
J Stat Phys (2013) 152:979–994
DOI 10.1007/s10955-013-0794-9

Stochastic Modeling of Indoor Air Temperature

Joanna Janczura · Monika Maciejewska ·
Andrzej Szczurek · Agnieszka Wyłomańska
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Abstract Temperature is one of the main parameters describing thermal comfort and indoor
air quality. In this paper we propose an approach, based on a modification of the continuous
time random walk, to model the indoor air temperature. We perform a statistical analysis
of the recorded time series, that allows us to point out the main statistical properties of the
recorded variable. The obtained conclusions about the nature of the process lead to a contin-
uous time random walk, that in contrast to the classical approach, models time dependence
of the jumps distribution. Moreover, we show that the waiting times can be modeled by a
tempered stable distribution, which yields a subdiffusive behavior in short times and diffu-
sive behavior in longer times. Finally, by conducting a simulation study we illustrate possible
applications of the presented approach in the thermal comfort monitoring and forecasting.

Keywords Indoor air quality · CTRW · Thermal comfort · Tempered stable distribution

1 Introduction

Urban residents in industrialized countries typically spend 70–90 % of their time indoors.
The occupant appreciates the indoor environment mainly by its air quality, thermal, acous-
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tic and visual comfort. A widely accepted definition of thermal comfort is that it is a
state of mind that expresses satisfaction with the thermal environment [ASHRAE 55-2004,
EN ISO 7730]. Thermal comfort is a psychological phenomenon, subjective feeling affected
by the physical laws of heat transfer.

Thermal comfort is influenced by numerous factors. They are usually divided in two
groups: environmental and personal. The first group includes air temperature, radiant tem-
perature, air velocity and humidity. The most important personal factors contributing to ther-
mal comfort are: age, gender and health status of occupant, type of clothing (particularly its
insulation), activity level (i.e. amount of physical work done) and human physiology result-
ing in metabolic heat. These factors may be independent of each other, but together they
contribute to a thermal comfort.

Thermal environment has been the subject of much international research over many
years because the occupants of the buildings frequently suffer from thermal discomfort and
this is not a minor problem. Maintaining comfortable thermal conditions inside building is
important for health and quality of life of its occupants, appropriate energy consumption
profile, as well as ensuring optimum work performance (extremes in air temperature may
have adverse effects on productivity). Although a number of modeling approaches exist
which help in studying the problem [1], the individual differences in preferences for thermal
conditions cause that achieving acceptable comfort level for all occupants is the difficult, if
not an impossible, task.

The assessment of thermal environment is often derived for steady state conditions or for
minor fluctuations of one or more of the variables [2]. However thermal conditions inside
rooms are seldom steady, due to the interaction between building structure, meteorology,
occupancy, and heat, ventilation and air conditioning (HVAC) system [3]. The thermal con-
ditions vary throughout a space and also with time (during the day, night and seasons). Hence
the real time indoor environment monitoring system based on continuous measurements of
selected physical parameters has vast prospects for human thermal comfort assessment.

Temporal variability of temperature causes that the assessment of this parameter based
on a single or several periodic measurements may be unrepresentative. Therefore continuous
monitoring and statistical analysis of measurement results is preferred [4]. The statistical de-
scription of transient states is based on an analysis of time series [5]. The effectiveness of this
method depends upon sample sizes, averaging times, and sampling strategies. For example,
the statistical description of dynamic conditions can be based on short or long-time average
values. Unfortunately, the long-time average value gives little or no information on the ther-
mal episodes that occur infrequently. Measurements that are averaged over shorter periods
allow for recognizing these episodes. However, they reflect temporary conditions that are
not representative of longer time periods. Therefore, short-term measurements may cause
large uncertainties, potentially leading to incorrect conclusions, unsatisfactory performance
of HVAC systems, or unnecessary costs [6].

Considering the shortcomings of traditional short-term measurement strategy, we pro-
posed another approach using longer measurement periods and statistical data analysis. In
this work, we want to show that a stochastic model of time series of temperature is a source
of information about the state of indoor air. This methodology is a continuation of the anal-
ysis of indoor air quality time series presented in [7], where a subdiffusive process was
analyzed in the context of experimentally recorded data. In this paper we extend the anal-
ysis presented in [7] and, based on statistical analysis of the observed time series, propose
to use a model that apart from the observed constant time periods accounts also for the sea-
sonal behavior of the underlying time series. The model is based on a modification of the
continuous time random walk scheme.
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The standard random walk describes a motion of a particle that in each time step makes
a jump randomly in one of the possible directions. However, both the random walk and it’s
continuous time limit—Brownian motion, being a milestone of the statistical thermodynam-
ics, are not capable of explaining a transport phenomena in complex systems such as glasses,
liquid crystals, polymers, living cells or ecosystems. In contrast, in the continuous random
walk (CTRW) scheme, originally introduced in [8], the waiting times between the jumps are
not constant, as in the standard random walk, but are random variables governed by some
probability law. As a consequence, the CTRW model seems to be a natural description of
transport in crowded environments and complex systems. Limit distribution of the CTRW
scheme can be also formulated within the framework of the celebrated fractional Fokker-
Planck equation [9]. On the other hand, CTRW—if properly scaled—in the limit leads to
a continuous time subordinated processes described by a Langevin type equations, see e.g.
[10, 11]. Such processes are in the origin of rapidly developing in the recent years field of
anomalous diffusion, see e.g. [12]. In this paper we propose to use the tempered stable distri-
bution [13] as an appropriate for the description of the waiting times and, consequently, the
subordinator. This distribution has many interesting properties, like e.g. finite moments of
all orders. Moreover it stays close to the purely α-stable family. It is worth mentioning, that
this class of distributions allows for modeling data that demonstrate subdiffusive behavior
at short times and normal at longer times.

The paper is structured as follows: in Sect. 2 we describe in details the analyzed time
series. Next, in Sect. 3 we introduce the proposed model, i.e., the continuous time random
walk that takes into account the properties observed in the considered data such as the ap-
parent constant time periods and the seasonality. Moreover, we present the main properties
of the proposed system. In Sect. 4 we analyze the temperature time series and apply the in-
troduced discrete model. Finally, Sect. 5 consists of the simulation study and the last section
concludes the paper.

2 Description of the Analyzed Datasets

As it was mentioned above, temperature is an important, measurable parameter associated
with thermal comfort. Therefore our attention was focused on an analysis of time series of
this variable. The present study was restricted to conditions characteristic for a classroom.
The analysis of measurement results covers three days in June 2012, although the more ex-
tensive data set is already available. The classroom is involved in a long term indoor air
quality (IAQ) monitoring program. The three days were selected to represent indoor condi-
tions, which could be considered as the baseline for the studied space. The classroom was
not equipped with mechanical ventilation. Its windows were sealed. In course of measure-
ment series, the windows were not occluded and the room was closed. Therefore, except for
cleaning operations in the morning the indoor air was influenced exclusively by the outdoor
conditions.

The measurement device was located in the central part of the room, at the height of
about 1 m. The temperature data was recorded with 15 s time resolution. The measurement
accuracy was ±0.1 °C.

We plotted the recorded time series in Fig. 1. Looking at the chart one easily notices time
dependence of the temperature values. It may be observed that the presented time series ex-
hibits a very characteristic behavior. The first aspect of it is the well pronounced seasonality.
The temperature rises during the day and it falls during the night, in cycles. The second char-
acteristic feature of the time series are the noticeable time periods when the temperature has
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Fig. 1 Temperature [°C] recorded between 12.06.2012 and 14.06.2012

a constant value. These two elements are crucial for the stochastic model of the investigated
temperature time series proposed in this paper.

3 The Model

3.1 Continuous Time Random Walk

The observed data is recorded in discrete setting for both time and scale. Hence, in order
to describe the dynamics of the analyzed dataset, we use the continuous time random walk
(CTRW) methodology [8]. Recall, that in the classical approach the CTRW process is de-
fined as:

Y (t) =
Lt∑

i=1

Xi, (1)

where the counting process {Lt } is given by

Lt = max

{
n ∈ N :

n∑

i=1

Ti ≤ t

}

with the sequence {Tn}∞
n=1 of nonnegative independent identically distributed (i.i.d.) random

variables representing the waiting times. The sequence {Xn}∞
n=1 represents the jumps. The

process {Lt } is often referred to as the renewal process or, alternatively, as the counting
process [14]. Moreover the sequences {Tn} and {Xn} are assumed to be independent.

In this paper we propose to use a modification of the classical CTRW scenario, in which
the distribution of the jump sizes depends on the actual time of the jump, while the waiting
times are governed by the tempered stable law. In the following we provide a motivation and
a detailed description of the proposed model.

The analyzed dataset exhibits seasonality (see Fig. 1) and the jumps can take only two
values a and −a (due to the sensitivity of the sensor). Therefore, we consider a binomial
model with a particle jumping between two sites, where a jump length is equal to a. The
probability of the jump is governed by a periodic function that depends on the actual time t

and therefore the jumps Xt for each t have the following form:

Xt =
{

a with probability pt ,

−a with probability 1 − pt .
(2)

Such specification is an analogy to the field induced CTRW, analyzed in [16], with pt =
1
2 (1 + f (t)) for f being a periodic function.
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Further, the statistical analysis of the considered dataset (see Sect. 4) indicates that the
waiting times can be described by the tempered stable distribution. Therefore we assume
that the sequence {Tn} constitutes a sample of independent random variables from the tem-
pered stable distribution, i.e., for each n the random variable Tn has the following Laplace
transform [17]:

E
(
e−zTn

) = ec(λα−(λ+z)α) (3)

for some parameters c,λ > 0 and 0 < α < 1. The tempered stable distribution appears to be
an important alternative to the power law distributions in confined systems, due to the finite
second moment. For the simplicity in the further analysis we assume the scale parameter
c = 1. The tempered stable distribution is related to the α-stable one through the operation
of ‘tempering’. Namely, the probability density function (pdf) of tempered stable random
variable can be expressed in the following form:

gT (x) = e−λx+λα

gU (x), (4)

where U is a totally skewed α-stable random variable and gU is it’s pdf. As we observe, for
λ = 0 the tempered stable distribution defined by the Laplace transform in (3) becomes the
α-stable random variable U . The tempered stable distribution of waiting times was consid-
ered in [17–19] from both theoretical and practical point of view. Moreover the rich class of
tempered stable distributions was examined in [13, 20–23]. Some interesting applications of
the class of tempered stable distributions one can find also in [24, 25].

To sum up, we assume that the analyzed dataset can be modeled by the process defined
as:

Y (t) =
Lt∑

i=1

XΘi
, (5)

where Θj = ∑j

i=1 Ti with the sequence {Tn}∞
n=1 of i.i.d. tempered stable random variables,

Lt = max{n ∈ N : Θn ≤ t} and the distribution of jumps Xj is defined in (2). Observe that,
in contrast to the classical CTRW assuming that the waiting times and the jumps are inde-
pendent, here the distribution of the jump depends on the actual time.

Using the relation between the counting process {Lt } and the waiting times vector {Tn}
we can find the distribution of the process {Lt }:

P (Lt = k) = P

(
t − Tk+1 <

k∑

i=1

Ti ≤ t

)
=

∫ ∞

0
P

(
t − x <

k∑

i=1

Ti ≤ t

)
gT (x)dx

=
∫ ∞

0

(
F ∗k

T (t) − F ∗k
T (t − x)

)
gT (x)dx,

where FT (·) is a cumulative distribution function (cdf) for the tempered stable random vari-
able T and F ∗k

T (·) denotes the cdf of the convolution of k tempered stable distributions. Let
us mention, the convolution of k tempered stable random variables with scale parameter
c = 1 has tempered stable distribution with scale parameter k.

In Fig. 2 we plot the first and the second moment of the process {Y (t)} calculated from
the simulated trajectories of the considered model with the parameters estimated from the
analyzed dataset (for details see Sect. 4).
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Fig. 2 The first and the second moment calculated from 10000 simulated trajectories of the CTRW model
(see (5)) with parameters estimated from the analyzed dataset (for details see Sect. 4)

3.2 The Subordinated Process as a Limit of the CTRW Model

The CTRW model defined in (5) has the following limiting process [10]:

Z(t) =
∫ t

0
f (u)dS(u) + B

(
S(t)

)
, (6)

where {B(t)} is the classical Brownian motion and {S(t)} is the inverse subordinator. In the
case of the tempered stable distribution of waiting times in the corresponding CTRW model,
the process {S(t)} is the inverse tempered stable subordinator, being a limit of the counting
process {Lt }, see (5). The inverse tempered stable subordinator is defined as follows, [26]:

S(t) = inf
{
τ : T (τ) > t

}
, (7)

where {T (τ)} is a tempered stable Lévy process, i.e., a process with independent stationary
increments having the Laplace transform given by:

E
(
e−zT (τ)

) = eτ(λα−(λ+z)α). (8)

Process {Z(t)} defined in (6) is a special case of a system defined in [10]. It arises as a com-
bination of the external process {X(τ)} which satisfies appropriate Langevin equation and
inverse tempered stable subordinator. More precisely {Z(t)} can be expressed as follows:

Z(t) = X
(
S(t)

)
,

where {X(τ)} is a solution of the Langevin equation:

dX(τ) = F
(
T (τ)

)
dt + dB(τ).

Some properties of the inverse tempered stable process one can find in [27] but also in
[17], where the inverse tempered stable subordinator was analyzed in comparison with the
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tempered stable Lévy process. Below, we recall a formula for the pdf of the inverse tempered
stable subordinator [17], namely

gS(t)(x) = 1

αx
tgT (x)(t) + λ

1

αx

∫ t

0
ugT (x)(u)du − λα

∫ t

0
gT (x)(u)du. (9)

For large and small t the density gS(t), (9), can be approximated using the following relation:

gS(t)(x) ∼ t

αx
gT (x)(t), (10)

where gT (x)(·) is a pdf of a tempered stable random variable with the Laplace transform
given in (8). The above relation is the extension of the similar behavior of stable subordi-
nator and its inverse. This property is fully examined in [15]. The process {Z(t)} defined
in (6) is called the subdiffusion process with time-dependent force and was considered in
[10] not only for the case of the tempered stable distribution but for all infinitely divisible
distributions of the subordinator. The discrete analogue of the process {Z(t)} was also an-
alyzed in [16], where the authors presented relation between the pdf of the process and the
fractional Fokker-Planck formula. Namely, the pdf gZ(t)(·) of the subdiffusion process with
time-dependent force satisfies the following fractional Fokker-Planck equation [16]:

∂gZ(t)(x)

∂t
=

[
−f (t)

∂

∂x
+ 1

2

∂2

∂x2

]
ΦgZ(t)(x), (11)

where the integro-differential operator Φ is defined as follows:

Φg(t) = d

dt

∫ t

0
M(t − y)g(y)dy

for sufficiently smooth function g(·). In the above definition the function M(·) is called
the memory kernel and in the case of the tempered stable distribution it has the following
representation [28]:

M(t) = e−λt tα−1Eα,α

(
(λt)α

)
,

where Eα,β(·) is the generalized Mittag-Leffler function defined as:

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
.

Using Proposition 1 in [10] we can calculate the moments of the process {Z(t)}:

E
(
Z(t)

) =
∫ t

0
f (u)

d

du

∫ u

0
M(u − z)dzdu,

E
(
Z2(t)

) = 2
∫ t

0
f (u)ΦE

(
Z(u)

)
du +

∫ t

0
M(t − u)du.

In the special case when the function f (x) = 0 for all x ∈ R the above formulas reduce
to [28]:

E
(
Z(t)

) = 0, E
(
Z2(t)

) =
∫ t

0
e−λuuα−1Eα,α

(
(λu)α

)
du.
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Fig. 3 The constant time periods (vector T ) and the jumps (vector X)—two time series related to the tem-
perature data

4 Temperature Data Analysis

According to our assumption of the CTRW scenario, we apply here a procedure adequate
for such kind of processes. Namely, in the first step of our analysis we divide the data into
two vectors. The first one, vector T , consists of the lengths of the constant time periods
and corresponds to the waiting times Ti in the CTRW definition (see Eq. (5)). On the other
hand, removing the constant time periods from the dataset, i.e., considering only these time
points for which a change in the values of the analyzed process occurs, leads to a vector Yti

corresponding to the jumps of the CTRW process. Precisely, differentiating the vector Yti

we obtain the sizes of the jumps Xi , namely Xi = Yti+1 − Yti . The vectors obtained from the
analyzed dataset are plotted in Fig. 3.

4.1 Waiting Times

In the next step, we analyze the waiting times properties. According to the CTRW defini-
tion, the vector {Ti} should form an independent, identically distributed sample. First, we
check the independence assumption. We apply a simple visual test that is based on the au-
tocorrelation function of both, the series and the squared series, for details see [29] or [30].
Recall, that the autocorrelation function of a time series is defined as the correlation be-
tween equally distant observations as a function of time lag. If there is no dependence in
the analyzed data the autocorrelation values should be close to 0. Moreover, the plot should
resemble the values expected for a white noise sequence. In Fig. 4 we plot the obtained au-
tocorrelation functions together with the confidence intervals for a white noise. As can be
observed, the calculated values are close to 0 and most of them lie within the white noise
confidence intervals. Hence, we may conclude that the waiting times are independent.
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Fig. 4 The sample autocorrelation function of the constant time periods (top panel) and the corresponding
squared time series (bottom panel)—a simple visual test for independence

Fig. 5 The Cj statistic calculated on the basis of the waiting times. The linear (with respect to j ) behavior
of this statistic indicates that the vector {Ti } constitutes a sample of identically distributed random variables

Next, we check if the waiting times have the same distribution. Here we propose to use a
simple visual stationarity test based on the behavior of the empirical second moment of the
underlying time series {Ti}, i.e. the Cj statistic defined as follows:

Cj =
j∑

i=1

T 2
i .

If the analyzed vector constitutes a sample with elements from the same distribution, then
the Cj statistic is a linear function with respect to j . More details of this visual test one can
find in [31]. In Fig. 5 we present the behavior of the Cj statistic calculated for the waiting
times, i.e. the vector {Ti}.
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Fig. 6 The empirical right tail of the waiting times sample and the fitted theoretical functions corresponding
to the α-stable and tempered stable distributions

On the basis of statistic Ci the rigorous regime variance test can be also constructed. The
null hypothesis for this tests is defined as follows: the quantiles of the squared time series
do not change in time. The hypothesis is satisfied for example in the case of independent
identically distributed random variables. For a detailed description of the test see [31]. In
our case the obtained p-value is equal to 0.2, what confirms the hypothesis of the same
distribution of the waiting times.

Further, we find the waiting times distribution. We consider two types of distributions,
namely α-stable and tempered stable. Since the data consists of only integer values (due to
the measurement methodology), in order to estimate the distribution parameters, we propose
to use a method based on the tail behavior of the data. Namely, we fit a tail function corre-
sponding to the tested distribution to the right empirical tail of the dataset. A similar method
was used in [32, 33] in the context of the α-stable distribution, as well as in [19] for the
tempered stable case. If the data comes form the α-stable distribution, the right tail behaves
like a power function t−α . On the other hand, if the sample follows the tempered stable
law, then the right tail can be approximated by e−λt t−α , where α and α, λ are the param-
eters of the α-stable and tempered stable distributions, respectively. In the considered case
the above functions are fitted to the right empirical tails of the sample using least squares
method. In Fig. 6 we plot the empirical right tail (in double logarithmic scale) and the fitted
functions corresponding to both distributions. As we observe, the empirical tail does not
behave according to a power law. On the other hand, the tempered stable distribution yields
much better fit than the α-stable one and replicates the empirical tail well. The estimated
parameters of the tempered stable distribution are λ = 0.01274 and α = 0.2082.

4.2 Jumps

Finally, we analyze the distribution of the jump sizes. The recorded temperature values may
jump in each time step upward or downward. Due to the measurement accuracy, the size of
the jump is always equal to 0.1 °C. However, as can be observed in Fig. 1, the probability
of upward (or equivalently downward) jump varies with time. Based on these observations
we assume that the jumps of the process are given by

Xt =
{+0.1 with probability pt ,

−0.1 with probability 1 − pt ,
(12)

where pt is a time varying (periodic) function.
In order to estimate the probability pt , we use two methods. In the first one we use

nonparametric approach and estimate pt as the proportion of upward jumps within a given
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Table 1 Parameters of the
function pt estimated using the
maximum likelihood method

a1 a2 a3 a4

0.09 5731 −0.03 0.5

hour. Precisely, we divide the dataset into 24 subsets corresponding to each hour of the day.
Next, for each hour, we calculate the number of upward jumps and divide it by the overall
number of jumps within that hour. An advantage of such method is that it does not require
an upfront specification of the form of pt . However, the results are only reliable, if there are
many data points used in the estimation procedure. Here, even though we have recorded in
total 17280 time points, the subsets consist of only from 11 observations (for 2 am) up to 47
observations (for 9 am).

In the second method we assume that the upward jump probability is given by a pe-
riodic function of the form pt = a1 sin(2π/a2(t + a3)) + a4. In order to estimate the
parameters ai , we use the maximum likelihood method, i.e. we maximize the function
L(x, a1, a2, a3, a4) = ∏T

t=t0
P (Xt = xt |a1, a2, a3, a4), where x = (xt0 , xt1 , . . . , xT ) is the ob-

served sample and the possible values for xt are ±0.1. Observe that if xt = 0.1, then
P (Xt = xt |a1, a2, a3, a4) = pt = a1 sin(2π/a2(t +a3))+a4. On the other hand, if xt = −0.1,
then P (Xt = xt |a1, a2, a3, a4) = 1 − pt = 1 − a1 sin(2π/a2(t + a3)) − a4. Therefore, using
the indicator function 1{·}, we may write that:

L(x, a1, a2, a3, a4) =
T∏

t=t0

P (Xt = xt |a1, a2, a3, a4)

=
[
a1 sin

(
2π

a2
(t + a3)

)
+ a4

]1{xt =0.1}

×
[

1 − a1 sin

(
2π

a2
(t + a3)

)
− a4

]1{xt =−0.1}
. (13)

In practice the above likelihood function has to be maximized numerically. It should be
noted, that the numerical maximization may lead to parameter estimates yielding a value
of pt that is negative or higher than one. Hence, in order to avoid such situation, some
constraints should be used in the procedure. Here, we assume that a4 > 0, | a4

a1
| ≥ 1 and for

a1 > 0 a4−1
a1

≤ −1, while for a1 < 0 a4−1
a1

≥ 1. The estimated parameters are provided in
Table 1. Note that the obtained period of 5731 observations approximately corresponds to
a daily periodicity, as there are 5760 observations each day. This is in compliance with the
intuition and the visual investigation of Fig. 1.

The values of pt obtained using both proposed methods are plotted in Fig. 7. Observe
that, although the curves are not identical, they preserve similar shape with a higher prob-
ability of an upward jump at the beginning of the day and lower in the late afternoon and
night hours. This result is in compliance with the temperature properties apparent in Fig. 1.
Analogously, there is an upward trend of temperature in the morning/early afternoon, which
changes into a downward trend in the late afternoon.

5 Simulation Study

In this section we perform a simulation study using the proposed model and the parameters
estimated in the previous section. First, in Fig. 8 we plot a sample simulated CTRW trajec-
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Fig. 7 The estimated probability of an upward jump using nonparametric method (blue line) and sine speci-
fication (red line)

Fig. 8 The observed (top panel) and simulated (bottom panel) values of temperature

tory and compare it with the observed values of temperature. As can be noted, the simulated
values replicate the properties of the analyzed dataset.

Next, we calculate the quantile lines, i.e., the curves describing the values that with a
given probability will not be exceeded by the corresponding process, see [34] for details. The
quantile lines of levels 10 %, 20 %, . . . , 90 % obtained using 10000 simulated trajectories are
plotted in Fig. 9. Additionally, in the same figure we plot the recorded temperature values.
Observe that the observed temperature does not exceed the bounds given by the 10 % and
90 % quantile lines.

Further, using 10000 simulated trajectories of the CTRW model (5), we plot the time
evolution of the model distribution. The obtained probabilities P (Y (t) = x) are plotted in
Fig. 10.

Finally, in order to illustrate how beneficial might be the simulations of the proposed
model in the air quality monitoring, we calculate the temperature forecast for the next hour
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Fig. 9 Quantile lines of level 10 %,20 %, . . . ,90 % and the measured temperature (black thick line)

Fig. 10 Time evolution of the temperature probability in the considered CTRW model

and the next day. The obtained forecast is then validated by comparing it with the actual
measured values. To this end, we fit the model to the first 11520 observations (i.e. 48 hours)
and then based on the obtained estimates we calculate the forecast. The values obtained us-
ing 10000 simulated trajectories of the considered model are plotted in Fig. 11. Moreover,
we calculate the 10 % and 90 % confidence bounds for the forecast, i.e., the curves within
which a future value should lie with 80 % probability. As can be observed in the figure,
the actual measured values lie within the calculated confidence interval and the forecast vi-
sually resembles the actual values. Next, we perform a more rigorous validation. Namely,
we calculate the mean squared error (MSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE) of the forecast for the next 24 hours and the next hour. The ob-
tained values are given in Table 2. The mean percentage error does not exceed 0.02 % for
the 24 hours forecast and is no more than 0.002 % for the one hour forecast, so the tempera-
ture values are predicted quite accurately. In absolute terms the mean 24 hour error is about
0.4 °C, while the mean hourly error about 0.04 °C.
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Fig. 11 Measured values of temperature together with the 24 hour forecast. Additionally, the 10 % and 90 %
confidence bounds are given

Table 2 Mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE)
of the forecast for the next 24 hours (first row) and the next hour (second row)

Time horizon MSE MAE MAPE

24 hours 0.2713 0.4234 0.0179 %

1 hour 0.0028 0.0357 0.0015 %

6 Conclusions

Measurements of temperature may be a source of information to characterize the transient
state of the thermal environment. The temperature is extremely important to the occupant’s
perception of indoor air quality and thermal processes occurring inside room [35]. It reflects
transient state of thermal environment because of an inherent link with building usage and
surroundings [36]. The temperature in a building is dependent on outside temperature, sun
loading, plus heating and cooling added by the HVAC system and other sources, e.g. occu-
pants add heat to the room since the normal body temperature is much higher than the room
temperature. Therefore, temperature value is the result of a range of interactions affected by
seasonal and daily changes in meteorology and by the requirements of occupants varying in
time and space [37].

In principle, two major kinds of information are useful for the indoor microclimate spe-
cialists. The first kind of information is applicable to the direct control of heat ventilation
and air conditioning systems. The data which is useful for this purpose shall be acquired
continuously and in real time. The other kind of information serves the assessment of the
indoor thermal conditions in relatively long-term perspective. The evaluation shall be based
on the time series of the measurement data. Therefore, in this paper we search for mathe-
matical methods which would allow for the complex and quantitative assessment of indoor
thermal conditions based on the time series of the measured values of physical/chemical
parameters e.g. the temperature. In our opinion this is the way to provide the second kind of
information.

In this paper we considered a stochastic system that allows for modeling such time series
as the indoor temperature. We took into account the seasonal behavior but also the constant
time periods observable in the indoor temperature measurements. More precisely, we pro-
posed to use a generalized CTRW scheme in which the probability of jumps is given by a
(periodic) function of time. Moreover we extended the classical model by introducing the
tempered stable distribution of waiting times. For such a model we proposed a procedure to
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verify the model assumptions and to estimate the model parameters. This procedure can be
divided into following steps:

– divide the analyzed data into two vectors—first corresponding to the waiting times and
second to the jump sizes,

– check the assumption on the independence of waiting times using autocorrelation func-
tion,

– check if the waiting times constitute sample from the same distribution by using tests
based on the empirical second moment of the underlying time series,

– estimate the parameters of the tempered stable distribution using the empirical tail behav-
ior and check the fit of the theoretical tail,

– estimate the parameters of the jump probabilities using the maximum likelihood method.

Finally, we have shown in the simulation study that fitting an appropriate model to the an-
alyzed data set might be beneficial in analyzing, monitoring and forecasting the thermal
environment indoors. It is worth mentioning, that the presented methods were used for the
measurements over short periods that gives the greater reliability of the obtained results.
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