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Abstract We extend the classical Barabási-Albert preferential attachment procedure to
graphs with internal vertex structure given by weights of vertices. In our model, weight
dynamics depends on the current vertex degree distribution and the preferential attachment
procedure takes into account both weights and degrees of vertices. We prove that such a
coupled dynamics leads to scale-free graphs with exponents depending on parameters of the
weight dynamics.
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1 Introduction

Many systems of interacting objects or individuals in natural and social sciences can be
described by complex graphs [1, 5, 8, 10, 18]. Individuals positioned in vertices of such
graphs interact along edges with their neighbors. The structure of neighborhoods may have
a quite complex topology resulting from various random processes which describe mecha-
nisms of growing graphs. To mimic the “the rich get richer” rule, Barabási and Albert used
the preferential attachment in growing their graphs [1–3]. A preferential attachment rule
says that a new vertex is linked with already existing ones with probabilities proportional to
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J. Miȩkisz (�)
Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw,
Poland
e-mail: miekisz@mimuw.edu.pl

mailto:choromanski1@gmail.com
mailto:gruby@mat.umk.pl
mailto:miekisz@mimuw.edu.pl


1176 K. Choromański et al.

their degrees. Such a procedure leads to a scale-free graph with a power-law degree distri-
bution, P (k) ∼ k−3. This was heuristically understood in [1–3] and proved mathematically
in [7, 11].

Since then there were proposed many generalizations and extensions of the preferen-
tial attachment procedure. In the Erdös-Rényi random graph [13], an edge is created with
a fixed probability between any two vertices of a given finite set. It is easy to see that de-
grees of vertices in the Erdös-Rényi graph follow the Poisson distribution. The Erdös-Rényi
procedure was generalized to graphs with vertices with an internal fitness in [4, 6]. In such
models, the probability of creating an edge between two vertices depends on their fitnesses.
Various distributions of internal fitnesses lead to scale-free graphs with various exponents.
In growth models which generalize directly the preferential attachment rule, probability of
linking a new vertex with an already existing one is proportional to the product of its degree
and fitness [4, 17].

In this paper, we generalize the above procedure to allow both vertex fitnesses and de-
grees to evolve in the coupled dynamics. Namely, we introduce a variable which describes
an internal state of a given vertex—its weight. We allow weights of vertices to undergo
a simple dynamics with rates proportional to their current degrees. At the same time, our
preferential attachment procedure takes into account both weights and degrees of vertices—
a probability of linking a new vertex with an already existing one is proportional to the
product of its degree and weight. Our model is a coupled dynamics toy model. Its simplicity
allows us to prove rigorously that generated graphs are scale free and to derive analytically
power-law exponents which depend on parameters of the weight dynamics.

Recently, in the framework of evolutionary game theory, there were analyzed models
with co-evolving graph structure and strategy profile [12, 14, 16, 19]. In spatial games, play-
ers are located at vertices and play games with their neighbors. The payoff of any player
is then the sum of payoffs resulting from individual games. Players may simultaneously
change their strategies and rewire connections with other players taking into account their
payoffs. This leads to co-evolutionary model of graph structure and strategies. In [14], scale
free networks were obtained in special multi-adaptive games. In above and other models,
topological and strategic properties were obtained by means of computer simulations and
various approximations. To the best of our knowledge, our model is the first coupled dy-
namics with analytically derived power-law exponents. To prove our results we introduce a
fairly general new approach.

2 Coupled Dynamics of Graph Growth and Weights

We will now define precisely our discrete-time dynamical model. We assume that every
vertex may have one of two weights, w1 > 0 and w2 > 0, satisfying w1 + w2 = 1. The
mechanism of the graph growth combines a classical procedure of the preferential attach-
ment [1–3] and a simple mutation dynamics of weights. At time t = 1, the graph consists of
two vertices connected by a single edge, both with the w1 weight. Now we describe induc-
tively the dynamics. At any time t +1 we have two substeps. In the first substep, we add one
new vertex with the weight w1 and connect it with the probability kiwi

2t
to one of the vertices

present at time t , where ki is the degree of the vertex i and wi is its weight. Observe that the
sum of degrees of all vertices at time t is equal to 2t . Because

∑
i

kiwi

2t
< 1, it is possible that

no vertex will be chosen to be linked with the new one. In that case we link the new vertex
with itself and assume that its degree is 2. In the second substep, we choose one vertex with
the probability proportional to its degree, in order to upgrade its weight. Then we assign to
the chosen vertex a weight wi with the probability wi , i = 1,2.
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Let us observe that for w1 = 1 we retrieve the original Barabási-Albert model. On the
other hand, in the case of w1 = w2 = 1/2, although vertices do not differ with respect to
their weights, our model is not reduced to the original one because at every step, with 1/2
probability a self-connected vertex is created. As a consequence, with a very high probability
our graph is not connected.

Let Nk(t) = [Nk(1, t),Nk(2, t)]T be the column vector of expected number of vertices of
the degree k and weights w1 and w2 at time t . We assume that both substeps are performed
independently. It follows that

Nk(i, t + 1) = Nk(i, t) + Nk(j, t)
k

2t
wi − Nk(i, t)

k

2t
wj

+ Nk−1(i, t)
k − 1

2t
wi − Nk(i, t)

k

2t
wi (1)

for k > 2, t ≥ 2 and i, j = 1,2; i �= j , with the initial condition N1(1,1) = 2. We do not
write recurrence relations for Nk(i, t), k = 1,2; the asymptotic behavior of Nk(i, t) does not
depend on them as it will be seen below.

We can write Eq. (1) in the following matrix form:

Nk(t + 1) =
(

I − Gk

t

)

Nk(t) + k − 1

2
FNk−1(t), (2)

where Gk = [gij ]i,j=1,2, where gij = − k
2 wi if i �= j and gii = k

2 , F = [fij ]i,j=1,2, where
fii = wi/2 and fij = 0 for i �= j .

The above recurrence equation is a two-dimensional generalization of a scalar equation
which served as a starting point in the analysis of the original Barabási-Albert model [9].
Our approach is different. As a special case (w1 = 1) we re-derive the exponent for the
original Barabási-Albert model. Using the induction on k in Eq. (2), we can prove that like
in the original model, the graph evolves in the linear way, that is for every k, Nk

t
→ vk when

t → ∞, for some vector of constants vk = [vk(1), vk(2)]T . To be more precise, the linear
evolution follows from the fact that the matrix (I + Gk) is positive definite (details will be
provided in a separate paper).

It is easy to see that rates of linear evolution, vk , satisfy the following system of linear
equations:

vk−1 = 1

k − 1
F−1(I + Gk)vk. (3)

Let sk = vk(1) + vk(2), then rk(i) = vk(i)

sk
, i = 1,2, is the fraction of vertices of the weight

wi in the population of k-degree vertices. It is easy to see that rk(i) converges to wi as
k → ∞. Our main result is that the appropriate rate of this convergence implies the power
law of vertex degree distribution. Our approach is very general and it enables us to calculate
analytically the exponent of the power law and to show its dependence on the weight w1.
From Eq. (3) we get that

sk−1

sk

= rk(1)αk(1) + rk(2)αk(2), (4)

where

αk(i) =
(

1

wi

− 1

)

+ 1

k

(
3

wi

− 1

)

+ O

(
1

k2

)

. (5)
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Fig. 1 Power-law exponent β as a function of the weight ω1, the solid line is the graph of the formula (30),
open circles represent results of stochastic simulations of the process of building the graph, the dotted line is
just the guide for the eye

3 Results and Proofs

Let us now formulate our main result.

Theorem The distribution of vertex degrees in our coupled preferential attachment and
weight dynamics satisfies the power law, that is skk

β → c for some positive constant c,
where

β = 5 + d(w1)

(
1

w1
− 1

w2

)

, (6)

where d(w1) is given in (30).

In Fig. 1 we present β , an exponent of the power law, as a function of the weight w1.
For w1 → 0 and w1 → 1, the exponent tends to 3. For w1 = 1 it is expected because in that
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case our model becomes the standard Barabási-Albert one. For w1 = 0, our model behaves
like the Barabási-Albert one in the limit of the infinite k. We also see that the exponent
of the power law is symmetric with respect to the line w1 = w2 = 1/2 which again is a
consequence of the fact that the exponent describes the behavior of the network in the limit
of the infinite k and therefore it does not depend on initial conditions. The maximum β = 5
is obtained for w1 = w2 = 1/2. As it was mentioned before, although vertices do not differ
with respect to their degrees, our model is not reduced to the original one because self-
connected vertices are created with 1/2 probability.

We have also performed stochastic simulations of the graph growth for certain values of
w1 and obtained power-law exponents numerically. We build the network of 109 vertices
and we repeat the simulation 1000 times to have more data. Results of computer simulations
agree with the analytical solution quite well as it can be seen in Fig. 1. The discrepancy
grows as we approach w1 = 1/2. In the limiting case we get numerically β = 4.92 instead
of the rigorous analytical result β = 5. In this case, self-connected vertices are created with
1/2 probability. One then needs to build big networks to get the right exponent. Necessity
of having big networks to get large exponents was discussed in [15]. They showed there that
to get β = 5 one really needs 1012 vertices which is beyond our computational capabilities.

Special Cases We will first derive an approximate formula for β as a function of w1 in the
vicinity of w1 = 1/2. The starting point is Eq. (3). We begin with the following mathematical
result.

Lemma If a sequence nk , k = 0,1, . . . , of positive real numbers satisfies the following re-
currence equations:

nk−1

nk

= 1 + β

k
+ O

(
1

kθ

)

,

where θ > 1, then for some constant c we have

nkk
β → c when k → ∞.

Proof We write nk in the form:

1

nk

= 1

n1

n1

n2

n2

n3
· · · nk−1

nk

(7)

hence

1

nk

= 1

n1

k∏

j=2

(

1 + β

j
+ O

(
1

j θ

))

= 1

n1

k∏

j=2

(

1 + β

j

) k∏

j=2

(

1 + O

(
1

j θ

))

. (8)

Analogous equation is satisfied by the sequence nk = k−β which satisfies the assumption of
the lemma. It is easy to see that the second product has a limit. We then multiply Eq. (8) by
nk = k−β and the lemma is proved. �

Now we come back to Eq. (3) which can be written in the following form:

vk−1(1) = 1

k − 1

(
k + 2

w1
vk(1) − kvk(2)

)

,

vk−1(2) = 1

k − 1

(
k + 2

w2
vk(2) − kvk(1)

)

.

(9)
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First we consider the case w1 = w2 = 1/2. We add the above two equations and get
one-dimensional recurrence equations,

sk−1 = sk + 5

k − 1
sk. (10)

The theorem follows immediately from the lemma with the power-law exponent β = 5.
Now we set w1 = 1/2 + ε, expand Eqs. (9) in powers of ε, keep linear terms only and get

vk−1(1) = 1

k − 1

[
2(1 − 2ε)(k + 2)vk(1) − kvk(2)

]
,

vk−1(2) = 1

k − 1

[
2(1 + 2ε)(k + 2)vk(2) − kvk(1)

]
.

(11)

We add and subtract the above two equations and get

sk−1 = 1

k − 1

[
(k + 4)sk − 4ε(k + 2)wk

]
,

wk−1 = 1

k − 1

[
(3k + 4)wk − 4ε(k + 2)sk

]
,

(12)

where sk = vk(1) + vk(2) and wk = vk(1) − vk(2).
We set wk = 2(d(ε)/k + ε)sk for some function d(ε). At the moment this is an ansatz

allowing us to solve the system of recurrence equations. It follows directly from the propo-
sition stated and proved below. Equation (12) now read

sk−1 = sk +
(

5 − 8εd(ε)

k − 1
− 16εd(ε)

k(k − 1)
+ O

(
ε2

)
)

sk,

sk−1 = sk +
(

1

k − 1
+ 2d(ε)

(k − 1)ε
+ O

(
1

k2

))

sk.

(13)

If we neglect ε2 term, then the first equation in (13) tells us that sk satisfies the power law
with the exponent β = 5 − 8εd(ε) and the second one tells us that the exponent is equal to
1 + 2d(ε)

ε
. The consistency requires that these two expressions are equal and we get

β(ε) = 5 − 16ε2 + O
(
ε3

)
. (14)

The rigorous expression for β is given below in (30).

Proofs Let us now come back to our theorem. We will examine the rate of convergence of
rk(i) to wi . �

Proposition rk(i) = wi + di

k
+ O( 1

kθ ), where θ > 1 and d1 + d2 = 0.

The theorem follows directly from the above proposition and Eqs. (4–5) with d(w1) = d1.

Proof of the Proposition From (4) and (5) we have:

rk(1) = Akrk−1(1) − Bk

1 − (1 + Ck)rk−1(1)
, (15)
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where:

Ak =
k
2

w1
w2

+ 1
w2

k
2 (1 + 1

w1
) + 1

w1

, Bk = −
k
2

k
2 (1 + 1

w1
) + 1

w1

,

Ck = −
k
2 (1 + 1

w2
) + 1

w2
k
2 (1 + 1

w1
) + 1

w1

.

(16)

We expand Ak , Bk and Ck in powers of 1/k and get

Ak = A + A(1)

k
+ O

(
1

k2

)

, Bk = B + B(1)

k
+ O

(
1

k2

)

,

Ck = C + C(1)

k
+ O

(
1

k2

)

,

(17)

where A, B , and C are limits of Ak , Bk , and Ck as k → ∞, so we have:

A =
w1
w2

1 + 1
w1

, B = − w1

1 + w1
, C = −1 + 1

w2

1 + 1
w1

(18)

and

A(1) = 2w1

(1 − w1)(1 + w1)2
, B(1) = 2w1

(1 + w1)2
,

C(1) = 2w1 − 4w2
1

(1 − w1)(1 + w1)2
.

(19)

Proof of the convergence of the sequence k(rk(i) − wi) We use the recurrence formula (15)
for rk(1) and obtain the following equation:

(
rk(1) − w1

) = (rk−1(1) − w1)(A − B(1 + C)) + 1
k
η(k)

(1 − (1 + C)rk−1(1) − 1
k
C(1)rk−1(1))(1 − (1 + C)w1)

+ O

(
1

k2

)

, (20)

where

η(k) = (
A(1)rk−1(1) − B(1)

)(
1 − (1 + C)w1

) + C(1)rk−1(1)(Aw1 − B). (21)

It is easy to see that η(k) is convergent, the limit is denoted by η.
Let γ (k) = k(rk(1) − w1). It follows from Eqs. (20–21) that

γ (k) = mγ (k − 1) + b + O

(
1

k

)

(22)

for some constants, m,b, where 0 < m < 1. Now let γ2(k) = mγ (k − 1) + b for k > 1 and
γ2(1) = γ (1). It can be easily shown that

∣
∣γ2(k) − γ (k)

∣
∣ ≤ P

k−1∑

i=1

mi

k − i
(23)

for some constant P . Now we have to prove that the sequence lk = ∑k−1
i=1

mi

k−i
converges to 0.

We have

lk =
∑k−1

i=1
m−i

i

m−k
. (24)
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We use the Stolz theorem and have

lim
k→∞

lk = lim
k→∞

m−k

k

m−(k+1) − m−k
= 0. (25)

We have showed that

rk(i) = wi + di

k
+ o

(
1

k

)

.

Proof that rk(i) = wi + di

k
+ O( 1

kθ ) for some θ > 1 Let us denote the limit of the sequence
γ (k) by γ hence γ = mγ + b. We would like to prove that there exists σ > 0 such that
limk→∞ kσ (γ (k) − γ ) = 0. We denote kσ (γ (k) − γ ) by ζσ (k). We subtract γ = mγ + b

from (22) and multiply the new equation by kσ (for σ ∈ (0,1)) and obtain

ζσ (k) = mζσ (k − 1) + O

(
1

k1−σ

)

. (26)

We define a supporting sequence: ζ(0) = ζθ (0) and ζ(k) = mζ(k − 1). We get

∣
∣ζ(k) − ζσ (k)

∣
∣ ≤ W

k−1∑

i=1

mi

(k − i)1−σ
(27)

for some positive constant W . We use again the Stolz theorem and obtain that sequences,
{ζ(k)} and {ζσ (k)}, have the same limit hence it is equal to 0. We can take θ = 1 + σ and
the Proposition is proved.

We have also obtained the formula for d(w1) present in (6),

d(w1) = η

(1 − (1 + C)w1)2 − (A − B(1 + C))
. (28)

From (21) we get

η = −2
(2w1 − 1)w1 (w1

2 − w1 + 1)

(w1 − 1)(w1 + 1)2
(29)

and finally

β(w1) = 2w1
2 − 2w1 + 3

2w1
2 − 2w1 + 1

. (30)

Let us observe that ε expansion around w1 = 1/2 agrees with (14).

4 Conclusions

We introduced a coupled dynamics of growing scale-free graphs with evolving vertex
weights. In our generalized preferential attachment procedure, a probability of a new link
is proportional to the product of a degree and a weight of a given vertex. Vertex weights
evolve as the graph grows. Our main general result is that an appropriately fast convergence
of the percentage of vertices of a given weight implies the power law of the overall de-
gree distribution. We derive analytically power-law exponents and show that they depend
on parameters of the weight dynamics. Our approach involves two-dimensional recurrence
relations as opposed to the original one-dimensional Barabási-Albert model. To the best of
our knowledge, our model is the first one with the coupled dynamics of the graph growth
and evolution of vertex weights (fitnesses) with analytically derived power-law exponents.
Methods developed here can be used in other models of growing graphs.
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