Skip to main content
Log in

Monotonicity of the Polaron Energy II: General Theory of Operator Monotonicity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct a general theory of operator monotonicity and apply it to the Fröhlich polaron hamiltonian. This general theory provides a consistent viewpoint of the Fröhlich model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We remark that, in [24, 25], Kishimoto and Robinson studied the operator monotonicity in L 2(X,dμ). In our theory, no L 2-space structure, but only a cone in the space is needed.

References

  1. Anapolitanos, I., Landon, B.: The ground state energy of the multi-polaron in the strong coupling limit. arXiv:1212.3571

  2. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137(2), 299–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benguria, R.D., Bley, G.A.: Exact asymptotic behavior of the Pekar-Tomasevich functional. J. Math. Phys. 52, 052110 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bös, W.: Direct integrals of selfdual cones and standard forms of von Neumann algebras. Invent. Math. 37, 241–251 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. 2. Equilibrium States. Models in Quantum Statistical Mechanics, 2nd edn. Texts and Monographs in Physics. Springer, Berlin (1997)

    MATH  Google Scholar 

  6. Devreese, J., Alexandrov, S.: Fröhlich polaron and bipolaron: recent developments. Rep. Prog. Phys. 72, 066501 (2009)

    Article  ADS  Google Scholar 

  7. Donsker, M., Varadhan, S.R.S.: Asymptotics for the polaron. Commun. Pure Appl. Math. 36, 505–528 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dybalski, W., Moller, J.S.: The translation invariant massive Nelson model: III. Asymptotic completeness below the two-boson threshold. arXiv:1210.6645

  9. Eckmann, J.P.: A model with persistent vacuum. Commun. Math. Phys. 18, 247–264 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Faris, W.G.: Invariant cones and uniqueness of the ground state for fermion systems. J. Math. Phys. 13, 1285–1290 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Feynman, R.P.: Slow electrons in a polar crystal. Phys. Rev. 97, 660–665 (1955)

    Article  ADS  MATH  Google Scholar 

  12. Feynman, R.P.: Statistical Mechanics: A Set of Lectures. Advanced Book Classics. Westview Press (1998)

    MATH  Google Scholar 

  13. Frank, R.L., Lieb, E.H., Seiringer, R., Thomas, L.E.: Stability and absence of binding for multi-polaron systems. Publ. Math. IHES 113, 39–67 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Frank, R.L., Lieb, E.H., Seiringer, R.: Binding of Polarons and Atoms at Threshold. Commun. Math. Phys. 313, 405–424 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  16. Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincaré Sect. A (NS) 19, 1–103 (1973)

    Google Scholar 

  17. Fröhlich, J.: Existence of dressed one electron states in a class of persistent models. Fortschr. Phys. 22, 150–198 (1974)

    Article  Google Scholar 

  18. Gerlach, B., Löwen, H.: Analytical properties of polaron systems or: do polaronic phase transitions exist or not? Rev. Mod. Phys. 63, 63–90 (1991)

    Article  ADS  Google Scholar 

  19. Glimm, J., Jaffe, A.: Singular perturbations of selfadjoint operators. Commun. Pure Appl. Math. 22, 401–414 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griesemer, M., Hantsch, F., Wellig, D.: On the Magnetic Pekar Functional and the Existence of Bipolarons. arXiv:1111.1624

  21. Griesemer, M., Møller, J.S.: Bounds on the minimal energy of translation invariant N-polaron systems. Commun. Math. Phys. 297, 283–297 (2010)

    Article  ADS  MATH  Google Scholar 

  22. Gross, L.: A relativistic polaron without cutoffs. Commun. Math. Phys. 31, 25–73 (1973)

    Article  ADS  MATH  Google Scholar 

  23. Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37, 271–283 (1975)

    MathSciNet  Google Scholar 

  24. Kishimoto, A., Robinson, D.W.: Subordinate semigroups and order properties. J. Aust. Math. Soc. Ser. A 31, 59–76 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kishimoto, A., Robinson, D.W.: Positivity and monotonicity properties of C 0-semigroups. I. Commun. Math. Phys. 75, 67–84 (1980). Comm. Math. Phys., 75, 1980, 85–101

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Lee, T.D., Low, F., Pines, D.: The motion of slow electrons in a polar crystal. Phys. Rev. 90, 297–302 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Lewin, M., Rougerie, N.: On the binding of small polarons in a mean-field quantum crystal. arXiv:1202.5103

  28. Lieb, E.H., Thomas, L.E.: Exact ground state energy of the strong-coupling polaron. Commun. Math. Phys. 183, 511–519 (1997). Commun. Math. Phys., 188, 1997, 499–500

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Lieb, E.H., Yamazaki, K.: Ground-State Energy and Effective Mass of the Polaron. Phys. Rev. 111, 728–733 (1958)

    Article  ADS  MATH  Google Scholar 

  30. Miura, Y.: On order of operators preserving selfdual cones in standard forms. Far East J. Math. Sci.: FJMS 8, 1–9 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Miyao, T., Spohn, H.: The bipolaron in the strong coupling limit. Ann. Henri Poincaré 8, 1333–1370 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Miyao, T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Oper. Theory 64, 207–241 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  33. Miyao, T.: Self-dual cone analysis in condensed matter physics. Rev. Math. Phys. 23, 749–822 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miyao, T.: Monotonicity of the polaron energy. arXiv:1211.0344

  35. Miyao, T.: Note on the one-dimensional Holstein-Hubbard model. J. Stat. Phys. 147, 436–447 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Miyao, T.: Ground state properties of the SSH model. J. Stat. Phys. 149, 519–550 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Møller, J.S.: The polaron revisited. Rev. Math. Phys. 18, 485–517 (2006)

    Article  MathSciNet  Google Scholar 

  38. Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964)

    Article  ADS  Google Scholar 

  39. Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4, 439–486 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1975)

    Google Scholar 

  41. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, New York (1978)

    Google Scholar 

  42. Sloan, A.D.: The polaron without cutoffs in two space dimensions. J. Math. Phys. 15, 190 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  43. Spohn, H.: Effective mass of the polaron: a functional integral approach. Ann. Phys. 175, 278–318 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  44. Spohn, H.: The polaron at large total momentum. J. Phys. A 21(5), 1199–1211 (1988)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank H. Spohn for useful discussions. Financial support by KAKENHI (20554421) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Miyao.

Appendices

Appendix A: Preliminaries

In this section, we will review some preliminary results about the operator inequalities introduced in Sect. 2.1. Almost all of results here are taken from the author’s previous work [3236].

1.1 A.1 Operator Monotonicity

Proposition A.1

(Monotonicity)

Let A and B be positive self-adjoint operators. We assume the following.

  1. (a)

    dom(A)⊆dom(B) or dom(A)⊇dom(B).

  2. (b)

    \((A+s)^{-1}\unrhd 0\) and \((B+s)^{-1}\unrhd 0\) w.r.t. \(\mathfrak {p}\) for all s>0.

Then the following are equivalent to each other.

  1. (i)

    \(B\unrhd A\) w.r.t. \(\mathfrak {p}\).

  2. (ii)

    \((A+s)^{-1}\unrhd (B+s)^{-1}\) w.r.t. \(\mathfrak {p}\) for all s>0.

  3. (iii)

    \(\mathrm {e}^{-tA}\unrhd \mathrm {e}^{-tB}\) w.r.t. \(\mathfrak {p}\) for all t≥0.

Proof

See [32, 33]. □

Corollary A.2

Let A be a positive self-adjoint operator and let B be a symmetric operator. Assume the following.

  1. (i)

    B is A-bounded with relative bound a<1, i.e., dom(A)⊆dom(B) andBx∥≤aAx∥+bxfor all x∈dom(A).

  2. (ii)

    \(0\unlhd \mathrm {e}^{-tA}\) w.r.t. \(\mathfrak {p}\) for all t≥0.

  3. (iii)

    \(0\unlhd -B\) w.r.t. \(\mathfrak {p}\).

Then \(\mathrm {e}^{-t(A+B)}\unrhd \mathrm {e}^{- tA}\unrhd 0\) w.r.t. \(\mathfrak {p}\) for all t≥0.

Proof

See [32, 33]. □

1.2 A.2 Perron-Frobenius-Faris Theorem

Theorem A.3

(Perron-Frobenius-Faris)

Let A be a positive self-adjoint operator on \(\mathfrak {h}\). Suppose that \(0\unlhd \mathrm {e}^{-tA}\) w.r.t. \(\mathfrak {p}\) for all t≥0 and infspec(A) is an eigenvalue. Let P A be the orthogonal projection onto the closed subspace spanned by eigenvectors associated with infspec(A). Then the following are equivalent.

  1. (i)

    dimranP A =1 and P A ▷0 w.r.t. \(\mathfrak {p}\).

  2. (ii)

    0◁(A+s)−1 for some s>0.

  3. (iii)

    For all \(x,y\in \mathfrak {p}\backslash \{0\}\), there exists a t>0 such that 0<〈x,etA y〉.

  4. (iv)

    0◁(A+s)−1 for all s>0.

  5. (v)

    0◁etA for all t>0.

Proof

See, e.g., [10, 32, 41]. □

Appendix B: A Remark on the Strongly Continuous Semigroup

A family of operators {T s  | 0≤s<∞} on a Hilbert space \(\mathfrak {h}\) is called a one-parameter semigroup if

  1. (a)

    ,

  2. (b)

    T s T t =T s+t for all s,t≥0.

In addition if T s satisfies

  1. (c)

    for each \(x\in \mathfrak {h}\), sT s x is strongly continuous,

then the family is called a strongly continuous semigroup.

The following lemma is well-known [40].

Lemma B.1

Let T s be a strongly continuous semigroup on a Hilbert space \(\mathfrak {h}\) and , where

(12.1)

Then A is closed and densely defined.

If we further add conditions on T s , we can prove the self-adjointness of A as follows.

Proposition B.2

Let T s be a strongly continuous semigroup on a Hilbert space \(\mathfrak {h}\). Assume

  1. (d)

    T s is self-adjoint for all s≥0.

  2. (e)

    There exists an M>0 such thatT s ∥≤esM for all s≥0.

Then A is self-adjoint, bounded from below by M and T s =esA.

Proof

By Lemma B.1 and (d), A is closed and symmetric. We will show ker[A ±i]={0}. (This is equivalent to the self-adjointness of A by the general theorem.) Pick η∈ker[A −i]. For all \(x\in \mathfrak {h}\), one sees

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}s}\langle T_s x, \eta \rangle = -\langle AT_s x, \eta \rangle =-\langle T_s x, A^*\eta \rangle = -\mathrm {i}\langle T_s x, \eta \rangle . \end{aligned}$$
(12.2)

Here we used the facts T s dom(A)⊆dom(A) and \(\frac{\mathrm {d}}{\mathrm {d}s} T_{s} x =-A T_{s} x\). Solving the differential equation, we obtain 〈T s x,η〉=u 0 e−is. Since

$$\begin{aligned} \big| \langle T_s x, \eta \rangle \big|\le \mathrm {e}^{-s M}\|x\| \|\eta\| \to 0 \end{aligned}$$
(12.3)

as s→∞, u 0 must be 0. I.e., 〈x,η〉=0. Since dom(A) is dense in \(\mathfrak {h}\), this means η=0, namely, ker[A −i]={0}. Similarly we can show ker[A +i]={0}. Thus we have the assertions in the proposition. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyao, T. Monotonicity of the Polaron Energy II: General Theory of Operator Monotonicity. J Stat Phys 153, 70–92 (2013). https://doi.org/10.1007/s10955-013-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0812-y

Keywords

Navigation