the probability of extreme events is very
low and decreases quickly with their magnitude, the associated risks can dominate over those
coming from events belonging to the bulk of the statistics. An extensive account of recent
results and relevant applications is given in [1].

The first comprehensive discussion of EVT dates back to the fundamental work by
Gnedenko [2], who investigated the distribution of the maxima of a sample of inde-
pendent identically distributed (i.i.d) stochastic variables. He showed that under very
general conditions such maxima are distributed according to the so-called Generalised
Extreme Value (GEV) distribution. The classic way of dealing with the statistical infer-
ence of extremes actually follows quite precisely the steps of the Gnedenko’s theo-
rem. One partitions the experimental time series into bins of fixed length, extracts the
maximum of each bin, and fits these data to the GEV distribution family using, typi-
cally, methods such as maximum likelihood estimation (MLE) or L-moments. See [3]
for a detailed account of this methodology. It is possible to deal with extremes by tak-
ing a different point of view, i.e., by defining extremes as the events exceeding a given
threshold. In the limit of very high threshold, we expect that the extremes are distrib-
uted according to the Generalized Pareto Distribution (GPD) introduced by Pickands
III [4] and Balkema and De Haan [5]. In the case of i.i.d. variables, it is well known
that a strong connections exists between the two methodologies. As shown in [6], we
have that if block maxima obey the GEV distribution, then exceedances over some high
threshold obey an associated GPD. Nonetheless, it is apparent that, whereas the two
approaches are equivalent in the asymptotic limit, the GPD approach provides more
reliable and more robust results when realistic, finite time series are considered (see,
e.g., [7]).

1.1 A Brief Recapitulation of Extreme Value Theory

Gnedenko [2] studied the convergence of maxima of i.i.d. variables

X0, X1, . . . , Xm−1

with cumulative distribution function (cdf) Fm(x) = P{am(Mm −bm) ≤ x} where am and bm

are normalizing sequences and Mm = max{X0, X1, . . . , Xm−1}. Under general hypothesis
on the nature of the parent distribution of data, Gnedenko [2] showed that the asymptotic
distribution of maxima, up to an affine change of variable, belongs to a single family of
generalized distribution called GEV distribution whose cdf can be written as:

lim
m→∞ Fm(x) = FGEV(x;μ, α, κ) = e−t (x) (1)
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where

t (x) =
{(

1 + κ(
x−μ

α
)
)−1/κ if κ �= 0

e−(x−μ)/α if κ = 0
. (2)

This expression holds for 1+κ(x−μ)/α > 0, using μ ∈ R (location parameter) and α > 0
(scale parameter) as scaling constants, and κ ∈ R is the shape parameter (also called the tail
index). When κ → 0, the distribution corresponds to a Gumbel type (Type 1 distribution).
When the index is positive, it corresponds to a Fréchet (Type 2 distribution); when the index
is negative, it corresponds to a Weibull (Type 3 distribution).

We briefly mention the Pareto approach to EVT. We define an exceedance as z = X − T ,
which measures by how much the variable X exceeds a given threshold T . As discussed above,
under the same conditions under which the block maxima of the i.i.d. stochastic variables X
obey the GEV statistics, the exceedances z are asymptotically distributed according to the
Generalised Pareto Distribution. Defining FT (z) = P(X − T < z|X > T ), we have that
limT →Xu FT (z) = FGPD(z; ξ, σ ), where Xu is the right endpoint of the distribution function
for X with [4,6]:

FGPD(z; ξ, σ ) =
⎧⎨
⎩1 −

(
1 + ξ z

σ

)−1/ξ

for ξ �= 0,

1 − exp
(− z

σ

)
for ξ = 0,

(3)

where the range of z is 0 ≤ z < ∞ if ξ ≥ 0 and 0 ≤ z ≤ −σ/ξ if ξ < 0.
The relation between GEV and GPD parameters has been already discussed in literature

in case of i.i.d variables [7–10]. It is first interesting to note that

FGPD(z − T ; σ, ξ) = 1 + log (FGEV(z; T, σ, ξ)) (4)

for FGEV(z;μ, α, κ) ≥ exp−1, where the latter condition implies z ≥ T [11]. If we consider
the upper range z � T , we have that FGEV(z; T, σ, ξ) is only slightly smaller than 1, so that
Eq. 4 implies that

FGPD(z − T ; σ, ξ) ∼ FGEV(z; T, σ, ξ)

+ O
(
(1 + ξ(z − T )/σ )−2/ξ

)
,

so that the two distributions are asymptotically equivalent. This simple result is actually
equivalent to the rather cumbersome formulas given in Coles [9] and Katz et al. [8] (and
reported also by us in [12] for defining the correspondence between the parameters of the
GPD and GEV distributions describing the statistics of extreme events extracted from the
same data series.

1.2 Extreme Value Theory for Dynamical Systems

Recently, a great deal of attention has focused on understanding to what extent EVT can be
applied to study the extreme of observables of deterministic dynamical systems. The main
applications-driven motivation for this renewed interest probably comes from the spectacular
development of numerical modeling in a geophysical fluid dynamical context and from the
need to assess the ability of climate model to reproduce the observed statistical properties
of extremes in present climate conditions and understand how they will change in an altered
climate [13]. Other related applications include the numerical simulation of hydrological
risk and of the production of electric energy from wind. It is clear that the matter is far from
being trivial: numerical experiments on climate models of various degrees of complexity
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have shown that the speed of convergence (if any) of the statistical properties of the extremes
definitely depends strongly on the chosen climatic variable of interest [3,14–16].

Apart from these specific albeit very relevant applications, this problem has been addressed
by the mathematical and statistical physical community. A first important result is that when
a dynamical system has a regular (periodic of quasi-periodic) behaviour, we do not expect,
in general, to find convergence to GEV distributions for the extremes of any observable, see
Nicolis et al. [17], and Haiman [18]. Instead, if one chooses specific observables and considers
dynamical systems obeying suitable mixing conditions, which guarantee the independence
of subsequent maxima, it is possible to prove that the distribution of the block maxima of
the observables converge to a member of the GEV family. The observables are expressed as
g(dist(x, x0)), where g is a function of the distance of the orbit x from a point in the attractor
x0, usually taken as the initial condition, such that g(y) has a global maximum for y = 0. The
specific member of the GEV family (which is determined by the sign of the shape parameter)
the maxima distribution converges to depends on the specific choice of g. The paper by
Collet [19] can be considered the cornerstone for the subsequent results obtained in the last
few years [20–22]. The resulting parameters of the GEV distributions can be expressed as
simple functions of the local dimension of the attractor. These results have been shown to
be accurately detectable in numerical experiments when considering finite time series [23–
25]. If, instead, the maxima are clustered, so that they feature a relative strong short-time
correlation, the results have to be modified by introducing the extremal index [26].

Recently, it has been shown how to obtain results which are independent on whether the
underlying dynamics of the system is mixing or, instead, regular . The key ingredient relies
on using the Pareto rather than the Gnedenko approach. Such a shift in the point of view on
extremes allows to derive results that do not dependent on whether extremes feature strong
time-correlations or not. Assuming only that the local measures scales with the local dimen-
sion [27], it is possible to obtain by direct integration a GPD for the threshold exceedances
of the observables g(dist(x, x0)) introduced in [20–22,26] when considering a generic orbit
of a dynamical systems. In fact, the Pareto approach entails sampling all the points of the
orbit that are very close to x0, thus sampling the local scaling of the invariant measure. With
a suitable choice of g(dist(x, x0)), the resulting ξ of the GPD is proportional to the inverse
of local dimension [12]. The results obtained using the Pareto approach agree exactly with
what was derived using the Gnedenko approach under the assumption of mixing dynam-
ics in [20–25]. When the underlying system is mixing enough, the dynamical (Gnedenko
approach) and the geometrical (Pareto approach) points of view on extremes give the same
results, whereas differences emerge if the dynamics is such that strong time correlations exist
between block-maxima. The selection of the extremes of the g observables discussed above—
using either the Gnedenko or the Pareto approaches—acts as magnifying lens near the initial
condition, and that’s why one can extract information on the local dimension. Therefore, this
provides a potentially viable alternative to e.g. the Grassberger–Procaccia algorithm [28] for
the investigation of the scaling properties of the invariant measure of a chaotic attractor.

The results discussed above feature a major drawback when considering their relevance
in many applications. Extreme events correspond to close returns of the orbit to to its initial
condition. While relevant problems in natural sciences can be set in the framework of this
class of observables (e.g. the classic problem of weather analogues in meteorology, already
discussed by Lorenz in connection to the problem of predictability [29]), this is not the typical
structure of the observables encountered in many applications, such as the case of total energy
or enstrophy of a fluid flow. Recently, this problem has been addressed in Holland et al. [30],
who have studied, using the GEV approach, whether EVT applies for physical observables of
maps obeying the mixing conditions proposed in Freitas and Freitas [20], Freitas et al. [21,26],
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Gupta et al. [22]. They consider a general observable A = A(x) reaching its maximum value
Amax restricted to the support of the invariant measure in x = x0 (assuming for simplicity
that such a point is unique), and assume that ∇ A|x=x0 �= 0. Note that A(x) is indeed not
of the form g(dist(x, x0)) discussed above. They find that the block maxima of A(x) are
asymptotically distributed according to a member of the GEV distributions, where the shape
parameter is negative and can be written as a simple function of the partial dimensions along
the stable and unstable manifolds at the point. This seems indeed a very relevant result, as it
provides a universal property of extremes, regardless of the specific functional form of the
observable A.

1.3 Goals of the Paper

In this paper, we consider a GPD approach to EVT and try to complement and improve
the results presented in [30] regarding the physical observables and those presented in [12]
regarding the distance observables. We focus our attention on Axiom A systems [31], which
are a special class of dynamical systems possessing a Sinai–Ruelle–Bowen (SRB) invariant
measure [32] and featuring hyperbolicity in the attracting set. Such invariant measure coin-
cides with the Kolmogorov’s physical measure, i.e. it is robust against infinitesimal stochastic
perturbations. Another important property of Axiom A systems is that it is possible to develop
a response theory for computing the change in the statistical properties of any observable due
to small perturbations to the flow [33,34]. Such response theory has recently been the subject
of intense theoretical [35,36], algorithmic [37] and numerical investigations [38–41] and is
gaining prominence especially for geophysical fluid dynamical applications. Moreover, the
response theory seems to provide powerful tools for studying multiscale systems and deriv-
ing parametrizations of the impact of the fast variables on dynamics of the slow [42,43].
Finally, an important property of Axiom A systems is that, while the dynamics of natural or
artificial systems is definitely not Axiom A in general, Axiom A systems can be considered
as good ’effective’ models of actual systems with many degrees of freedom thanks to the
so-called chaotic hypothesis, which is the extension in the non-equilibrium framework of the
classic ergodic hypothesis [44]. Moreover, as discussed in [41], when we perform numerical
simulations we implicitly assume that the system under investigation is Axiom A or Axiom
A-equivalent. Therefore, considering Axiom A systems seems a good mathematical frame-
work in view of providing results useful for a large spectrum of applications. The choice
of considering Axiom A systems is instrumental in the derivation of various results on the
relationship of EVT parameters to the dynamical and geometrical properties of the system,
and will allow addressing the problem of the sensitivity of extremes to small perturbations
of the system. The dependence of the properties of extremes of parametric modulations of
the underlying dynamics is an issue of relevant theoretical as well as applicative interest. The
practical interest stems from the fact that it is relevant to be able to control or predict variations
in extreme events due to small perturbations to the dynamics. The theoretical interest comes
from the fact that when considering extremes, universal parametric probability distributions
can be defined, as opposed to the case of the bulk statistical properties. Because of this, we
may hope to reconstruct the parameters descriptive of the EVT from simple moments of
the distributions, express these in terms of observables of the system, and use the Ruelle
response theory for expressing rigorously the sensitivity of extremes to small perturbations
to the dynamics.

In Sect. 2 we show that by direct integration it is possible to derive the value of the
two GPD parameters ξ and σ , and, in particular, that the value of ξ agrees with the GEV
shape parameter obtained in [30]. We also show that, combining the results obtained using
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such physical observable A and the distance observables considered in [12], it is possible
to derive the estimates of the partial dimensions of the attractor along the stable and the
unstable directions of the flow. In Sect. 3, we develop a linear response theory describing the
impact of small time-independent ε-perturbations to the flow on the statistical properties of
the extremes of the observable A. We will first investigate the sensitivity of suitable defined
observables describing above-threshold A(x) occurrences. We will focus on computing the
changes of the shape parameter ξ . We will find two equivalent expression for the sensitivity
of ξ with respect to ε. First, we will provide an expression for the sensitivity of ξ in terms of
the first two moments of the probability distribution of above-threshold A(x) events. Such
expression entails a combination of observables of the Axiom A system, so that one can use
Ruelle’s theory to compute the response to ε-perturbations to the dynamics. Nonetheless,
we show that mathematical problems emerge when considering some limits. We follow the
same approach for defining an expression for the sensitivity of the extremes of the distance
observables considered in [12]. Then, we will relate the sensitivity of ξ to the sensitivity of
the Kaplan–Yorke dimension of the attractor. We will link our results to the well-established
fact that both the extremes of observables and quantities like the Lyapunov exponents feature
a good degree of regularity with respect to perturbations when one considers intermediate
complexity to high-dimensional chaotic dynamical systems. In Sect. 4 we present the results
of some numerical experiments performed using simple Hénon maps [45], aimed at providing
support to our results. In Sect. 5 we briefly discuss the problems one faces when multiple
time scales are present in the system. In Sect. 6 we comment our findings and present our
conclusions.

2 Extreme Value Theory for Physical Observables of Axiom A Systems

2.1 Geometry of the Problem

Let us consider a continuous-time mixing Axiom A dynamical system ẋ = G(x) on a
compact manifold N ⊂ R

d , where x(t) = f t (xin), with x(t = 0) = xin ∈ N initial
condition and f t evolution operator, is defined for all t ∈ R≥0. Let us define � as the
attracting invariant set of the dynamical system , so that ν is the associated SRB measure
with support � = supp(ν). Let us now consider a smooth observable A whose maximum
restricted to the support of ν is unique, so that max(A)|� = A(x0) = Amax, x0 ∈ �, and
is, moreover, not a critical point, so that ∇ A|x=x0 �= 0, where the gradient is taken in N .
Therefore, we have that the the neutral manifold and the unstable manifold are tangent to
the manifold A(x) = Amax in x = x0. We have that the intersection between the manifolds
A(x) = Ã and � is the empty set if Ã > Amax. We define as 	̃T

max the subset of R
d included

between the manifolds A(x) = Amax and A(x) = T . Furthermore, we define as 	T
max the

subset of R
d included between the hyperplane βmax tangent to the manifold A(x) = Amax

in x = x0 and the hyperplane βT , which is obtained by applying the translation given by the
vector (T −Amax)ĝ to the hyperplane βmax, where ĝ = ∇ A|x=x0/|∇ A|x=x0 |2. As T → Amax,
which is the limit of our interest, we have that �̃T

Amax
= � ∩ 	̃T

Amax
and �T

Amax
= � ∩ 	T

Amax
become undistinguishable up to leading order. See Fig. 1 for a a depiction of this geometrical
construction.

More in general, we denote as �U
V , with V > U > T , the intersection between � and the

subset of R
d included between the hyperplane βU and βV , where βX , X = U, V is obtained

from βmax by applying to it the translation given by the vector (X − Amax)ĝ.
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Fig. 1 A low-dimensional
cartoon of the geometrical
construction used for deriving the
EVL for exceedances above the
threshold T for the observable
A(x) such that
max(A)|� = Amax is realized for
x = x0. a The manifolds
A(x) = Amax and A(x) = T are
depicted, together with the the
attracting invariant set � and the
two hyperplanes βmax and βT .
βmax is tangent to A(x) = Amax
in x0 and βT is obtained from
βmax via translation along
(T − Amax)ĝ. b The hyperplanes
βmax and βT delimit the region
	T

max. Its intersection with � is
�T

max. c The manifolds
A(x) = Amax and A(x) = T
delimit the region 	̃T

max. Its
intersection with � is �̃T

max. As
T → Amax, we have that
�T

max → �̃T
max

It is now clear that we observe an exceedance of the observable A(x) above T each time
the systems visits a point belonging to �T

Amax
.

We define the exceedances for the points x ∈ �T
Amax

as z = A(x) − T . An exceedance z
corresponds geometrically to a distance y = dist(x, βT ) = z/|∇ A|x=x0 | from βT , and the
maximum exceedance Amax − T corresponds to a distance (Amax − T )/|∇ A|x=x0 | between
x0 and βT .
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Therefore, P(z > Z |z > 0) = P(z > Z)/P(z > 0). The probability HT (Z) of observing
an exceedance of at least Z given that an exceedance occurs is given by:

HT (Z) ≡
ν
(
�T +Z

Amax

)
ν
(
�T

Amax

) . (5)

where we have used the ergodicity of the system. Obviously, the value of the previous
expression is 1 if Z = 0. The expression contained in Eq. (5) monotonically decreases with
Z (as �

T +Z2
Amax

⊂ �
T +Z1
Amax

if Z1 < Z2) and vanishes when Z = Amax − T .

2.2 Derivation of the Generalised Pareto Distribution Parameters for the Extremes of a
Physical Observable

We now wish to understand how to express the numerator and denominator of Eq. 5 as a
function of T , Z , and Amax. We follow some of the ideas presented in Holland et al. [30] and
use the fact that we are considering Axiom A systems. We define D as the local dimension
around x0, such that

lim
r→0

log(ν(Br (x0)))

log(r)
= D.

In order to proceed with the derivation of an extreme value law, such an asymptotics is
not sufficient. In order to overcome some of the difficulties discussed in [12,25], one needs
to assume that

ν(Br (x0))) ∼ fx0(r)r D,

where fx0(r) is a slowly varying function of r as r → 0, possibly depending on x0. We use
the ∼ symbol as follows. We say that f (x) ∼ g(x) for x → y if limx→y f (x)/g(x) = c,
0 < |c| < ∞. Taking the assumption above, one can derive the extreme value laws for the
distance observables discussed in [12]. Let’s now estimate ν(�T

Amax
) as a function of ymax

in the case of generic quadratic tangency between the the hyperplane A(x) = Amax and the
unstable manifold in x = x0

In the case of Axiom A systems, since the invariant measure is SRB, we have D(x) =
dH almost everywhere on the attractor [46,47], where dH is the Hausdorff dimension. As
discussed in [46], we have that in this case all of the generalized Renyi dimensions have the
same value. Moreover, we can conjecture that D = dKY, where dKY is the Kaplan–Yorke
dimension [48]:

dKY = n +
∑n

k=1 λk

|λn+1| , (6)

where the λ j ’s are the Lyapunov exponents of the systems, ordered from the largest to the
smallest, n is such that

∑n
k=1 λk is positive and

∑n+1
k=1 λk is negative. Following [46], we

can also write dKY = du + dn + ds , where ds , du and dn are the dimensions of the attractor
� restricted to the stable, unstable and neutral directions, respectively, at the point x = x0.
We have that du is equal to the number of positive Lyapunov exponents λ+

j , du = #({λ j >

0}, j = 1, . . . , d), dn for Axiom A systems is unitary, while ds is given by ds = dKY−du−dn .
Note that we can also express dKY as follows

dKY = du + dn + [ds] +
∑n

k=1 λk

|λn+1| = du + dn + ds, (7)
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where ds indicates the integer part of ds , while its fractional part {ds}=∑n
k=1 λk/|λn+1|,

because the last term gives a positive contribution smaller than 1, and du and dn are both
integer.

We follow the construction proposed by Holland et al. [30] for low dimensional maps. We
derive the result by considering the following heuristic argument. Near x0, the attractor could
be seen as the cartesian product of a multidimensional paraboloid (of dimension du + dn and
of a fractal set of dimension ds immersed in R

d−du−dn . Note that this excludes for example
conservative chaotic systems, whose attractor has the same dimension of the phase space,
and systems that can be decomposed into a conservative part and a purely contractive part,
whose attractor also has integer dimension. The mass of the paraboloid ∼rdu+dn , where
r is the distance from the minimum. Instead, for each point of the paraboloid, the mass of
corresponding fractal set ∼hx0(l)l

ds , where l is the distance along the the cartesian projection
and hx0(l) is a slowly varying function of l as l → 0, possibly depending on x0. This is where
the non-trivial slowly varying pre-factor appears relevant.

In our case, l = γ ymax and r = κ
√

ymax: for the former relation we assume a generic
relation between the direction of the gradient of A and the stable directions, while the latter
relation results from the functional form of the paraboloid, see also Fig. 1. Hence, we obtain
that ν(�T

Amax
) ∼ h̃x0(ymax)yδ

max where

δ = ds + (du + dn)/2. (8)

and h̃x0(ymax) = hx0(γ ymax) is also a slowly varying function of its argument. This con-
struction can be made more formal by considering the disintegration of the SRB measure ν

along the stable and unstable directions of the flow [48].
As a side note, we emphasize that in the case of more general tangencies between the

the unstable and neutral manifold and the manifold A(x) = Amax , we have that δ =
ds+∑ j=1 du(2 j)/(2 j)+dn(2 j)/(2 j), where du(2 j) (dn(2 j) ) gives the number of directions
along the unstable (neutral) manifold where a tangency of order 2 j with the manifold A(x) =
Amax is found. We obviously have that

∑
j=1 du(2 j) = du .

We continue our discussion considering the case of generic tangency. Following the
same argument as above, we have that ν(�T +Z

Amax
) ∼ h̃x0(ymax − y)(ymax − y)δ , where

y = Z//|∇ Ax=x0 |. We define

α = 1 − y/ymax = 1 − Z/(Amax − T ))

and obtain ν(�T +Z
Amax

) ∼ h̃x0(αymax)α
δ(ymax − y)δ . Using the definition of slowly varying

function and considering Eq. 5, we derive that in the limit T → Amax:

HT (Z) = αδ =
(

1 − Z

Amax − T

)δ

. (9)

Note that the corresponding cdf is given by FT (Z) = 1 − HT (Z). Comparing Eqs. 3 and
9, one obtains that FT (Z) belongs to the GPD family, and that the GPD parameters can be
expressed as follows:

ξ = −1/δ (10)

σ = (Amax − T )/δ. (11)

These results complement and extend what obtained in [30] using the GEV approach.
It is important to remark that Eq. 9 has been obtained in the limit of T → Amax, and

under the assumption that ν(Br (x0)) is a regularly varying function of degree D as r → 0.
When considering a finite range Amax − T , one should not expect deviations of the empirical
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distributions of extremes of A from what prescribed in Eq. 9, which are intrinsic to the fractal
nature of the measure. See also discussion and Fig. 1 in [12]. When finite ranges for A are
considered, one expects that, in some averaged sense, Eq. 9 fits well the distributions of
extremes of A and Eqs. 10 and 11 give the value of the two relevant parameters of the GPD,
analogously to the idea that the number of points of the attractor at distance smaller than a
small but finite r from the point xo scales approximately, on the average as r D .

2.3 Comments

Equation 10 provides a very valuable information,as it shows that the shape parameter ξ

of the GPD does not depend on the considered observable, but only on the dimensions of
the stable and of the unstable manifold. Moreover, the shape parameter is always negative,
which is hardly surprising as we are considering compacts attractor and a well-behaved
observable, whose values on the attractor have an upper bound. Note that for Axiom A
systems, ds and du are constant almost everywhere in the attractor �, so that the information
gathered for x = x0 has a global value. Therefore, the expression for ξ is universal, in the
sense that we can gather fundamental properties of the dynamical system by looking at the
shape parameters of the extremes of a generic observables with the properties described
above. Note also that δ can be used to put upper and lower bounds to the Kaplan–Yorke
dimension of the system, as dKY = ds + du + dn > ds + (du + dn)/2 = δ = −1/ξ and
dKY = ds + du + dn < 2ds + du + dn = 2δ = −2/ξ , so that −1/ξ < dKY < −2/ξ .
On the other hand, these inequalities can be read as constraints to the shape parameters of
the extremes of a general observable for a system for which we know the Kaplan–Yorke
dimension: dKY/2 < −1/ξ < dKY.

On the other hand, the expression we obtain for σ provides clear support for calling it the
scale parameter. We derive, as anticipated, that σ > 0 and we observe that it is proportional to
the actual range of values considered as extremes of the observable A(x), by incorporating the
difference between the absolute maximum of the observable Amax and the selected threshold
T . Therefore, if we consider as observable A1(x) = αA(x), with α > 0 and take as threshold
for A1(x) the value αT , we have that ξA1 = ξA and σA1 = ασA. In physical terms, σ changes
if we change the unit of measure of the observable, whereas ξ does not. More generally, we can
make the following construction. Let’s define min(A)|� = Amin. If we select an observable
A2(x) = �(A(x)), with max(�)|[Amin,Amax] = �(Amax), � differentiable and d�(y)/dy
positive in a sufficiently wide neighbourhood around y = A(xmax) so to ensure monotonicity
of A2(x) near x = xmax, we get ξA2 = ξA and σA2 = γ σA, where γ = d�(y)/dy|y=A(xmax).

2.4 From the Extremes to the Partial Dimensions Along the Stable and Unstable Directions
of the Flow

It is worth considering the following strategy of investigation of the local properties of the
invariant measure near x = x0, where A(x0) = Amax. By performing statistical inference of
the extremes of A we can deduce as a result of the data fitting the best estimate of ξA = −1/δ.
If, following [12], we select as observable, e.g. B(x) = C − (dist(x, x0))

β , β > 0, we have
that the extremes of the observable B feature as shape parameter ξB = −β/D = −β/dKY

and scale parameter σB = (C − τ)β/D = (C − τ)β/dKY [12], where C is a constant and τ

is the chosen threshold.
We can then easily derive:
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2

ξA
− 2β

ξB
= du + dn (12)

β

ξB
− 2

ξA
= ds (13)

where, as discussed above, we can take dn = 1. Therefore, using rather general classes
of observables, we are able to deduce the partial dimensions along the stable and unstable
manifolds, just by looking at the properties of extremes related to x = x0. It is to be noted
that, as clear from the results presented in [12], similar conclusions can be drawn choosing
powers of dist(x, x0) forms for B are possible. Note that, more generally, du and ds can be
deduced from the knowledge of any pair of values (ξA, ξB), (σA, ξB), (ξA, σB), and (σA, σB).

2.5 Expressing the Shape Parameter in Terms of the GPD Moments and of the Invariant
Measure of the System

We consider the physical observable A. We denote by

fGPD(z; ξA, σA) = d

dz
(FGPD(z; ξA, σA))

= 1

σA

(
1 + ξAz

σA

)−1/ξA−1

(14)

the density corresponding to the cumulative distribution given in Eq. 3. We can express its
first two moments as follows:

−σA/ξA∫
0

dz z fGPD(z; ξA, σA) = σA

1 − ξA
= μ1 (15)

−σA/ξA∫
0

dz z2 fGPD(z; ξA, σA) = 2σ 2
A

(1 − ξA)(1 − 2ξA)
= μ2. (16)

It is easy to derive that

ξA = 1

2

(
1 − μ2

1

μ2 − μ2
1

)
= 1

2

(
1 − 1

idA

)
(17)

and
σA = μ1μ2

2(μ2 − μ2
1)

(18)

where we indicate explicitly that we refer to the observable A and we have introduced the
index of dispersion idA, the ratio between the variance and the squared first moment of the
considered stochastic variable.

We now try to connect the previous formulas to the properties of the invariant measure of
the dynamical system. As we know, the GPD is the exact asymptotic model for the extremes
of the observable A, so that we can express the results in terms of the conditional invariant
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measure as follows:

μT
1 =

∫
ν(dx)�(A(x) − T )(A(x) − T )∫

ν(dx)�(A(x) − T )
= 〈 ÃT

1 〉
〈 ÃT

0 〉 (19)

μT
2 =

∫
ν(dx)�(A(x) − T )(A(x) − T )2∫

ν(dx)�(A(x) − T )
= 〈 ÃT

2 〉
〈 ÃT

0 〉 . (20)

where � is the usual Heaviside distribution and, in general,

〈 ÃT
n 〉 =

∫
ν(dx)�(A(x) − T )(A(x) − T )n . (21)

We then obtain the following expression for the shape and dispersion parameters, respectively:

ξ T
A = 1

2

⎛
⎜⎝1 −

(
〈 ÃT

1 〉
)2

〈 ÃT
2 〉〈 ÃT

0 〉 − (〈 ÃT
1 〉)2

⎞
⎟⎠ , (22)

and

σ T
A = 1

2

〈 ÃT
1 〉〈 ÃT

2 〉
〈 ÃT

2 〉〈 ÃT
0 〉 − 〈 ÃT

1 〉2
, (23)

where these result are exact in the limit for T → Amax. As a check, it is useful to verify that
the right hand side of Eq. 22 gives the same general result as given in Eq. 10. By definition
we have:

ν
(
�T

Amax

)
= 〈 ÃT

0 〉 =
∫

ν(dx)�(A(x) − T )

∼ h̃x0(Amax − T )(Amax − T )δ
ε

. (24)

We derive the following expression using repeatedly the distributional relation x d/dx[�(x)]
= 0:

〈 ÃT
0 〉 = − d

dT
〈 ÃT

1 〉 (25)

〈 ÃT
1 〉 = 1

2

d

dT
〈 ÃT

2 〉 (26)

so that

〈 ÃT
1 〉 ∼ h̃x0(Amax − T )

(δ + 1)
(Amax − T )δ+1 (27)

and

〈 ÃT
2 〉 ∼ 2h̃x0(Amax − T )

(δ + 1)(δ + 2)
(Amax − T )δ+2. (28)

By plugging these expression into Eq. 22, we indeed obtain ξ = −1/δ, which agrees with
Eq. 10.

We also note that it is possible to generalize the results given in Eqs. 25–28. Using the
fundamental theorem of calculus, it is possible to derive that:

〈 ÃT
n 〉 =

Amax∫
T

dz n(z − T )n−1〈 Ãz
0〉.
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Moreover, it is notable that what presented in this subsection can be replicated step by
step for the distance observables observable B(x, x0) = C − dist(x, x0)

β discussed above.
We obtain:

ξ T
B = 1

2

⎛
⎜⎝1 −

(
〈B̃T

1 〉
)2

〈B̃T
2 〉〈B̃T

0 〉 −
(
〈B̃T

1 〉
)2

⎞
⎟⎠ (29)

and

σ T
B = 1

2

〈B̃T
1 〉〈B̃T

2 〉
〈B̃T

2 〉〈B̃T
0 〉 − 〈B̃T

1 〉2
, (30)

where the quantities 〈B̃T
j 〉, j = 0, 1, 2 are constructed analogously to how described in Eq.

21.
We wish to remark that Eqs. 22–23 and Eqs. 29–30 could in fact provide a very viable

method for estimating the GPD parameters from data, since moments estimator are in general
more stable than maximal likelihood methods, and then deriving the value of du and ds using
Eqs. 12–13.

3 Response Theory for the Extremes of General Observables

We wish to present some ideas on how to use response theory and the specific expressions
given in Eqs 10–11 to derive a response theory for extremes of physical and distance observ-
ables in Axiom A dynamical systems. Let’s assume that we alter the Axiom A dynamical
system under consideration as ẋ = G(x) → ẋ = G(x) + εX (x), where ε is a small para-
meter and X (x) is a smooth vector field, so that the evolution operator is transformed as
f t → f t

ε and the invariant measure is transformed as ν → νε . Ruelle’s response theory
allows to express the change in the expectation value of a general measurable observable
�(x) as a perturbative series as 〈�〉ε = 〈�〉0 +∑∞

j=1 ε j 〈�( j)〉0, with j indicating the order
of perturbative expansion, where

〈�〉ε =
∫

νε(dx)�(x)

is the expectation value of � over the perturbed invariant measure and

〈�〉0 =
∫

ν(dx)�(x)

defines the unperturbed expectation value of �. The term corresponding to the perturbative
order of expansion j is given by 〈�( j)〉0, where �( j) can be expressed in terms of the time-
integral of a suitably defined Green function [33]. At this stage, we limit ourselves to the
linear response of the system. We consider the following useful formula:

dn〈�〉ε
dεn

∣∣∣∣
ε=0

= n!〈�(n)〉0.

and take into account the n = 1 case.

123



736 V. Lucarini et al.

3.1 Sensitivity of Shape Parameter as Determined by the Changes in the Moments of the
Distribution

We wish to propose a linear response formula for the parameter ξA using Eqs. 19–22. We
start by considering that in Eq. 22 the shape parameter is expressed for every T < Amax

as a function of actual observables of the system. Unfortunately, in order to apply Ruelle’s
response theory, we need the observables to be smooth, which is in contrast with the presence
of the � in the definition of the terms 〈 ÃT

j 〉ε . Nonetheless, replacing the �’s with a smooth
approximation �S , the Ruelle response theory can be rigorously applied. We now consider a
sequence of approximating �m

S such that the measure of the support of �−�m
S is smaller than

δm = (Amax − T )/m. It is reasonable to expect that as δm → 0, the effect of the smoothing
becomes negligible, because a smaller and smaller portion of the extremes is affected, and
the response of the smoothed observable approaches that of 〈 ÃT

j 〉ε . Therefore, we can retain

the � in the definition of the 〈 ÃT
j 〉ε and define rigorously for every T < Amax:

dξ
T,ε
A

dε

∣∣∣∣
ε=0

= −1

2

d

dε

⎧⎪⎨
⎪⎩

(
〈 ÃT

1 〉ε
)2

〈 ÃT
2 〉ε〈 ÃT

0 〉ε −
(
〈 ÃT

1 〉ε
)2

⎫⎪⎬
⎪⎭
∣∣∣∣
ε=0

(31)

and
dσ

T,ε
A

dε

∣∣∣∣
ε=0

= 1

2

d

dε

⎧⎪⎨
⎪⎩

〈 ÃT
1 〉ε〈 ÃT

2 〉ε

〈 ÃT
2 〉ε〈 ÃT

0 〉ε −
(
〈 ÃT

1 〉ε
)2

⎫⎪⎬
⎪⎭
∣∣∣∣
ε=0

, (32)

By expanding the derivative in Eq. 31, the previous expression can be decomposed in
various contributions entailing the linear response of the system to the ε perturbation for the
observables 〈 ÃT

0 〉ε , 〈 ÃT
1 〉ε , 〈 ÃT

2 〉ε and their values in the unperturbed case for ε = 0.
We wish to remark the special relevance of the observable 〈 ÃT

0 〉ε , which is normalizing
factor in Eqs. 19–20, and, in practice, measures the fraction of above-T -threshold events.
Therefore, once T is chosen, the sensitivity of 〈 ÃT

0 〉ε with respect to ε informs on whether the
ε-perturbation to the vector flow leads to an increase or decrease in the number of extremes.
We obtain:

d〈AT
0 〉ε

dε

∣∣∣∣
ε=0

=
∫

dτ 〈Xk(x)∂k�(A(x(τ ) − T )〉0

=
∫

dτ 〈Xk(x)∂k A(x(τ )δ (A(x(τ ) − T )〉0

=
∫

dτ 〈Xk(x)∂k xi (τ )∂xi (t) A(x(t))

× δ (A(x(τ ) − T )〉0 (33)

where δ is the derivative of the � function with all the caveats discussed above. The result
can be interpreted as follows. In the last formula, ∂k xi (τ ) is the adjoint of the tangent linear
of the unperturbed flow, and ∂xi (t) indicates the partial derivative with respect to the variable
xi (t). At each instant τ we consider, in the unperturbed system, all the trajectories starting
in the infinite past from points distributed according to the invariant measure such that the
observable A has value equal to T . For each of these trajectories, we can measure whether
the presence of the perturbation field X (x) would lead to a decrease or increase in A at time
τ . Summing over all trajectories, we get whether there is a net positive or negative change in
the above threshold events at time τ . We integrate over τ and get the final result. Considering
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the geometrical construction given in Fig. 1, the previous formula can also be approximated
as follows:

d〈AT
0 〉ε

dε

∣∣∣∣
ε=0

≈
∫

dτ 〈Xk(x)∂k xi (τ )∂i A|x=x0

× δ (A(x(τ ) − T )〉0 (34)

Therefore, Eqs. 31–32 provides recipes for computing the sensitivity of ξ
T,ε
A and σ

T,ε
A

at ε = 0 for any case of practical interest, where Amax − T is indeed finite, because in
order to collect experimental data or process the output of numerical simulations we need to
select a threshold which is high enough for discriminating true extremes and low enough for
allowing a sufficient number of samples to be collected for robust data processing. Note that
all statistical procedures used in estimating GPD parameters from data are actually based
on finding a reasonable value for T such that both conditions described above apply by
testing that parameters’ estimates do not vary appreciably when changing T [4]. So, if when
investigating the extremes of A for the unperturbed and ε-perturbed dynamics we find a
common value of T such that the GPD statistical inference of extremes is satisfactory, Eqs.
31–32 provide correct formulas for the sensitivities.

We wish to underline that apparently formal problems emerge when taking the limit
in Eqs.31–32 for higher and higher values of T . It is indeed not clear at this stage
whether

lim
T →Amax

dξ
T,ε
A

dε

∣∣∣∣
ε=0

= lim
T →Amax

lim
ε→0

ξ
T,ε
A − ξ

T,0
A

ε
(35)

exists, because we cannot apply the smoothing argument presented above in the limit of
vanishing Amax − T . Moreover, it is not clear whether such limit is equal to

lim
ε→0

lim
T →Amax

ξ
T,ε
A − ξ

T,0
A

ε
, (36)

which seems at least as well suited for describing the change of the shape observable given in
Eq. 22 due to an ε-perturbation in the dynamics. Obviously, if the two limits given in Eqs. 35
and 36 exist and are equal, then a rigorous response theory for ξA can be established. Same
applies when considering the properties of σ

T,ε
A .

The same derivation and discussion can be repeated for the B observables introduced
above and we can derive the corresponding formulas for dξ

T,ε
B /dε|ε=0 and dσ

T,ε
B /dε|ε=0,

where the relevant limit for T is T → C .
Let’s try to give a more intuitive interpretation to the results given above. Let’s consider

Eq. 17 and assume that, indeed, ξ is differentiable with respect to ε. We have:

dξε
A

dε

∣∣∣∣
ε=0

= −1

2

d

dε

{
1

idε
A

} ∣∣∣∣
ε=0

= 1

2idε
A

2

d

dε

{
idε

A

} ∣∣∣∣
ε=0

. (37)

which implies that the sensitivity of the shape parameter is half of the opposite of the
sensitivity of the inverse of the index of dispersion idA. Therefore, a positive sensitivity
of the index of dispersion (larger relative variability of the extremes of the observable A
with positive values of ε) implies a larger value (closer to 0) of ξA, and so the possi-
bility that larger and larger extremes are realized. Same interpretation applies for the B
observables.
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3.2 Sensitivity of the Shape Parameter as Determined by the Modification of the Geometry

In the previous subsection we have shown that the Ruelle response theory supports the idea
that the shape parameters descriptive of the extremes of both the physical observables A
and the distance observables B change with a certain degree of regularity when considering
ε-perturbations to the dynamics.

In this subsection, we wish to look at the sensitivity of extremes with respect to perturbation
from another angle, i.e. through the relationship between the shape parameters ξA and ξB

and the partial dimension of the attractor along the stable, neutral and unstable manifolds
of the underlying dynamical system, see Eqs. 12–13. As long as the ε-perturbation is small,
the modified dynamical system belongs to the Axiom A family, so that the results presented
above apply. Therefore, we can write in more general terms:

ξε
A = −1/δε = −1/(dε

s + dε
u/2 + dε

n/2) (38)

ξε
B = −β/dε

KY = −β/(dε
s + dε

u + dε
n ). (39)

In the following, we introduce somewhat carelessly derivatives with respect to ε of quan-
tities that are not, a priori, differentiable. The main point we want to make is that if ξA and
ξB are differentiable with respect to ε, then various quantities describing the structure of the
attractor are also differentiable. Therefore, the existence of the limits given in Eqs. 35 and 36
(and their equivalent for the B observables) would have far-reaching consequences. We will
discuss the obtained results at the end of the calculations. Another caveat we need to mention
is that Eqs. 38–39 are in general true almost anywhere, so that we may have to interpret the
derivatives in this section in some suitable weak form.

It seems relevant to add the additional hypothesis of strong transversality for the unper-
turbed flow, which is equivalent to invoking structural stability [48]. We take such pragmatic
point of view and proceed assuming that derivatives with respect to ε are well defined.
Linearizing the dependence of ξA on ε around ε = 0 in Eq. 38, we obtain:

dξε
A

dε

∣∣∣∣
ε=0

=
{

dξε
A

d(dε
s )

d(dε
s )

dε

} ∣∣∣∣
ε=0

+
{

dξε
A

d(dε
u )

d(dε
u )

dε

} ∣∣∣∣
ε=0

+
{

dξε
A

d(dε
n )

d(dε
n )

dε

} ∣∣∣∣
ε=0

. (40)

We have that d(dε
u )/dε|ε=0 = d(dε

n )/dε|ε=0 = 0, as, thanks to structural stability, small
perturbations do not alter the qualitative properties of the dynamics, and cannot change in a
step-wise way the number of expanding or neutral directions. We now separate the quantity
ds into its integer component and the rest, which is generically non vanishing:

dξε
A

dε

∣∣∣∣
ε=0

=
{

dξε
A

d(dε
s )

d([dε
s ])

dε

} ∣∣∣∣
ε=0

+
{

dξε
A

d(dε
s )

d({dε
s })

dε

} ∣∣∣∣
ε=0

. (41)

Only the last term is different from zero, because, thanks to structural stability,
d([dε

u ])/dε|ε=0 = 0. Using Eq. 7, we obtain:

dξε
A

dε

∣∣∣∣
ε=0

=

⎧⎪⎨
⎪⎩

dξε
A

d(dε
s )

d
∑n

k=1 λε
k|λε

n+1|
dε

⎫⎪⎬
⎪⎭
∣∣∣∣
ε=0

(42)
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where n is defined as in Eq. 6. Since n is not altered for infinitesimal ε perturbations to the
dynamical system, we have that, using Eq. 6:

d
∑n

k=1 λε
k|λε

n+1|
dε

∣∣∣∣
ε=0

= d(dε
KY)

dε

∣∣∣∣
ε=0

. (43)

Expanding the previous expressions, the final formula reads as follows:

dξε
A

dε

∣∣∣∣
ε=0

=
{

1

(dε
s + dε

u/2 + dε
n/2)2

d(dε
KY)

dε

} ∣∣∣∣
ε=0

. (44)

This implies that the shape parameter ξ increases, thus attaining a value closer to zero
(ξA is always negative) when the perturbation increases the Kaplan–Yorke dimension of the
attractor, so, in qualitative sense, if it favors “forcing” over “dissipation”. This matches quite
well, at least qualitatively, with the discussion following Eq. 37.

We have that, when considering a distance observable of the form B(x) = −dist(x, x0)
β ,

following the same steps described above one gets the following result:

dξε
B

dε

∣∣∣∣
ε=0

=
{

β

dε
KY

2

d(dε
KY)

dε

} ∣∣∣∣
ε=0

; (45)

such result can be easily generalized by considering the class of observables described in
[12].

Combining Eq. 31 with Eq. 44, and the derivative with respect to ε of Eq. 29 with Eq.
45, we can derive two expressions for the derivative of the sensitivity of the Kaplan–Yorke
dimension at ε = 0:

d(dε
KY)

dε

∣∣∣∣
ε=0

= −
{

(dε
s + dε

u/2 + dε
n/2)2

2

} ∣∣∣∣
ε=0

×
{

d

dε

(〈 ÃT
1 〉ε)2

〈 ÃT
2 〉ε〈 ÃT

0 〉ε − (〈 ÃT
1 〉ε)2

} ∣∣∣∣
ε=0

(46)

= −
{

dε
KY

2

2β

} ∣∣∣∣
ε=0

×
{

d

dε

(〈B̃T
1 〉ε)2

〈B̃T
2 〉ε〈B̃T

0 〉ε − (〈B̃T
1 〉ε)2

} ∣∣∣∣
ε=0

(47)

where we take the limit for T → Amax in Eq. 46 and T → 0 in Eq. 47.
The previous results imply that if one of ξA, ξB or the Kaplan–Yorke dimension of the

underlying Axiom A system change smoothly with ε-perturbations to the dynamics, so do
the other two quantities. This may suggest ways to study the regularity of the Kaplan–
Yorke dimension by resorting to the analysis of the regularity of a much simpler expressions
involving moments of given observables.

This result provides useful insight also not considering the problematic limits discussed
above. Taking a more qualitative point of view, this suggests that when considering small per-
turbation in the dynamics of chaotic systems behaving like Axiom A systems there is a link
between the presence (or lack) of regularity of the parameters describing the extremes of a
wide class of observables and of the regularity of the Kaplan–Yorke dimension. This matches
with the fact that numerical practice with moderate to high dimensional strongly chaotic sys-
tems shows that, actually, the parameters describing extremes of energy like observables

123



740 V. Lucarini et al.

and the Lyapunov exponents both have—within numerical precision—a smooth dependence
on the parameters of the system. See [3,49] for an extensive discussion in a simplified yet
relevant fluid dynamical model. A detailed investigation of the apparent regularity for all
practical purposes of the Lyapunov exponents with respect to small perturbations in the
dynamics of intermediate complexity to high-dimensional models has been presented in
[50]. We also wish to remark that if these regularity hypotheses were not satisfied, the very
widespread (and practically successful) procedure of parametric tuning of high-dimensional
models of natural, engineered or social phenomena would be absolutely hopeless, and del-
icate numerical procedures such as those involved in data assimilation of high-dimensional
dynamical systems would lack any sort of robustness, contrary to the accumulated experi-
ence.

4 Numerical Experiments

As thoroughly discussed in [23–25], it is far from trivial to devise suitable numerical experi-
ments for studying to what extent the theoretically derived asymptotic extreme value laws for
dynamical systems can be detected in finite datasets obtained as outputs of simulations. In
this Section we would like to present simple numerical experiments providing some heuris-
tic and preliminary support to the fact that the universal properties for the extremes can
be observed when considering specific observables for dynamical systems. More detailed
numerical studies, where inference of the geometrical properties of the attractor is performed
using the statistics of extremes of suitable observables will be reported elsewhere. Hence,
we consider as toy model the smooth R

2 → R
2 map introduced by Hénon [45]:

xn+1 = 1 − ax2
n + yn (48)

yn+1 = bxn . (49)

As well known, depending on the value of the two parameters a and b, the Hénon map can
exhibit either regular or chaotic behaviour, where, in the latter case, the invariant measure
is supported on a strange attractor [51]. We consider two sets of parameter values for which
chaotic behavior is observed, (a, b) = (1.4, 0.3) and (a, b) = (1.2, 0.3). In the first case,
the largest Lyapunov exponent λ1 ∼ 0.416 and the Kaplan–Yorke dimension is estimated as
dKY = 1 + λ1/|λ2| = 1 + λ1/| log(b) − λ1| ∼ 1.26, where du = 1 and ds = λ1/| log(b) −
λ1| ∼ 0.26. In the second case, the largest Lyapunov exponent λ1 ∼ 0.305 and the Kaplan–
Yorke dimension is estimated as dKY = 1 + λ1/|λ2| = 1 + λ1/| log(b) − λ1| ∼ 1.20.
Note that it is reasonable to expect that the Hénon maps considered here do not possess an
SRB measure, because the considered pair of values of a and b do not seem to belong to
the Benedicks–Carleson set of parameters. As a consequence, these systems are not exact
dimensional and the local dimension does not have the same value almost everywhere on
the attractor, so, in rigorous terms, we have no a-priori reasons to expect that our results
should necessarily apply. Nonetheless, in order to assess the robustness of our findings, it is
interesting to check to what extent our theoretical predictions are met, at least qualitatively,
in such a basic model of chaotic dynamics.

We proceed as follows for both pairs of parameters (a, b) = (1.4, 0.3) and (a, b) =
(1.2, 0.3). We first choose, for sake of simplicity, the observable A(�x) = x , where �x = (x, y).
The initial conditions are selected in the basin of attraction of the strange attractors. We
perform long integrations (order of 1010 iterations) and select the maximum value of A, which
we denote as Amax, and define as �x0 the unique point belonging to the attractor such that
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(a)

(b)

(c)

Fig. 2 Results of numerical simulations performed on the Hénon map with parameters’ value a = 1.4
and b = 0.3. a Blue curve empirical HT (Z) for the observable A = x , with Amax = A(x0) ∼ 1.2730.
Black line power law behavior deduced from the theory. Red curve empirical HT (Z) for the observable
B = −dist (x, x0), with Bmax = 0. Magenta line power law deduced from the theory. b Same as a, for the
observable A = −x , with Amax ∼ 1.2847 and Bmax = 0. c Approximation to the attractor with blow-ups of
the portions of the invariant measure corresponding to the extremes of the A observables (�T

Amax
regions); the

vertical lines indicate the thresholds. In both inserts, we consider Amax − T = 10−4. See also Fig. 1 (Color
figure online)
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A(�x0) = Amax. We then construct the observable B(�x) = −dist(�x, �x0), which measures the
distance between the orbit and the point �x0. As discussed in [12], the asymptotic properties
of the extremes (maxima) of the B observable allow to derive easily the local dimension
D(�x0). We then repeat the investigation using, instead, the observable A(�x) = −x . In all
the analyses presented below, we have chosen extremely high thresholds T for studying the
statistical properties of the extremes of the A and B observables, in such a way to include
only about a fraction of about 10−5 or less of the total number of points of the orbit. All the
results are insensitive to choice of T , which suggests that we are well into the asymptotic
regime.

The results obtained for the Hénon system featuring (a, b) = (1.4, 0.3) are shown in Fig. 2,
where we present the complementary cumulative distribution of excesses HT (Z) (see Eqs. 5
and 9) for A(�x) = x (A(�x) = −x) and for the corresponding B(�x) = −dist(�x, �x0) in panel a)
(panel b)). The empirical values of HT (Z) for the A and B observables are shown by the blue
and red curves, respectively, and the power law behavior HT (Z) = (1 − Z/(Amax − T ))α

given by the theory (assuming Axiom A properties!) are shown by the black and magenta
lines, respectively.

The error bars on the empirical HT (Z) (estimated by varying the initial conditions of the
simulation) are for almost all values of Z so small that they cannot be graphically reproduced.
Instead, the flat region obtained for very low values of HT (Z) results from the finiteness of
the sampling and gives the baseline uncertainty. Note that the straight lines are obtained
out of the theoretical predictions, without any procedure of optimization or of fit, so that
no uncertainties are involved. The empirical and theoretical distributions obey the same
normalization.

We first observe that the local dimension in the vicinity of both �x0’s is extremely close to
the dKY ∼ 1.26, as HT (Z) scales to a very good approximation with an exponent α ∼ dKY;
compare the red curves and the magenta lines. Note that, considering that the local dimension
has rather large variations across the attractor of the Hénon system, such a correspondence was
not intentionally pursued. However, these are favorable circumstances to check the theory.
We find that the distributions HT (Z) for the observables A(�x) = x and A(�x) = −x also obey
accurately the power law scaling with exponent α ∼ δ = du/2+ds ∼ 0.76 introduced in Eq.
8, compare the blue curves and the black lines. In panel c) we present a simple description
of the geometry of the problem, by showing an approximation to the map’s attractor with
blow-ups of the portions of the invariant measure corresponding to the extremes of the A
observables (the regions �T

max introduced in Fig. 1). Even if the geometrical properties of
the regions of the attractor around the two x0’s seem indeed different, when zooming in, the
two �T

max regions look similar. The presence of many parabolas-like smooth curves stacked
according to what looks qualitatively like a Cantor set fits with the comments and calculations
given in Sect. 2.

In Fig. 3 we report the corresponding results obtained for the Hénon system featuring
(a, b) = (1.2, 0.3). By looking at the empirical HT (Z) of the B observables, we note that
also in this case the local dimension is close to the value of dKY ∼ 1.20 for both extremal
points x0’s (compare the red curves and the magenta lines in panels a and b). Nonetheless,
the slope of the empirical data is slightly steeper than the theoretical value. The agreement
between the predicted value of the power law scaling for the HT (Z) of the A observables is not
as good as in the case reported in Fig. 2. The predicted scaling exponent δ = du/2+ds ∼ 0.70
seems to overestimate the very large extremes. Nonetheless, a power law scaling is apparent
for the empirical HT (Z). Note that the bias between the theoretical and empirical scalings is
of the same sign for both the A and B observables, suggesting that also for the A observables
part of the disagreement is due to the discrepancy between the local dimension and the
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Kaplan–Yorke dimension (there is a shift in the values of the slopes). Also here, panel c
provides an approximate representation of the attractor of the system, and, in particular of
the �T

max regions: by comparing it with panel c of Fig. 3, and considering that they contain
the same number of points, one can intuitively grasp that the local dimension is lower in this
case.

We would like to emphasize that in panels a and b for Figs. 2 and 3, we observe deviations
of the empirically obtained HT (Z) from the power law behaviour, in the form of fluctuations
above and below a straight line in a log–log plot (this is quite clear in Fig. 3). As discussed
in Sect. 2 B, the presence of such modulations across scales result from the fact that gaps
are present along the stable manifold containing x0, with a Cantor set-like structure. See
the inserts in Figs. 2c and 3c, where the stable manifold (not shown) is, as opposed to the
unstable manifold, not orthogonal to the gradient of A (the x direction, in this case). So,
when we integrate the density of states along the direction of the gradient of the A observable
starting in �x0 in order to obtain ν(�T +Z

Amax
) and ν(�T

Amax
), we get a factor (Amax − T − Z)du/2

(du = 1) coming from the (local) paraboloidal form of the unstable manifold discussed in
Sect. 2, times a devil’s staircase which can, on the average, be approximated by the power law
(Amax −T − Z)ds . The same geometric arguments apply when considering integrations along
the spherical shells centered in �x0 for constructing the extreme value laws for B observables.
Smooth approximation to devil’s staircases, appear in a closely related context when using
the GEV approach for studying extreme values laws in random dynamical systems whose
attractor is the actual Cantor set [25].

Such preliminary results suggest that it is indeed promising to use the combined statis-
tical properties of the extremes of physical and distance observables for determining the
geometry of the attractor in terms of its partial dimensions along the stable and the unstable
manifold.

5 Multiple Time Scales

We briefly wish to mention here some additional features which may appear and be extremely
relevant at finite time in practical cases, where the dynamics can deviate from Axiom A when
certain time scales are considered. Let’s assume that one can to a first approximation partition
the (unique) attractor of a chaotic dynamical system into, say, two pieces, so that the system
has two time scales, a short one related to the transitive dynamics within each of the two
pieces, and a long one corresponding to intermittent jumps from one to the other piece.
In this case, if we observe the system for a time scale intermediate between the two, the
properties of the extremes will depend only on the properties of the visited portion of the
attractor and we will observe a Weibull distribution, as discussed here, as the dynamics may
be Axiom A-like. When our observation time nears the long time scale, we might observe
extraordinary large events, corresponding to excursions directed towards the other piece of
the attractor, until a jump, corresponding to an irreversible (on the short time scale) transition
will take place. Such extraordinary events will not fit the Weibull law found on smaller time
scales, because they result from the global properties of the attractor, which have not been
sampled yet. Therefore, in these intermediate scale, the results proposed here will not be
valid. Instead, one may interpret such extraordinary events as Dragon Kings [55], which
will manifest as outliers spoiling the Weibull statistics and pushing the statistics of extremes
towards an (apparently) unphysical Frechét distribution. Observing extremes over even longer
time scales, so that the orbit visits many times both parts of the attractor, we shall recover
a Weibull law, which reflects the global properties of the attractor. In a system with these
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(a)

(b)

(c)

Fig. 3 Same as in Fig. 2, but for parameters’ value a = 1.2 and b = 0.3. In this case in a Amax ∼ 1.2950
and Bmax = 0, and in b Amax ∼ 1.0328 and Bmax = 0
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properties, small perturbations to the dynamics might impact substantially the long time scale
discussed above, with the result of having a high sensitivity of the statistics of extremes when
a fixed time window of observation is considered. The presence of such strong sensitivity
has been proposed as a method for detecting precursors of global stability thresholds related
to critical transitions [56].

6 Conclusions

This paper has addressed the problem of studying the EVT for general observables of mixing
Axiom A dynamical system. We have set in a common framework the investigation of general
properties of distance observables B, for which we had derived some basic results in [12],
and of physical observables, first discussed in [30]. By physical observables we mean rather
general classes of smooth observables A (e.g. quadratic, energy-like quantities) which achieve
an absolute maximum Amax at a specific, non-critical point x = x0 (the gradient ∇ A does
not vanish) of the attractor of the system.

We have built up from the recent results of Holland et al. [30], who have studied accurately
this problem on discrete maps with specific mixing properties using the GEV framework and
have derived, as fundamental result, that the extremes of A indeed obey a GEV extreme value
law and that ξA, the shape parameter of the distribution, is equal to −1/δ, with δ = ds +du/2,
where ds is the partial dimension along the stable manifold and du is the partial dimension
along the unstable manifold.

In this paper, using the GDP approach, thus considering exceedances above a given thresh-
old T , and considering the physically relevant case of mixing Axiom A systems, we derive
through direct integration that the shape parameter ξA can also be expressed as ξA = −1/δ.
We have framed our results for continuous flows, so δ = ds + du/2 + dn/2, where dn is the
dimension along the neutral direction and is unitary. In the case of discrete maps, we obtain
the same results as in [30]. We have also been able to derive the explicit expression for the
scale parameter σ = (Amax − T )/δ.

It is clear that the ξA parameter is always negative (so that the distribution of extremes is
upper limited), reflecting the fact that the observable is smooth and the attractor is a compact
set. Moreover, measuring ξA allows us to provide an upper and lower bound for dKY and
vice versa, because −1/ξA < dKY < −2/ξA, or, conversely dKY/2 < −1/ξA < dKY. In
particular, we have that ξA is small and negative if and only if the Kaplan–Yorke dimension
of the attractor is large. If we consider a chaotic system with a high dimensional attractor
(e.g. in the case of an extensive chaotic system with many degrees of freedom), we derive that
ξA ≈ 0. This may well explain why in a multitude of applications in natural sciences such
as hydrology, meteorology, oceanography the special ξ = 0 member of the GPD family—
the exponential model—given in Eq. 3 usually gives a good first guess of the statistics of
observed extremes [9].

Alternatively, this result suggests that if we perform a statistical analysis using the POT
method (using an empirical threshold T ) of the extremes for a high-dimensional chaotic
system and obtain as a result of the statistical inference of the collected data for the GPD
model a shape parameter ξA � 0 or ξA ≥ 0, we should conclude that our sample is not
yet suited for an EVT statistical fit. This may depend on the fact that we have selected an
insufficiently stringent value for T . Obviously, choosing higher values for T implies that we
need to have longer time series of the observable under investigations.

Interestingly, by combining the expression for ξA obtained in this paper for a physical
observable A and the expression for ξB of the GPD describing the extremes of observable
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of the form B(x) = C − dist(x, x0), β > 0, where dist is the distance function [12], we
can express the partial dimension of the attractor on the stable and unstable dimension as
simple functions of ξA and ξB . The straightforward result is that 2/ξA − 2β/ξB = du + dn

and β/ξB − 2/ξA = ds . The same can be obtained using, instead, the parameters σA and
σB . This provides further support to the idea that extremes can be used as excellent diagnos-
tic indicators for the detailed dynamical properties of a system. The message seems to be
that one can construct observables whose large fluctuations give precise information on the
dynamics. While considering various sorts of anisotropic scalings of the neighborhood of a
point of the attractor allows to derive its partial dimensions [52], the specific result we obtain
here is that choosing an arbitrary physical observable and studying its extremes, we automat-
ically select a special, non ellipsoidal neighborhood, where the degree of anisotropy between
the stable and unstable (and neutral) directions is generically universal and given by the
factor 1/2.

We wish to make an additional remark. Let’s assume, instead, that the gradient of A is
vanishing in x0 and that at leading order near x0 A(x) ∼ Amax +[x − x0, H(x − x0)], where
H is a negative definite symmetric matrix and the square brackets indicate the scalar product.
It is clear that, apart from a linear change in the coordinates and rescaling, the statistical
properties of the extremes of A(x) will match those of B(x) = C − dist(x, x0)

2.
In the second part of the paper we have tackled the problem of studying how the properties

of extremes of the observable A change when an ε-perturbation is added to the system. As
theoretical framework, we have taken the point of view of Ruelle [33,34], who has shown
that the SRB measure of Axiom A systems is differentiable with respect to ε-perturbations
to the dynamics and has provided explicit formulas for studying how the expectation val-
ues of generic observables of Axiom A systems change when the system is subjected to
perturbations.

We have used the fact that the GPD is an exact asymptotic model for extreme events in
order to find a simple functional relation between ξA and ξB (as well as σA and σB) and
the first two moments of the probability of above-threshold exceedance expressed in terms
of the invariant measure of the system. These expressions are amenable to direct treatment
with Ruelle’s response theory, at least when we do not consider the limit T → Amax but
stick to the practical situation where we need to consider a finite range for the extremes. The
differentiability properties of ξA and ξB are hard to ascertain in the limit. We have also found
an explicit expression for the sensitivity of the number of extremes—seen an over threshold
events—to the ε-perturbation.

We have then taken into consideration our results on the relationship between ξA and ξB

and the partial dimensions of the attractor. Interestingly, it seems that there is an intimate
connection between the differentiability with respect to ε of ξA, ξB and dKY, so that either
all of them or none of them is differentiable with respect to ε. Under the hypothesis of
differentiability, we have been able to derive that the sensitivity of ξA and ξB with respect
to ε is proportional to the sensitivity of the Kaplan–York dimension dKY with respect to ε.
Specifically, we obtain that if the perturbation tends to increase the dimensionality of the
attractor (thus, in physical terms, favoring forcing over dissipation), the value of ξ becomes
closer to zero, so that the occurrence of very large extreme events becomes more likely. The
system, in this case, has more freedom to perform large fluctuations.

Taking a more pragmatic point of view, these results at least provide a rationale for the well-
known fact that in moderate to high-dimensional strongly chaotic systems the Kaplan–Yorke
dimension (and, actually, all the Lyapunov exponents) change smoothly with the intensity of
the perturbating vector field, as discussed in [50,49], and similar behavior is found for the
parameters describing the extremes of energy-like quantities [3].
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Since it has been shown in [36] that the linear response vanishes for any observable in
the case of stochastic forcing of rather general nature, whereas the second order response
gives the leading order of perturbation, we expect that adding a moderate noise to a chaotic
dynamical system will not alter significantly the shape parameter ξ describing the EVT of
both physical and distance observables.

Finally, we have performed a set of simple numerical experiments using the celebrated
Hénon map for two different pairs of parameters—(a,b) = (1.4,0.3) and (1.2,0.3). While
these maps are definitely not Axiom A, it seemed to us worthwhile to test the robustness
of the theory in more general classes of systems and to have an indication of whether the
asymptotic properties discussed here are practically observable. One has to keep in mind that,
when considering extremes, the approach to asymptotic behavior is far from being trivial to
detect in finite datasets [24,25]. We find encouraging agreement between our theory and
the outputs of numerical experiments for both sets of parameters, which suggests that it is
worthwhile to study accurately more comprehensive models in order to see whether one can
practically derive the geometrical properties of the attractor from the statistics of extremes of
distance and physical observables. Further numerical investigations are needed for studying
whether it is possible to find satisfactory numerical evidence for the response theory for the
extremes developed here and in particular for the relationship between the sensitivity of the
EVT’s parameters of physical and distance observables and the sensitivity of the Kaplan
Yorke dimension to perturbations to the underlying dynamical system.

In this work we have considered the case where the observable A has a unique maximum
restricted to � in x = x0 ∈ �. If � and A share some symmetries, x0 is not unique,
and instead there is a set of points x0’s belonging to �, finite or infinite, depending of the
kind of symmetries involved, where A reaches its maximum value restricted to �. Let’s
consider the relevant case where A and � share a discrete symmetry, so that χ0, the set of
the maximal point x0’s, has finite cardinality. The results discussed here for the extremes of
A will nonetheless apply, because we can perform an equivalent geometrical construction as
in Fig. 1 for each element of χ0. When we consider an ε-perturbation to the dynamics which
respects the discrete symmetry, it is clear that all the results of the response presented here
apply. Finally, one can deduce that if the considered perturbation, instead, breaks the discrete
symmetry, the results presented here will still be valid as the break of the degeneracy will
make sure that only one of the x0’s (or a subset of χ0, if the corresponding perturbed vector
flow obeys to a a subgroup of the original symmetry group) still accounts for the extreme
events of A.

This work may constitute a new theoretical viewpoint for studying extremes in a rather
general setting and understanding how they change when the dynamical system is slightly
perturbed. The results on how to express the sensitivity of the Kaplan–Yorke dimension
with respect to an ε-perturbation to the dynamics seems also useful. Our findings might find
applications in many sectors of physical, engineering and social sciences, and, just to provide
a basic example of crucial relevance, in the investigation of the impact of climate change on
climate extremes.

Obviously, as in the case of all results pertaining to EVT, it is important to test numer-
ically the practical verification of the findings presented here. In this paper we have exten-
sively discussed the relevance of finite-time effects in the selection of the extremes of
physical observables and in the definition of the relevant sensitivities. We need to men-
tion that, recently, some renormalization group methods have been applied for deriving sys-
tematic finite size corrections to extreme value laws [53,54]. These results seem extremely
promising and might lead to improved methods for fitting extreme value statistics to given
datasets.
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We need to remark that such results have been derived using some intuitive geometrical
construction and assuming generic relations between the direction of the gradient of A at
x = x0 and the stable directions. It is possible to devise special pairs of Axiom A systems
and observables such that the strange attractors do not fulfill such generic conditions. One
can easily construct a situation where the gradient of A is orthogonal also to stable manifold
by immersing the attractor in a higher dimensional space and taking observables defined
on such a space. In this case, the factor 1/2 appearing in Eq. 8 will affect also the stable
dimensions. Nonetheless, the results that for high-dimensional systems the distribution of
extremes is indistinguishable from the Gumbel as the shape parameters tends to zero from
below is not be affected by this correction.

We believe that typical combinations of Axiom A systems and observable functions allow
for the generic conditions to be obeyed. We still need to understand how to frame consis-
tently such a concept of genericity, which obviously differs from the traditional one, which
focuses either on the observables, or on the systems. This should be the subject of theoretical
investigation and accurate numerical testing.
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