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Abstract We calculate the Lyapunov exponents describing spatial clustering of particles
advected in one- and two-dimensional random velocity fields at finite Kubo numbers Ku
(a dimensionless parameter characterising the correlation time of the velocity field). In one
dimension we obtain accurate results up to Ku ∼ 1 by resummation of a perturbation expan-
sion in Ku. At large Kubo numbers we compute the Lyapunov exponent by taking into ac-
count the fact that the particles follow the minima of the potential function corresponding to
the velocity field. The Lyapunov exponent is always negative. In two spatial dimensions the
sign of the maximal Lyapunov exponent λ1 may change, depending upon the degree of com-
pressibility of the flow and the Kubo number. For small Kubo numbers we compute the first
four non-vanishing terms in the small-Ku expansion of the Lyapunov exponents. By resum-
ming these expansions we obtain a precise estimate of the location of the path-coalescence
transition (where λ1 changes sign) for Kubo numbers up to approximately Ku = 0.5. For
large Kubo numbers we estimate the Lyapunov exponents for a partially compressible ve-
locity field by assuming that the particles sample those stagnation points of the velocity
field that have a negative real part of the maximal eigenvalue of the matrix of flow-velocity
gradients.

Keywords Advection · Compressible velocity fields · Clustering · Lyapunov exponents ·
Kubo number

1 Introduction

Consider many small tracer particles advected in a random or chaotic compressible flow.
An initially uniform scatter of particles cannot remain uniform because particles advected
in smooth compressible flows cluster together. An example of this effect is discussed by
Sommerer and Ott [1] who describe experiments following fluorescent tracers floating on
the surface of an unsteady flow. Since the particles are constrained to the surface of the flow,
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they experience local up- and down-welling regions as sources and sinks, rendering the sur-
face flow compressible. As a consequence the particles form fractal patterns. The authors of
[1] interpret these patterns in terms of random dynamical maps and estimate the Lyapunov
fractal dimension. This dimension is computed from the Lyapunov exponents by means of
the Kaplan–Yorke formula [2]. The Lyapunov exponents λ1 ≥ · · · ≥ λd (here d is the spatial
dimension) describe the long-term evolution of the patterns formed by the particles. The
maximal Lyapunov exponent λ1 describes the dynamics of an initially infinitesimal separa-
tion between two particles. When λ1 < 0 separations between nearby particles must decrease
on the long run, clustering is strong. This regime was referred to as ‘path-coalescence phase’
in [3]. The path-coalescence transition occurs at λ1 = 0: when λ1 > 0 separations typically
grow, but clustering can nevertheless be substantial [4]. The sum λ1 + λ2 describes the evo-
lution of a small area element spanned by the separation vectors of three nearby particles,
and so forth.

References [5, 6] summarise results of direct numerical simulations of tracers floating on
the surface of turbulent flows, and characterise the resulting fractal patterns in terms of their
Lyapunov dimensions.

Another example is that of inertial particles in turbulent flows. Finite inertia allows par-
ticles to detach from the flow. This effect gives rise to fractal patterns of inertial particles
suspended in incompressible flows [7, 8]. When the particle inertia is small it is commonly
argued that the resulting fractal patterns can be understood in terms of a model that describes
particles advected in a slightly compressible particle-velocity field [9]. The small correction
term that renders the particle-velocity field compressible at small particle inertia was first
derived by Maxey [10].

This approach is frequently used in the literature to explain spatial clustering (so-called
‘preferential concentration’) of inertial particles suspended in turbulent flows. We remark
that this approach must fail when inertial effects become stronger. In this case the particle-
velocity field develops singularities (so-called ‘caustics’) that preclude the existence of a
smooth particle-velocity field (see e.g. [11–14]). The singularities give rise to large relative
velocities between nearby particles [15–18].

Many authors have studied the Lyapunov exponents of particles advected in turbulent,
random, and chaotic velocity fields numerically. Analytical results could only be derived in
certain limiting cases though. A limit that allows analytical progress in terms of diffusion
approximations is Ku → 0. The ‘Kubo number’ Ku = u0τ/η is a dimensionless measure of
the correlation time τ of the fluctuations of the underlying velocity field, u0 is the typical
speed of the flow and η its correlation length. In the limit of Ku → 0 the problem of cal-
culating the Lyapunov exponents simplifies considerably. In this limit the flow causes many
weakly correlated small displacements of the particles and diffusion approximations can be
used to compute the exponents for random Gaussian flows [8, 19] and in the Kraichnan
model [20–22]. The exponents describe the fluctuations of small separations between parti-
cles (much smaller than the correlation length or the Kolmogorov length η), inertial-range
fluctuations are not relevant in this limit, and thus the results for smooth random velocity
fields and for the Kraichnan model are equivalent when Ku → 0. Lyapunov exponents for
inertial particles in the limit of Ku → 0 were computed in Refs. [3, 23, 24] in one, two, and
three spatial dimensions respectively.

Less is known about clustering at finite Kubo numbers where the particles have sufficient
time to preferentially sample the sinks of the underlying velocity field. This effect is impor-
tant in the examples mentioned above, but it is not captured by theories formulated in terms
of diffusion approximations in the limit of Ku → 0. At large Kubo numbers the spatial pat-
terns formed by the particles must depend on the details of the fluctuations of the underlying
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flow, but it is not known how to analytically compute the Lyapunov exponents of particles
advected in compressible velocity fields at finite Kubo numbers. We note however that an
expression for the maximal Lyapunov exponent in incompressible two-dimensional flows at
finite Kubo numbers was obtained by Chertkov et al. [25]. Approximating the fluctuations
of the flow-velocity gradient by telegraph noise with a finite correlation time, Falkovich et
al. computed Lyapunov exponents in one-dimensional and incompressible two-dimensional
models for advected and inertial particles [26, 27]. Also, Dhanagare et al. [28] recently in-
vestigated the spatial clustering of particles advected in compressible random renovating
flows.

In this paper we compute the Lyapunov exponents for particles advected in one- and two-
dimensional compressible Gaussian random velocity fields with finite Kubo numbers (the
model is defined in Sect. 2). We use an approach recently developed to describe incompress-
ible turbulent aerosols at finite Kubo numbers [29], generalising a method used by Wilkinson
[30] to compute the Lyapunov exponent for particles advected in a one-dimensional random
velocity field to lowest order in Ku. This approach expresses the fluctuations of the flow-
velocity gradient along the particle trajectories at finite Kubo numbers in terms of correlation
functions of the flow velocity and its derivatives at fixed positions in space. A perturbation
expansion in Ku is obtained by iteratively refining an approximation for the paths taken by
the particles [29].

In Sect. 3 we develop perturbation series to order Ku12 in one spatial dimension. By
comparison with computer simulations we show that a Padé–Borel resummation of the series
yields accurate results up to Ku ∼ 1. For Ku � 1 the resummation fails. In this case the
particles are predominantly found near stagnation points of the flow (where the flow velocity
vanishes) with negative velocity gradients, that is near the minima of the corresponding
potential function. In this regime the Lyapunov exponent is determined by the flow-gradient
fluctuations near these points, and we show how to compute the exponent using the Kac–
Rice formula [31, 32] for counting singular points of random functions.

Section 4 summarises the corresponding results for two-dimensional velocity fields. For
small Kubo numbers we compute the first four non-vanishing terms in a perturbation expan-
sion (to order Ku8). We compare the results of a Padé–Borel resummation of this series with
results of numerical simulations. We find that resummation of the perturbation series pro-
vides an accurate estimate of the location of the path-coalescence transition (the degree of
compressibility where the maximal Lyapunov exponent λ1 changes sign) for Kubo numbers
up to ∼ 0.5.

For much larger Kubo numbers, particles in a purely compressible velocity field (that can
be written as the gradient of a potential function) spend most of their time near the minima
of the potential function, that is near stagnation points of the velocity field with negative
real part of the maximal eigenvalue of the matrix of flow-velocity gradients. As in the one-
dimensional case the Lyapunov exponents can be computed using the Kac–Rice formula.
Our results agree well with those of numerical simulations of particles in velocity fields
with a compressible component, at large but finite Kubo numbers.

Section 5 summarises our conclusions.

2 Model

We study particles advected in one- and two-dimensional Gaussian random velocity fields.
In one dimension the equation of motion is

ẋt = u(xt , t). (1)
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Table 1 Conversion table comparing different parametrisations of compressibility in d-dimensional random
velocity fields. The parameters β and Γ were introduced in Ref. [23] in two and in Ref. [33] in three spatial
dimensions. The parameter ΔC in Eq. (6.21) in Ref. [34], and ℘ in Eq. (57) in Ref. [21] (see also Ref. [22])

β2 Γ ΔC ℘

β2 – d+1+Γ (1−d)
3Γ −1

(d−1)ΔC
4+2d−3ΔC

℘(1−d)
℘−1

Γ
d+1+β2

d−1+3β2 – d+1−ΔC
d−1

d+1−2℘
(d−1)(1+2℘)

ΔC
2(d+2)β2

d−1+3β2 d + 1 + (1 − d)Γ – 2(d+2)℘
1+2℘

℘
β2

d−1+β2
d+1+Γ (1−d)
2(1+Γ (d−1))

ΔC
2(d+2−ΔC)

–

Here xt denotes the position of the particle at time t , the dot denotes a time derivative, and
u(x, t) is a Gaussian random velocity field. We write u = u0∂ψ/∂x where u0 is the typical
speed of the flow, and ψ(x, t) is a Gaussian random function with zero mean values and
correlation function

〈
ψ(0,0)ψ(x, t)

〉= e−x2/(2η2)−|t |/τ . (2)

The correlation length is denoted by η, and the correlation time is denoted by τ . In two
spatial dimensions we write

ẋ t = u(x t , t) (3)

with x = (x, y)T. The velocity field is defined as [23]:

u = u0√
2(1 + β2)

[∇φ ∧ êz + β∇ψ], (4)

where êz is the unit vector in the z-direction and where ψ and φ are independent Gaussian
random functions with zero means and correlation functions

〈
ψ(x, t)ψ(0,0)

〉= 〈
φ(x, t)φ(0,0)

〉= e−|x|2/(2η2)−|t |/τ . (5)

The first term in Eq. (4) is an incompressible (or ‘solenoidal’) contribution. The second term
is a compressible (or ‘potential’) contribution.

As in one dimension the speed-, length-, and time scales of the flow are denoted by u0,
η and τ . The Kubo number is given by Ku = u0τ/η. In the following we adopt dimensionless
units t = τ t ′, x = ηx ′, u = u0u

′ and we drop the primes. A second dimensionless parameter
of the problem is the degree of compressibility. Reference [23] introduced the parameter

Γ = 3 + β2

3β2 + 1
. (6)

It ranges from 1/3 (β → ∞, compressible) to Γ = 3 (β = 0, incompressible). In the limit
of Ku → 0, the maximal Lyapunov exponent is negative for Γ ≤ 1 (β ≥ 1) and positive
otherwise. Other authors parametrise the degree of compressibility in other ways. Table 1
compares different definitions.
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3 One Spatial Dimension

The Lyapunov exponent

λ = lim
t→∞

1

t
log

∣∣∣∣
δxt

δx0

∣∣∣∣ (7)

describes the long-term growth (or decline) of the separation δxt between two initially in-
finitesimally close particles. It is computed by linearising the equation of motion (1) to find
the dynamics of a small separation δxt between two neighbouring particles. Using the di-
mensionless variables introduced in Sect. 2 we have:

dδxt

dt
= Ku

∂u

∂x
(xt , t)δxt ≡ KuA(xt , t)δxt . (8)

Here the flow-velocity gradient at position x at time t is denoted by A(x, t). It follows
that the Lyapunov exponent is given by the average flow-velocity gradient evaluated at the
particle position xt :

λ = Ku lim
t→∞

〈
A(xt , t)

〉
, (9)

where 〈· · · 〉 denotes an average over flow realisations.
The Lyapunov exponent is computed by expanding the implicit solution of (1). In dimen-

sionless units it is given by:

xt − x0 = Ku
∫ t

0
dt ′u

(
xt ′ , t

′)≡ ξt . (10)

Here x0 is the initial particle position, and ξt = xt − x0 is the difference between the trajec-
tory of a particle and its initial position (to be distinguished from the separation δxt between
two neighbouring particles at time t ). Since ξt is proportional to Ku it can be considered
small provided that Ku is sufficiently small. In this case we expand u(xt , t) in powers of ξt :

u(xt , t) =
∞∑

n=0

1

n!
∂nu

∂xn
(x0, t)ξ

n
t . (11)

Inserting ξt = xt − x0 from Eq. (10) into Eq. (11) and iterating Eq. (11) yields a perturbation
series of u(xt , t) in terms of powers of Ku. In the same way an expansion of A(xt , t) is
found. To third order in Ku we obtain for example:

A(xt , t) = A(t) + Ku ∂2
xu(t)

∫ t

0
dt1u(t1)

+ Ku2

[
1

2
∂3

xu(t)

∫ t

0
dt1

∫ t

0
dt2u(t1)u(t2)

+ ∂2
xu(t)

∫ t

0
dt1

∫ t1

0
dt2A(t1)u(t2)

]

+ Ku3

[
1

2
∂2

xu(t)

∫ t

0
dt1

∫ t1

0
dt2

∫ t1

0
dt3u(t2)u(t3)∂

2
xu(t1)

+ 1

2
∂3

xu(t)

∫ t

0
dt1

∫ t

0
dt2

∫ t1

0
dt3A(t1)u(t2)u(t3)
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+ 1

2
∂3

xu(t)

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3A(t2)u(t1)u(t3)

+ ∂2
xu(t)

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3u(t3)A(t1)A(t2)

+ 1

6
∂4

xu(t)

∫ t

0
dt1

∫ t

0
dt2

∫ t

0
dt3u(t1)u(t2)u(t3)

]
, (12)

where u(t) ≡ u(x0, t), A(t) ≡ A(x0, t), and so forth. Averaging yields an expression for
the Lyapunov exponent in terms of time integrals of Eulerian correlation functions of the
velocity field and its derivatives. Evaluating these correlation functions requires computing
averages of products of u(t) and its spatial derivatives ∂k

xu(t) ≡ ∂k
xu(x, t)|x=x0 (for k =

1,2, . . .) evaluated at different times. For a Gaussian random velocity field we use Wick’s
theorem which states that the average of a product of n Gaussian variables z1, . . . , zn is
equal to the sum of all ways of decomposing the product into products of covariances. The
averaged product 〈z1, . . . , zn〉 is calculated using the known covariances 〈zizj 〉. Averages of
products of an odd number of factors vanish when 〈zi〉 = 0. In one spatial dimension, the
covariances of the velocity and its spatial derivatives are determined by Eq. (2):

〈
∂mu

∂xm
(x0, t1)

∂nu

∂xn
(x0, t2)

〉

=
{

(−1)(n−m)/2(m + n + 1)!!e−|t1−t2| if m + n even
0 otherwise

(13)

with m,n = 0,1,2, . . . . In this way we obtain an expansion of the Lyapunov exponent in
powers of Ku. The final result to order Ku12 is:

λ = −3 Ku2 +12 Ku4 −269

2
Ku6 +2324 Ku8

− 1759529

20
Ku10 +1072147807

720
Ku12 +· · · . (14)

This series expansion is asymptotically divergent: it diverges for any fixed value of Ku but
every partial sum of the series approaches λ as Ku → 0. At large orders k the coefficients ck

in the series (14) are of the form [35]

|ck| ∼ aS−k(k − 1)!(1 + b/k + · · · ) (15)

with S close to 1/6, a ≈ 0.23, and b ≈ 1. The series (14) can be resummed by Padé–Borel
resummation [35]. The result is expressed as the Laplace transform of the so-called ‘Borel
sum’ (assumed to have a finite radius of convergence due to the extra factor of 1/k!):

B
(
Ku2

)=
∞∑

k=1

ck

k! Ku2k . (16)

The Lyapunov exponent is estimated by

λ = Re

∫

C

dse−sB
(
Ku2 s

)
. (17)
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Fig. 1 Lyapunov exponent in
one spatial dimension from direct
numerical simulations of the
model described in Sect. 2
(symbols), theory for large
Ku (21), dashed line, and
Padé–Borel resummation (17) of
the perturbation series for small
Ku (solid red line)
(Color figure online)

The integration path C is taken to be a ray in the upper right quadrant of the complex plane.
In order to compute the integral the Borel sum must be analytically continued outside its
radius of convergence. This can be achieved by ‘Padé approximants’ [36]. We know 6 non-
zero coefficients in the sum, this allows us to compute the Padé approximant of third orders
in Ku2 in numerator and denominator:

B[3,3]
(
Ku2

) = − 14440189013 Ku6
957721800 + 985684759 Ku4

63848120 +3 Ku2

88699515137 Ku6
34477984800 + 11344821011 Ku4

957721800 + 1368773479 Ku2
191544360 +1

. (18)

Equations (17) and (18) together determine an approximation for the Lyapunov exponent.
The corresponding result is shown in Fig. 1, compared with results of numerical simulations
of the model. We observe good agreement for Kubo numbers up to order unity. If more
coefficients in the perturbation series were known, higher-order Padé approximants could
be computed to improve the accuracy of the Padé–Borel resummation.

For large values of Ku the resummation fails. We now show how to approximate the
Lyapunov exponent at large but finite values of Ku (the limit t → ∞ in Eq. (7) is taken at
a finite value of Ku). At large Kubo numbers the particles spend most of their time in the
vicinity of the minima of the ‘potential’ V (x, t) = −ψ(x, t). An approximate expression for
the Lyapunov exponent can be obtained by averaging the gradient A at the minima, that is
at the stagnation points of the flow velocity u with A < 0. The distribution of A at u = 0 can
be estimated using the Kac–Rice formula [31, 32]:

p(A) =
∫

dA′∣∣A′∣∣δ
(
A − A′)P

[
0,A′]. (19)

Here P [u,A] is the joint distribution of the velocity field u and its gradient A. It is deter-
mined by the correlation function of ψ given in Sect. 2. We find:

p(A) = 1

6
|A|e−A2/6. (20)

Since p is symmetric in A, the distribution of negative values of A at u = 0 is given
by 2p(A). The Lyapunov exponent is thus given by

λ = 2 Ku
∫ 0

−∞
dAAp(A) = −

√
3π

2
Ku . (21)
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The limiting behaviour (21) is shown in Fig. 1. It is in good agreement with the results of
numerical simulations.

4 Two Spatial Dimensions

4.1 Small-Ku Limit

Consider first the case of small Kubo numbers. Now there are two Lyapunov exponents to
compute, describing the time evolution of the distance |δx t | between two neighbouring par-
ticles and of the infinitesimal area element δAt spanned by the separation vectors between
three neighbouring particles:

λ1 = lim
t→∞

1

t
log

∣∣∣∣
δx t

δx0

∣∣∣∣, (22)

λ1 + λ2 = lim
t→∞

1

t
log

∣∣∣∣
δAt

δA0

∣∣∣∣. (23)

As in the one-dimensional case, these Lyapunov exponents are computed by linearising the
equation of motion, Eq. (3) in this case. The dynamics at small separations δx between two
neighbouring particles is

d

dt
δx t = KuA(x t , t)δx t . (24)

Here A is the flow-gradient matrix with elements Aij ≡ ∂ui/∂xj . The Lyapunov expo-
nents (23) are calculated from

λ1 = Ku lim
t→∞

〈
nT

t A(x t , t)nt

〉
, (25)

λ1 + λ2 = Ku lim
t→∞

〈
TrA(x t , t)

〉
. (26)

These relations are analogous to the one-dimensional Eq. (9). In Eq. (25), the vector nt ≡
δx t /|δx t | is a time-dependent unit vector aligned with the separation vector between the two
particles. Its dynamics follows from Eq. (24):

ṅt = Ku
[
A(x t , t)nt − (

nT
t A(x t , t)nt

)
nt

]
. (27)

The expressions (24)–(27) can be expanded analogously to the one-dimensional case de-
scribed in the previous section. For the model flow given by Eqs. (4) and (5) we find to order
Ku8:

λ1 = Ku2 1 − β2

1 + β2
− Ku4 6 + 7β2 − β4

(1 + β2)2
+ Ku6 423 + 972β2 + 597β4 + 20β6

6(1 + β2)3

− Ku8 164136 + 521517β2 + 591081β4 + 255803β6 + 19927β8

144(1 + β2)4
(28)

and

λ1 + λ2 = −Ku2 4β2

1 + β2
+ 2 Ku4 β2 3 + 5β2

(1 + β2)2
− 2 Ku6 β2 33 + 123β2 + 104β4

3(1 + β2)3
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Fig. 2 (a) Numerical results for maximal Lyapunov exponent for three different compressibilities (see Ta-
ble 1): β = 0.91 (♦), β = 1 (�), and β = 1.11 (◦). For β = 0.91 the location of the path-coalescence tran-
sition is indicated by an arrow. Also shown are results of Padé–Borel resummations of the series (28) [solid
lines]. (b) Shows location of the path-coalescence transition in the Ku-β2 plane. Results of numerical simu-
lations (◦), resummation of the perturbation series (28) [solid line]. The dashed line corresponds to Eq. (30)

+ Ku8 β2 8718 + 51303β2 + 92196β4 + 51787β6

72(1 + β2)4
. (29)

The lowest order, Ku2, is consistent with the results quoted in [8, 19–22]: the maximal Lya-
punov exponent changes sign at βc = 1. For β = 0, Eqs. (28) and (29) yield the Lyapunov
exponents for particles advected in a two-dimensional incompressible Gaussian random ve-
locity field with finite Kubo number: λ1 +λ2 = 0 (there cannot be clustering of particles ad-
vected in an incompressible flow), and Eq. (28) corresponds to the advective limit of Eq. (8)
in Ref. [29] (the limit of zero Stokes number, St → 0, must be taken in this equation de-
scribing the maximal Lyapunov exponent of inertial particles). The series (28) and (29) are
expected to be asymptotically divergent. Just as the one-dimensional result (14), Eqs. (28)
and (29) are expected to fail at large Kubo numbers.

The series (28) and (29) can be resummed as in the one-dimensional case. The results
are seen in Fig. 2. Panel (a) shows results for the maximal Lyapunov exponent for β close to
βc = 1 (the location of the path-coalescence transition in the limit of Ku → 0). We see that
at finite Kubo numbers the path-coalescence transition occurs at βc(Ku) < 1. Comparing the
first two terms in Eq. (28) shows that to order Ku2:

β2
c = 1 − 6 Ku2 . (30)

For very small values of Ku this agrees with the numerical results in Fig. 2(b). This panel
shows the location of the path-coalescence transition in the Ku-β2 plane. At large values
of Ku, Padé–Borel resummations of the perturbation series (28) substantially improve the
result. We observe good agreement between the numerical results and those of the resum-
mation for values of Ku up to approximately 0.5.

The results summarised in Fig. 2 show that at larger Kubo numbers less compressibil-
ity is needed to turn the maximal Lyapunov exponent negative. This is consistent with the
behaviour observed at very large Kubo numbers: in the following section we show that the
particles preferentially sample the attracting stagnation points of the velocity field in this
limit. The contribution of these points increases as the Kubo number becomes larger. The
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observation that the effect of the compressible part of the velocity field is amplified at large
Kubo numbers is consistent with numerical results in random renovating flows [28]. The dy-
namics of particles advected on the surface of a turbulent flow, by contrast, show a different
behaviour [5]. In this case it is observed that the path-coalescence transition occurs at larger
values of the compressibility for larger Kubo numbers. It would be of interest to determine
which particular property of the turbulent flow gives rise to this effect.

4.2 Large-Ku Limit

The large-Ku limit in two-dimensional compressible flows is solved as in one spatial di-
mension. The required distribution p(A) of the flow-gradient matrix A at u = 0 is found to
be:

p(A) =
√

(3 + β2)(1 + 3β2)

π2β
|detA|e−aT

C
−1a/2, (31)

where a = (A11,A12,A21,A22) and

C = 1

2(1 + β2)

⎛

⎜⎜
⎝

1 + 3β2 0 0 β2 − 1
0 3 + β2 β2 − 1 0
0 β2 − 1 3 + β2 0

β2 − 1 0 0 1 + 3β2

⎞

⎟⎟
⎠ . (32)

The above expressions correspond to flows with both potential and solenoidal components
because we expect that the expressions for the Lyapunov exponents derived below are not
only valid for purely potential flows, but also yield good estimates for flows with a small
solenoidal component.

We change coordinates s± = (A11 ± A22)/2 and u± = (A12 ± A21)/2 to obtain

p(s+, s−, u+, u−) =
√

(3 + β2)(1 + 3β2)

4π2β

∣∣s2
+ + u2

− − u2
+ − s2

−
∣∣

× exp

[
−1 + β2

2β2
s2
+ − s2

− − u2
+ − 1 + β2

2
u2

−

]
. (33)

The Lyapunov exponents are given by the eigenvalues of the strain matrix σ± = s+ ±√
s2− + u2+ − u2− at the zeroes of u subject to the constraint Reσ± < 0. This condition is

equivalent to the condition TrA< 0 and detA> 0 and can be expressed as

s+ < −Re

√
s2− + u2+ − u2−. (34)

We have:

λ1,2 = 4 Ku
∫ ∞

−∞
ds+ds−du+du−Θ

(−Re

√
s2− + u2+ − u2− − s+

)

× (
s+ ±

√
s2− + u2+ − u2−

)
p(s+, s−, u+, u−). (35)

The factor 4 is a normalisation factor due to the fact that we only consider matrices A with
Reσ± < 0. Further Θ(z) takes the value Θ(z) = 1 when z > 0, and zero otherwise. To
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evaluate the integral we change variables according to

⎧
⎪⎨

⎪⎩

s− = w
√

1 + ξ 2 cosϕ

u+ = w
√

1 + ξ 2 sinϕ

u− = wξ

for Δ = s2
− + u2

+ − u2
− ≥ 0 (36)

⎧
⎪⎨

⎪⎩

s− = wξ cosϕ

u+ = wξ sinϕ

u− = w
√

1 + ξ 2

for Δ = s2
− + u2

+ − u2
− < 0 (37)

with 0 ≤ w < ∞, −∞ < ξ < ∞ and 0 ≤ ϕ < 2π . Upon integrating over ϕ and ξ we obtain:

λ1,2 = 2 Ku

√
1 + 3β2

√
2πβ

∫ 0

−∞
ds+

∫ ∞

0
dww exp

[
−1 + β2

2β2
s2
+

]

×
{
Θ(−ω − s+)

(
s+ ∓

√
w2
)∣∣s2

+ − w2
∣∣e−w2

+ (
s+ ∓

√
−w2

)∣∣s2
+ + w2

∣∣erfc

[√
3 + β2w√

2

]
ew2

}
. (38)

Performing the remaining integrals we find an approximation for the Lyapunov exponents:

λ1,2 = Ku

2(1 + β2)5/2
√

1 + 3β2
√

π

[√
2β
(
1 + β2

)3/2(−2 ∓ 3 + β2(−2 ∓ 5)
)

− 2
√

2β3
√

3 + β2
(
1 + 3β2

)

∓ (
1 + β2

)(
3 + β2

)(
1 + 3β2

)
arctan

(√
2β2

1 + β2

)]
. (39)

The sum of the Lyapunov exponents is given by

λ1 + λ2 = − 2
√

2β Ku

(1 + β2)5/2
√

1 + 3β2
√

π

[(
1 + β2

)5/2 + β2
√

3 + β2
(
1 + 3β2

)]
. (40)

Equations (39) and (40) give estimates for the Lyapunov exponents for large but finite values
of Ku, as opposed to Eqs. (28)–(29) that give the corresponding expressions for small values
of Ku.

Let us consider the purely compressible limit β → ∞ in (39) and (40):

λ1,2 ∼ 1√
12π

Ku
[−8

√
2 ± (

5
√

2 − 3 arctan(
√

2)
)]

, (41)

λ1 + λ2 ∼ − 16√
6π

Ku . (42)

Both the maximal exponent λ1 and the sum λ1 + λ2 are negative in this limit, as expected:
the particles converge to the minima of V (x, t) = −ψ(x, t) at large Kubo numbers. Equa-
tions (41) and (42) predict that the Lyapunov exponents scale as Ku for large values of Ku.
At small values of Ku, by contrast, the scaling is Ku2 as Eqs. (28) and (29) show. Figure 3(a)
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Fig. 3 (a) Maximal Lyapunov exponent from direct numerical simulations of the two-dimensional model
described in Sect. 2 (symbols) in the limit β → ∞. Results from resummation of perturbation theory in
Ku (28) (solid red line) and asymptotic result for large Ku (41) (dashed line). (b) Lyapunov exponents for
Ku = 100 as a function of β2. Numerical results: λ1 (◦) and λ2 (�), theoretical results, Eqs. (39), (40), solid
lines (Color figure online)

shows the asymptotic result (41) for λ1 in comparison with results of numerical simulations
for particles suspended in a two-dimensional compressible (purely potential) velocity field.
We observe good agreement.

We expect Eqs. (39) and (40) to give reliable estimates when the particles are typically
found very close to the minima of the potential. Figure 3(b) shows numerical results for
the Lyapunov exponents at Ku = 100 in partially compressible flows as a function of β2,
compared with Eqs. (39) and (40). We observe that Eqs. (39) and (40) yield reasonable
estimates even for small degrees of compressibility. We note that the theory must fail in
the incompressible limit (β = 0), and is only an approximation for finite values of β . The
results show, however, that the dynamics is dominated by the attracting stagnation points of
the velocity field at large Kubo numbers.

5 Conclusions

In this paper we have computed the Lyapunov exponents of small tracer particles advected in
one- and two-dimensional compressible random velocity fields at finite Kubo numbers. For
small Kubo numbers we have obtained results by Padé–Borel resummation of perturbation
expansions in Ku. For large Kubo numbers we have computed the Lyapunov exponents
using the Kac–Rice formula. At finite Kubo numbers the resulting Lyapunov exponents
are determined by the details the velocity-field fluctuations (at small values of Ku by the
Eulerian n-point functions of the velocity field and its derivatives, and at large values of
Ku by the statistics of its stagnation points). Our results generalise earlier results [8, 19–22]
for compressible flows obtained in the limit Ku → 0 to finite Kubo numbers. We find that
λ ∼ Ku2 as Ku → 0 and λ ∼ Ku at large (but finite) values of Ku. We have demonstrated
that the analytical results are in good agreement with results of numerical simulations, and
provide accurate estimates of the location of the path-coalescence transition for particles
advected in compressible flows with finite Kubo numbers.

The limit β → 0 at large Kubo numbers remains to be analysed. For small values of
β the stagnation points determining the Lyapunov exponents attract only weakly because
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the corresponding potential minima are shallow: Ku must be very large for the minima not
to disappear before particles are attracted. In this limit a fraction of particles spends an
appreciable amount of time on close-to closed orbits. This contribution is not accounted for
in the derivation of Eqs. (39) and (40). For this reason these results are approximate, unless
β is infinity. At β = 0 and Ku = ∞ the two-dimensional dynamics (3) corresponds to a one-
dimensional Hamiltonian system. In this case the Lyapunov exponents must vanish. It would
be interesting (but outside the scope of this paper) to consider, if possible, an expansion
around this steady case.

We conclude by commenting on two further implications of our results. First, as men-
tioned in the introduction, spatial clustering of weakly inertial particles in incompressible
velocity fields is often described in terms of a model where the particles are advected in a
‘synthetic’ velocity field with a small compressible component (due to the particle inertia).
It is known that this approach must fail when the inertia is large (because of the formation
of caustics). But there is also a problem in the small-inertia limit. Consider the sum of the
Lyapunov exponents for inertial particles in a Gaussian random flow at finite Kubo numbers,
Eq. (9) in Ref. [29]:

λ1 + λ2 = −6 Ku4 St2(1 + 3 St+St2)

(1 + St)3
+ · · · (43)

Here St is the ‘Stokes number’ characterising the importance of particle inertia. The limit
St = 0 corresponds to advective dynamics. Comparing Eq. (43) with the leading-order term
of Eq. (29) at small St and β would lead us to conclude that weakly inertial particles are
described by an advective model with ‘effective compressibility’ β = √

3/2 Ku St. But this
does not give the correct result for λ1 (c.f. Eq. (8) in Ref. [29]), neither does this correspon-
dence yield consistent results for terms of higher order in Ku (determined by higher-order
correlation functions of the velocity field). This shows that care is required when approx-
imating the dynamics of weakly inertial particles by advection in a weakly compressible
velocity field: in general the statistics obtained by sampling along particle trajectories with
actual inertial velocities, and in the effective compressible velocity field are different.

Second, a related Ku-expansion was recently used to compute the tumbling rate of small
axisymmetric particles in three-dimensional random velocity fields at finite Kubo num-
bers [37]. It turns out that the resummation works well also for the series expansion of
the tumbling rate.
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