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Abstract Non-equilibrium effects resulting from the slow relaxation of inertial particles
to statistical equilibrium with flow fluctuations in turbulence are known to have important
consequences, but they are not readily incorporated into models. Here, a simple analysis
of these effects predicts −2/3 power-law dependence of the particle deposition rate on
Stokes number (normalized particle inertia) in the far field of a confined turbulent flow,
and a weaker near-field dependence. Near-field measurements and numerical simulations
exhibit this weaker dependence, as do models that are generally viewed as validated by
this result, but the models fail to capture the newly identified far-field behavior due to their
equilibrium assumptions. Quantification of these qualitative observations is obtained by in-
corporating particle response to fluid motion into ‘one-dimensional turbulence’ (ODT), a
stochastic computational model of turbulence.
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1 Introduction

Modeling of particle-laden turbulent flow confronts the difficulty that the response of inertial
particles to fluid motion is time lagged, so the kinematic state of the particle field is sensi-
tive to past history as well as the current flow state. The coupled particle-fluid system can
nevertheless be in a state of statistical quasi-equilibrium, which is here termed equilibrium
in accordance with the terminology in the multiphase-flow literature. However, equilibrium
in this restricted sense does not hold in many cases. The recognized importance of non-
equilibrium effects has motivated heuristic modifications of equilibrium-based models, but
existing modeling frameworks do not readily accommodate a fundamentally sound repre-
sentation of non-equilibrium particle-fluid states [24, 25].

Equilibrium-based models have significant capabilities, including the reported prediction
of wall deposition rates of high-inertia as well as low-inertia particles [7, 24, 28]. Non-
equilibrium effects are strongest at high inertia (i.e., slow particle response to fluid motion),
so the reported agreement with measurements and numerical simulations in this regime is
especially noteworthy. However, it is shown here that this apparent agreement is the result
of a fortuitous cancellation of errors.

The first error is the previously unnoticed inability of equilibrium-based models to cap-
ture a leading-order effect of non-equilibrium in the high-inertia regime. This effect is iden-
tified here by means of a simple scaling analysis of this regime. The second error is the
interpretation of transient evolution in numerical simulations as long-time asymptotic be-
havior. This point is addressed here using a stochastic computational model of turbulence,
denoted ‘one-dimensional turbulence’ (ODT) [12], which is extended for this purpose to
incorporate particle-flow interactions. It would be difficult if not impossible to obtain exper-
imental confirmation of these results and inferences, but a definitive three-dimensional (3D)
numerical simulation, guided by the present results, should be attainable.

Section 2 describes the specific flow configuration that is studied and its relevant features.
The high-inertia regime is analyzed in Sect. 3. ODT and its extension to particle-laden flow
are described in Appendices A and B, respectively, and computed results are presented and
interpreted in Sect. 4.

2 Phenomenology of Deposition from Particle-laden Turbulence

To tie the present study to previous work, the specific focus is particle deposition on the
side walls of fully developed turbulent channel flow, which is statistically homogeneous
in the streamwise (mean-flow) direction and statistically stationary. Several simplifying as-
sumptions are adopted that are consistent with previous modeling and numerical simulation
studies but differ in several respects from experimental conditions. Although comparisons to
experimental results are shown for completeness, the lack of direct comparability to analy-
sis, models, and simulations (present and previous) limits their role relative to comparisons
among models and simulations. Nevertheless, it is shown in Sects. 3.3, 4, and 5 that novel in-
sights are gained with regard to the interpretation of numerical simulation results, the realm
of applicability of various models, and the comparison of both to experimental data.

Particles are assumed to be dynamically passive, i.e., they do not affect the flow or each
other. Their response to the flow is idealized as Stokes drag in the scaling analysis, supple-
mented by an empirical particle-Reynolds-number correction in some of the computations
(see Appendix B). Gravitational effects are omitted. A particle that hits a wall is deemed
to be deposited there and is no longer present. (The experiments use droplets that form a
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film when they hit the wall, and are performed in pipes rather than channels.) The accu-
racy of these idealizations decreases with increasing particle inertia, but they are useful for
elucidating the underlying physics provided that the results are interpreted with due caution.

The following fluid-mechanical terminology is used. The fluid (gas) flow is parameter-
ized by the channel half-height h, the kinematic viscosity ν, and either the bulk flow velocity
ub or the friction velocity uτ = √

ν |dū/dy|h, where ū(y) is the mean streamwise (x) veloc-
ity expressed as a function of the wall-normal coordinate y and h denotes evaluation at a
wall (y = ±h). uτ is more fundamental than ub in that uτ can be expressed in terms of ν,
the (constant) fluid density ρf , and the imposed mean streamwise pressure gradient dp/dx

through momentum conservation, but ub for given flow setup is an empirical quantity, not
yet derived from first principles.

The only relevant particle property is the aerodynamic time constant τp ; see (19). Al-
though finite particle radii are used in the ODT simulations for consistency with comparison
cases, they are so small that the results are indistinguishable from results for nominal point
particles. τp and fluid parameters are combined to form the particle Stokes number (wall-
normalized time constant) τ+

p = τpu2
τ /ν. (In general, superscript + denotes wall normaliza-

tion.)
The local (in time) particle deposition rate is expressed as a deposition velocity Vd , de-

fined as depositions per unit wall area per unit time divided by the instantaneous volume-
averaged particle concentration, here allowing for time variation of that concentration. (Time
rather than x is the independent variable because temporal evolution of the streamwise-
homogeneous flow is considered; see Sect. 4.4 and Appendix A.) The corresponding dimen-
sionless quantity is V +

d = Vd/uτ .
Measurements of the dependence of V +

d on τ+
p exhibit three distinct regimes termed the

diffusional-deposition, diffusional-impaction, and inertia-moderated regimes, with transi-
tions at τ+

p = 0.3 and 30 respectively. In the inertia-moderated regime, measurements up to
τ+
p of order 103 suggest a barely perceptible (relative to experimental uncertainty) decline

of V +
d with increasing τ+

p [15, 28]. The behavior in this τ+
p range (and at smaller τ+

p ) is re-
produced by closure modeling of the ensemble-averaged governing equations [7, 25, 28]. It
is recognized that the decline at large τ+

p is due to the decreasing effectiveness of turbulence
in inducing lateral deflections of particles as particle inertia increases.

Large-eddy simulation (LES) of pipe-flow deposition extending to higher τ+
p values (up

to 104) [26] suggests an acceleration of the declining trend for τ+
p > 103. There does not

appear to be subsequent discussion of this observation in the literature, leaving open the
question of whether the aforementioned models capture this effect.

A physical basis for sharper decline is identified here using a straightforward scaling
analysis that accounts for non-equilibrium effects. A computational model is then used to
quantify the predicted behavior and relate it to the results of previous studies.

Both of these approaches indicate that the onset of the asymptotic behavior occurs only
after a long transient relaxation period. Previously reported weak τ+

p dependence seen at
large τ+

p [1, 27, 28] might be partially the result of observation during the initial transient
(corresponding to the near field in spatially developing flow) rather than the ultimate statisti-
cally steady evolution. This suggests that further computational (and possibly experimental)
study might be needed in order to distinguish asymptotic behavior from initial transients.
Previous analysis by Graham [5] has analogous implications, albeit without addressing the
particular regimes and mechanisms considered here.
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3 Analysis of High-inertia Deposition

3.1 Scaling Analysis

Turbulent channel flow is characterized by three velocity scales: the bulk velocity ub , a tur-
bulent fluctuation amplitude (‘large-eddy velocity’) u′, and the friction velocity uτ . The
relationship between u′ and uτ in channel flow is discussed in Sect. 3.2.

The other governing quantities are h, τp , and ν. h/ν times each of the respective veloc-
ity scales defines bulk, turbulent, and friction Reynolds numbers Reb , Re′, and Reτ . High
turbulence intensity (based on any of these Reynolds numbers) is assumed. Stokes drag is
assumed with no particle-Reynolds-number correction.

To distill the essential physics governing the parameter dependences of V +
d in the limit

of high particle inertia, the lateral (wall-normal) structure of the channel flow, e.g. the y

dependence of u′, is neglected, so in effect, the flow is idealized as homogeneous, isotropic,
statistically steady turbulence with mean streamwise flow velocity ub .

Various particle initial conditions are considered. It is convenient to begin by assuming
that particles traveling at given streamwise (x) velocity U0 are introduced, with zero lateral
(y) or spanwise (z) velocity, at the nominal flow mid-plane, y = 0. For now, U0 is assumed
to be much larger than flow velocity scales, but later this assumption is relaxed. Deposition
is deemed to occur upon first passage through one of the planes y = ±h.

For high particle inertia, it is shown in Sect. 3.3 that the particle deposition time td is
much less than τp , and consequently that the particle streamwise velocity U remains large
and its lateral velocity V remains small compared to characteristic flow velocities. There-
fore the streamwise particle slip SU = U − u is of order U0 and the lateral slip SV = V − v

is of order u′. Here, (u, v,w) and (U,V,W) denote the fluid and particle velocity vectors,
respectively, in terms of the streamwise, lateral, and spanwise components. Where the argu-
ments (location and time) of velocity components are not obvious from the context, they are
shown explicitly. Spanwise slip is immaterial under the stated assumptions and therefore is
not considered.

Though the idealized homogeneous flow is unconfined, the effect of lateral confinement
is implicitly introduced by taking the turbulence integral scale (largest eddy size) to be of
order h, so the large-eddy time scale is T ∼ h/u′. The particle eddy-crossing time tc is
of order h/U0. Based on Stokes drag (see Appendix B), the particle velocity change in a
given direction while crossing an eddy scales as S tc/τp , where S is the corresponding slip
component, SU or SV . The particle lateral velocity change caused by a large-eddy traversal
is then ΔV ∼ u′tc/τp .

During a time interval t � tc , a particle is subject to order t/tc independent velocity
increments due to these eddy effects. (This is based on U0 � u′. If this does not hold, then
T is the relevant time scale, replacing tc and thus eliminating dependence on U0.) The regime
of interest is the limit of large τp in which the individual velocity increments ΔV are small.
Under these conditions, the time evolution of the velocity scale V is a diffusion process that
obeys the scaling V (t) ∼ ΔV (t/tc)

1/2 ∼ (u′/τp)(tct)
1/2, and hence dV 2/dt ∼ D, where the

velocity diffusion coefficient D obeys D ∼ u′2tc/τ 2
p .

This diffusion picture omits a damping mechanism that causes V (t) to transition eventu-
ally to a stationary random process. In Sect. 3.3, this transition is shown to occur at a time
far beyond the deposition time td , demonstrating both that the diffusion picture is valid for
this regime and that high-inertia deposition is a non-equilibrium process.

The deposition time is estimated to be the time t at which h = tV (t), giving

td ∼ (h2τ 2
p/u′2tc)1/3. (1)
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The definition of the deposition velocity Vd in Sect. 2 implies that Vd scales as h/td , giving

Vd ∼ (hu′2/tc)
1/3(tc/τp)2/3. (2)

This result exhibits − 2
3 power-law dependence of the deposition rate on the particle time

constant, the key physical result, which is now interpreted in the context of channel flow.

3.2 Implications for Channel Flow

Two salient features of channel flow that are omitted from the foregoing analysis are the
presence of mean shear that drives turbulent motions and the inhibition of turbulent transport
near the walls. One manifestation of the complexity of the resulting flow is experimental [2]
and computational [8] evidence that the maximum (with respect to y) of u′ in turbulent
channel flow scales as (ubuτ )

1/2. It is difficult to formulate a statistical description of near-
wall flow that is consistent with this, let alone analyze particle response to this flow, so
no attempt is made here to generalize the model of Sect. 3.1 to incorporate lateral flow
inhomogeneity. Therefore the model has the same degree of applicability to pipe flow as to
channel flow.

Treating u′ as a single velocity scale rather than as a function of y is in any case an
idealization. For simplicity, u′ ∼ ub is assumed, but the consequence of instead assuming
u′ ∼ uτ is noted below. For either case, Vd is normalized by the friction velocity uτ , both
because it is the customary normalization at lower inertia, for which the near-wall flow con-
trols the deposition rate, and because this normalization is found to collapse the high-inertia
numerical results of Sect. 4, although the reason for this is unclear due to the aforementioned
complications.

Division of (2) by uτ and substitution of h/U0 for tc and ub for u′ give

V +
d ∼ (U+

0 )−1/3Re2/3
b (τ+

p )−2/3, (3)

which identifies the τ+
p dependence of V +

d . Dependence on ub is eliminated using the Blasius
resistance formula, long regarded as empirical but recently derived from a more fundamen-
tal perspective [4]. The Blasius formula, f ∼ Re−1/4

b , where the friction factor f scales as
(Reτ /Reb)

2, implies Reb ∼ Re8/7
τ and thus

V +
d ∼ (U+

0 )−1/3Re16/21
τ (τ+

p )−2/3. (4)

The exponent 16
21 is replaced by 2

3 if u′ ∼ uτ is assumed rather than u′ ∼ ub . Thus, the
exponent varies only slightly over a range of possible behaviors that bracket the observed
scaling.

For the cases considered in Sect. 4, U0 is not large, so tc is replaced by T in (2). This
eliminates dependence on U0, giving

V +
d ∼ Rep

τ (τ+
p )−2/3, (5)

where p = 2
3 for u′ ∼ uτ and p = 5

7 for u′ ∼ ub , indicating p ≈ 0.7 within the plausible
range of behaviors.

The high-inertia results of Sect. 4 based on a stochastic computational model of channel-
flow deposition indicate little if any dependence of V +

d on Reτ , suggesting that neglected
flow structure counteracts the Reτ dependence implied by the analysis. Yet those results
agree with the predicted dependence on τ+

p , indicating that the analysis leading to (5) cap-
tures fundamental features of high-inertia deposition. Henceforth, discussion of (5) refers
collectively to its variants based on assumptions about U0 and u′.
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3.3 Initial Conditions, Transients, and Equilibration

Based on (1), td/τp ∼ ( T 2

tcτp
)1/3, which is much less than unity in the limit of large τp .

The time required for V (t) to transition from transient growth to equilibration is much
longer than td . This transition occurs when V 2 reaches its equilibrium value determined
by dV 2/dt ∼ D − V 2/τp = 0. Here, the sink term V 2/τp omitted from the derivation of (2)
is included. This is an idealized (but adequate for present purposes) representation of the
decay of particle velocity fluctuations, governed by the particle response time scale, in the
absence of forcing of the fluctuations. The familiar [24] equilibrium result

V 2 ∼ Dτp ∼ u′2tc/τp (6)

is thus obtained. Until the onset of equilibration, V 2(t) ∼ Dt , showing that the elapsed time
until equilibration is τp , which is much larger than the estimated deposition time td in the
limit of interest. Based on (2), V (td) is smaller than the equilibrium value by the factor
( T 2

tcτp
)1/6. These estimates indicate that the transient analysis is self-consistent, hence con-

firming the non-equilibrium nature of high-inertia deposition under the stated assumptions.
The dependence of the scaling of V +

d on V (0) is considered. Suppose that V (0) is
nonzero. Owing to the smallness of the deviations from ballistic particle trajectories for
large τp/tc , the deposition time td for V (0) �= 0 is h/V (0) unless V (0) is small enough so
that h/V (0) is larger than td given by (1). Thus, (1) is an upper bound on the deposition
time, which can be much smaller for nonzero V (0).

More generally, assume a distribution of particle V (0) values. h/V (0) will be smaller
than td for most particles, so most of the deposition will be ballistic in character, and thus
deposition is governed primarily by initial conditions and is more rapid than predicted by (5).
However, the (generally small) fraction of particles for which V (0) < h/td deposit by the
non-equilibrium mechanism analyzed here, and accordingly their deposition rate is governed
by (5). This indicates that high-inertia deposition for the conditions considered (Stokes drag,
zero gravity), is primarily a transient, case-specific process, and that phenomenology of a
more general nature arises only as a far-field (downstream) asymptote. Implications with re-
gard to the interpretation of measurements and simulation results are considered in Sect. 4.4.

It is assumed in the analysis that particles are introduced at the channel mid-plane, but
the far-field analysis is unchanged if a more general initial spatial distribution is assumed.
Only particles introduced at a distance from the wall that is much less than h will deposit
more rapidly than the analysis predicts. The near-field transient deposition due to nonzero
V (0) may be strongly affected by the initial spatial distribution. This dependence is likewise
considered in Sect. 4.4.

The analysis highlights the non-equilibrium character of particle response to turbulent
fluctuations in the regime of interest. Nevertheless, the equilibrium condition, (6), is adopted
in closure-type modeling of particle deposition in turbulent channel flow [24, 28]. The de-
ficiency of this assumption is recognized and a compensatory modification has been at-
tempted, but the closure framework does not readily accommodate a fundamentally sound
representation of non-equilibrium [24, 25]. Reflecting this, closure modeling predicts less
rapid decrease of V +

d with increasing τ+
p than is indicated by (5). The milder dependence is

found to be consistent with experimental and numerical simulation results. However, these
results reflect case-specific near-field transient phenomena rather than the far-field asymp-
tote, as shown in Sect. 4.4. Therefore, the consistency of these results with closure-model
predictions is not as clear a validation of model assumptions as is commonly supposed.
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4 Computed Results and Interpretation

4.1 Modeling Approach

The analysis in Sect. 3 implies that high-inertia deposition is challenging to investigate ei-
ther experimentally or computationally. The slow relaxation of transients requires a large
experimental apparatus in order to observe the far-field behavior, as emphasized by Gra-
ham [5]. Likewise, it requires large spatial domains in numerical simulations (or long run
times, in the more usual temporally developing configuration).

One of the authors has developed a cost-effective method for simulating turbulence and
its coupling to other processes using a modeling strategy based on reduction of spatial di-
mensionality. A 1D spatial representation is employed. It has been shown that a stochastic
simulation model formulated in 1D provides a representation of turbulence phenomenology
that is useful in many respects [11, 14]. This approach, denoted ‘one-dimensional turbu-
lence’ (ODT), is outlined in Appendix A and generalized in Appendix B for simulation of
inertial particles in turbulence.

Here, numerical results of ODT simulations of channel-flow deposition are compared
to the results of the scaling analysis, to the results of previous experiments and numerical
simulations, and to the predictions of other models. These comparisons support the infer-
ences drawn in Sect. 3 and provide further insights into the relationships among models,
measurements, and simulations of high-inertia deposition.

4.2 Parameter Assignment

For this application, model parameters are assigned the values previously determined for
single-phase turbulent channel flow (see Appendix A). Particle-eddy interaction introduces
an additional parameter β , which is the coefficient in the relation tE = βτ that relates the
eddy lifetime tE to the eddy-turnover time τ that determines the eddy frequency (see Ap-
pendix B).

β is evaluated by matching ODT results to the results of direct numerical simulations
(DNS) in a τ+

p range that is below the high-inertia regime. After β is fixed in this manner,
all ODT results for the high-inertia regime, including transitional behavior (with respect to
both τ+

p variation and transient relaxation) are predictions that are directly comparable to
previous results.

On this basis, β is adjusted to give the best agreement between ODT deposition simu-
lations and DNS [17] of channel-flow deposition for τ+

p values ranging from 2 to 6. As in
the DNS, Stokes drag is used in the ODT simulation. Initial conditions and other details
of this and other simulated cases are discussed in Appendix B. Reτ = 125 in the DNS, but
the ODT comparison case is Reτ = 180 because the high-Re phenomenology implicit in
ODT model assumptions is marginally valid at Reτ = 180 and problematic at lower Re [21].
Reτ sensitivities presented in Sect. 4.3 indicate that the difference between the DNS and
ODT Reτ values should not noticeably impact the comparison.

The best agreement is obtained for β = 0.3, which is used in all subsequent ODT sim-
ulations. For this value, the comparison to the DNS data is shown in Fig. 1. It should be
noted that the DNS results are subject to considerable statistical uncertainty; in particular,
the lowest data point is based on a single deposition event.
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4.3 Stokes-number Dependence of Deposition

Although the present focus is deposition at large τ+
p , it is useful to consider smaller τ+

p values
as well, both for parameter evaluation, as in Sect. 4.2, and to provide a general context for
interpretation of model results. Model results for the range of τ+

p values considered here are
shown in Fig. 2 for the same conditions (Stokes drag, Reτ = 180, β = 0.3) as in Fig. 1, along
with selected comparison cases.

The drag law used to obtain the low-inertia DNS (Reτ = 125) results [1] shown in Fig. 2
includes the Cunningham slip factor, Brownian motion force, Saffman lift, and wall effects
on both drag and lift, none of which are included in the present model formulation (although
they can be incorporated and will be included in future work). Accordingly, the low-inertia
data is not a suitable basis for setting the model parameter β in the present formulation
because this parameter would subsume the error caused by the use of Stokes drag. This
further motivates the choice of the τ+

p range used to evaluate β in Sect. 4.2.
The disparity between the low-inertia measurements [15] shown in Fig. 2 and the DNS

is greater than the disparity between model results and either of these. The experiment,
involving droplet deposition in tubes, was subject to complications, such as droplet shape

Fig. 1 Dependence of
normalized particle deposition
rate V +

d
on Stokes number τ+

p in
turbulent channel flow, using
Stokes drag. ◦, ODT for β = 0.3,
Reτ = 180; •, DNS [17] for
Reτ = 125

Fig. 2 Comparison of ODT
deposition rates, for the same
conditions as Fig. 1 runs, to
simulations and measurements.
◦, ODT; �, DNS [1]; + and ×,
measurements [15] for flow
Reynolds numbers 10,000 and
50,000, respectively;
•, measurements [3]. Line slopes:
—, −2/3; - - -, −1/2
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Fig. 3 ODT results of Fig. 2 in
the format of that figure, and
additional ODT results for
Reτ = 640 (�) and 1200 (�).
—, −2/3 slope. Otherwise, same
symbol definitions as in Fig. 2

distortion and polydispersity, that can plausibly account for the differences between the DNS
and experimental results [1].

Despite the complications, the overall increase of V +
d with increasing inertia, followed

by leveling (not seen in the DNS data, but an eventual necessity because the ballistic depo-
sition rate is finite) is well understood [28]. The low-inertia trend reflects the role of inertia
in enabling particles to cross fluid streamlines, as is required for deposition when effects of
finite particle radius are negligible. The resulting increase of deposition with increasing in-
ertia saturates when the deposition becomes nearly ballistic and hence relatively insensitive
to further increase of inertia.

In Sect. 3, analysis of high-inertia deposition indicates that the ballistic mechanism is
a near-field transient that is followed by far-field relaxation to a less effective mechanism,
resulting in (τ+

p )−2/3 dependence of V +
d . The high-inertia results in Fig. 2 are consistent

with the interpretation that the measurements by Liu and Agarwal [15] correspond to the
near-field ballistic regime and model results correspond to the far-field regime. Additional
evidence supporting this interpretation is examined in Sect. 4.4.

Also shown in Fig. 2 are measurements [3] that have been interpreted [16] as a decreasing
trend following an empirical − 1

2 power law. It is noted in passing that the predicted − 2
3

high-inertia far-field scaling is an equally good statistical inference, but the aforementioned
experimental complications preclude physical inference based on this observation.

A mild decreasing trend can also be discerned in the measurements by Liu and Agarwal.
As noted in Sect. 3.3, models based on lateral equilibration of particle motions, or small
corrections thereto, reproduce this trend, but not necessarily on the basis of a physically
sound representation of high-inertia deposition.

The model results in Fig. 2 correspond to a single, moderate value of Reτ . Sensitivity
to Reτ is shown in Fig. 3. There is noticeable sensitivity at moderate inertia, though not
enough either to alter the physical picture or to raise concern about the comparing results
for different Reτ values. The only other apparent sensitivity is at very high inertia. There,
the results suggest that Reτ = 180 may be below the onset of strong-turbulence limiting
behavior. The results at higher Reτ show better overall conformance with the − 2

3 scaling, but
in contrast to the Reτ dependence in (5), they indicate at most slight Reτ dependence at high
inertia. As noted in Sect. 3.2, this suggests that the Reτ dependence in (5) is counteracted by
features of turbulent channel flow that are neglected in the analysis.

Noteworthy in Figs. 2 and 3 is the falloff after the peak of V +
d at a rate steeper than the − 2

3
power law prior to the transition to this power-law scaling. There is no obvious explanation
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for this behavior in terms of either the model formulation or more general considerations. It
would be interesting to confirm this behavior by means of a properly configured 3D simula-
tion (see Sect. 4.4) and to perform additional analytical and computational investigations of
possible new physics underlying this behavior.

Model results presented thus far are based on Stokes drag, which is inaccurate at high
inertia (and in other regimes, as noted earlier). Nevertheless it is a useful idealization for
elucidating physics and for comparison to simulations that use Stokes drag.

4.4 Transient Phenomena

Additional results are presented that focus on the transient features of high-inertia deposi-
tion. Transients are described with reference to either elapsed time (applicable to all numer-
ical results, which are based on temporally evolving simulations, statistically homogeneous
in the streamwise direction) or downstream distance (near vs. far field relative to the lo-
cation of particle insertion, as in experiments). This distinction is immaterial here because
quantitative comparison of numerical results and measurements is not attempted.

In Fig. 4, LES results [27] for Reτ = 180 are plotted along with results shown in Fig. 2.
The LES results exhibit decreasing τ+

p sensitivity, consistent with measurements, suggesting
eventual leveling or possible decline. Also shown are model results for cases configured to
be quantitatively comparable to the LES cases.

The drag law used in the LES includes the drag correction shown in (20), so it is included
in the corresponding model cases. Also, for these comparisons, the particle initial conditions
are the same as in the LES (uniform spatial distribution, particle velocities equal to fluid
velocities). The model is run for the same wall-normalized time duration as the LES, and the
sum of all particle depositions during a run is used in the determination of V +

d , irrespective
of possible transients, as in the LES data reduction. In the LES and in the corresponding
model cases, Reτ = 180. (Both model and LES results indicate insensitivity of V +

d to Reτ

at the τ+
p values of interest.) For this model configuration, V +

d is also shown at τ+
p = 50 for

comparison to the plotted DNS result at this τ+
p value. V +

d is obtained using data reduction
consistent with the DNS procedure, which is the same as for the LES.

Figure 4 shows that the two changes (the drag law and the time interval of data collection)
relative to the baseline model results account for almost all of the discrepancy between the
LES and baseline model results, and likewise improve the agreement with DNS at τ+

p = 50.

Fig. 4 A portion of the data of
Fig. 2, and additional results:
•, transient ODT; 	, LES [27].
Otherwise, the same symbol
definitions as in Fig. 2
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Fig. 5 For ODT at Reτ = 180 using corrected drag, dependence of deposition rate on elapsed time t+
in wall units for τ+

p = 50 (+), 100 (×), and 200 (�). ◦, same as the ODT τ+
p = 200 case but with

a zero-particle-velocity initial condition and the particle initial spatial distribution described in the text;
– · –, average for this case from t+ = 0 to the end of the time interval spanned by the line. Other lines
are averages that are also defined in this way, where each line extends to the ending time of the corresponding
simulation: ——, DNS [1] for τ+

p = 50; - - - and – · · –, LES [27] for τ+
p = 100 and 200, respectively

These observations lend credence to the predictive capability of the model based on the
assigned parameter values (Sect. 4.2 and Appendix A).

The effect of the data-collection period is further elaborated in Fig. 5, in which the DNS
and LES V +

d values are compared to model results for time-resolved deposition. Model
results indicate that the time variation of V +

d during the data-collection period for each
comparison case exceeds the differences between the model results and the comparison
LES or DNS results that are shown in Fig. 4.

Beyond the LES data-collection period, the model results indicate relaxation to statisti-
cally steady deposition with V +

d values only slightly higher than the baseline (Stokes-drag)
values, indicating that the departure from baseline results that is evident in Fig. 4 is mostly
due to the difference between near-field transient and far-field statistically steady deposition.
For a particular initial condition (see Appendix B), Fig. 5 indicates reversal from deposition
increasing to deposition decreasing with increasing inertia as the transient relaxes. The ini-
tial increase reflects the y dependence of initial particle velocities.

The relaxation to statistical steadiness that is seen in Fig. 5 does not necessarily imply
equilibration of particle velocities relative to turbulent motions. For large τ+

p , the analysis in
Sect. 3 indicates that such equilibration does not occur during the deposition process.

Further illustrations of the distinction between transient and statistically steady deposi-
tion are provided in Figs. 5 and 6. For a variant of the τ+

p = 200 model case in which particles
initially have zero velocity and are uniformly distributed within a y interval [−0.6h,0.6h],
Fig. 5 shows an early period of negligible deposition followed by convergence to the
τ+
p = 200 model case with zero initial slip and spatially uniform initial conditions. This

convergence occurs before statistically steady deposition is attained, but beyond the DNS
and LES time intervals. The convergence of the two τ+

p = 200 model cases is consistent
with the predicted (Sect. 3.1) insensitivity to initial U values provided that they are not large
compared to u′.

The DNS and LES studies did not report time-resolved deposition data like that shown
in Fig. 5 for the ODT simulations. For comparison purposes, the single value reported for
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Fig. 6 For the ODT case
denoted by + in Fig. 5, ratio of
actual to ballistic (infinite-inertia)
particle-deposition time,
conditioned on both depositions
occurring on the same wall. This
ratio is shown as a function of
actual deposition time in wall
units

each of the 3D simulations (DNS and LES) is represented in Fig. 5 as a horizontal line
that extends to the ending time of the simulation. For the zero-initial-velocity ODT case,
the deposition averaged over the time interval of the LES comparison case (τ+

p = 200) is
seen (lowest horizontal line) to be much lower than for the other (zero-initial-slip) cases,
emphasizing that this time interval corresponds to a regime governed primarily by initial
conditions.

Figure 6 shows a measure of transient relaxation for the model analog of the DNS case
(τ+

p = 50). Ballistic time is the time until deposition based on a ballistic trajectory, i.e., in-
finite particle inertia. Inertia can increase or decrease the actual time relative to the ballistic
time, but a net decrease occurs only at very early times when deposition is promoted by
‘favorable’ eddy motions acting on particles initially near a wall. (To simplify the inter-
pretation of this metric, particles that deposit on the wall opposite to the wall that would
be encountered ballistically are disregarded.) The relatively low ratio of actual to ballistic
time prior to t+ = 150, corresponding to 3 particle time constants, reflects the deposition of
particles whose trajectories closely conform to the initial orientation of the particle velocity
vector. The subsequent rapid growth and increased scatter of this ratio reflects the transition
to deposition governed primarily by deviation from the initial direction of particle motion.
Figure 5 indicates that this onset coincides with the attainment of statistically steady deposi-
tion for this case. In contrast, the apparent convergence of the two τ+

p = 200 cases in Fig. 5
prior to their attainment of statistical steadiness suggests that memory loss precedes the
completion of transient relaxation. The overlap of these cases during the late transient is im-
perfect and may be fortuitous; they unambiguously coincide only when statistical steadiness
is attained.

Further detailed investigation would be required to form a complete picture of the process
of transition from initial condition sensitivity to insensitivity and the related but distinct
process of transient relaxation. The foregoing observations are suggestive of the rich phe-
nomenology of non-equilibrium deposition that remains to be explored. This phenomenol-
ogy should be explored using a variety of methods because no single method, includ-
ing those introduced here, is both fully accurate and applicable to all regimes of inter-
est.
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5 Discussion

Although the possible influence of non-equilibration of particle-flow interactions on depo-
sition from turbulent flow is suggested by studies to date, its role in the high-inertia regime
has not been probed sufficiently to discern the underlying physics. The scaling analysis
presented here predicts − 2

3 power-law decay of the deposition rate as a function of par-
ticle Stokes number τ+

p for large τ+
p and indicates that high-inertia deposition is a non-

equilibrium process. A stochastic model that captures the relevant physics of particle-flow
coupling and simulates turbulent channel flow accurately, yet is economical enough for sim-
ulation of deposition at very high τ+

p and determination of time-resolved deposition rates,
is formulated and applied to channel-flow deposition over a wide range of τ+

p . The model
reproduces much of the phenomenology of channel-flow deposition and elucidates the fea-
tures of the high-inertia regime.

Specifically, is it shown that the predicted scaling is a far-field (or long-time, in temporal
flow) asymptote preceded by transient relaxation during which deposition is nearly ballistic
and therefore not very sensitive to τ+

p . The deposition rate during this transient may ex-
ceed the rate during the subsequent statistically steady deposition, so a majority of particles
may deposit during the transient. Typically, the particles that survive the transient are those
whose initial trajectories are nearly streamwise so that ballistic motion does not cause early
deposition.

The relative contributions of transient and far-field deposition are sensitive to initial con-
ditions. Particles with negligible initial lateral velocity are not subject to the ballistic mecha-
nism, so the deposition rate for particles initialized in this matter is lower during the transient
than subsequently.

Except for the atypical situation in which the particles are highly collimated initially, al-
most all particles deposit during the transient phase. Thus, far-field deposition is generally
not of practical importance, unless one is concerned about particles not deposited rather than
particles deposited. For example, if wall deposition is used as a mechanism for removal of
hazardous or otherwise undesirable particulate material from a turbulent fluid stream, very
low outflow particle concentration might be required. Modeling that does not account for
far-field non-equilibrium behavior could grossly underestimate the outflow particle concen-
tration, and therefore could provide misleading design guidance.

It is emphasized here that statistically steady deposition does not imply equilibration
of particle motions relative to turbulent fluid motions. In fact, it is found that the particle
motions are far from equilibrium in the statistically steady deposition regime. An additional
subtlety that deserves further attention is the observation that the disappearance of sensitivity
to initial conditions may occur before deposition becomes statistically steady.

The results presented here suggest a sequence of as many as four types of behavior as a
function of elapsed time during high-inertia deposition: (1) transient and sensitive to initial
conditions, (2) transient, but insensitive to initial conditions, (3) statistically steady, but non-
equilibrium, and (4) the notional equilibrium regime, postulated in closure models but shown
here to be unattainable, except possibly during rare events involving particles that remain
in the flow for exceptionally long times (a scenario that has not been investigated here).
In addition to this rich phenomenology in the time domain for given τ+

p , numerical results
indicate an as-yet-unexplained rapid decline of the deposition rate as a function of τ+

p prior
to the onset of the high-inertia scaling whose physical basis has been identified through
scaling analysis. These observations suggest several avenues of future investigation.

In previously reported 3D numerical simulations of deposition in the vicinity of the on-
set of the inertia-moderated regime, the initial particle slip velocity is set equal to zero,
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a scenario in which the transient deposition rate exceeds the far-field rate and the transient
deposition exhibits nearly ballistic scaling (insensitivity to τ+

p ). These simulations are costly,
which may be the reason they were not run long enough to reach the far-field regime beyond
the initial transient, nor replicated to obtain enough data for time-resolved determination of
V +

d , whose importance has been demonstrated here.
The increase of computer capabilities subsequent to these 3D simulation studies pro-

vides the wherewithal for future 3D numerical exploration of the time domain as well as a
relevant range of τ+

p values. The model results presented here may provide useful guidance
for planning these studies and interpreting the results. Independent verification of the results
presented here is desirable due to the simplifications inherent in both the scaling analysis and
the computational model. 3D simulation is a suitable method for obtaining this verification.

Experimental investigation of time-resolved (more precisely, streamwise-resolved be-
cause the flow development in experiments is spatial rather than temporal) high-inertia de-
position is more problematic. It is difficult to design an experiment in a confined flow (e.g.,
a pipe) that is long enough to allow transient relaxation yet is not subject to complications
that obscure the quantitative signatures of convergence to statistically steady deposition.
One implication of the present study with regard to measurements is that the well-known in-
consistencies among various reported measurements of high-inertia deposition [16, 28] can
perhaps be attributed to the sensitivity to initial conditions during the near-field transient, al-
though other contributing factors may be equally if not more significant. The present study
implies that collimation of injected particles or droplets would tend to prevent the obscura-
tion of statistically steady deposition by the initial transient.

The results presented here indicate that the measurements and numerical results hereto-
fore presumed to confirm closure-model predictions of high-inertia deposition are subject to
artifacts that cast doubt on the claimed confirmation. In fact, it appears that the closure mod-
els do not capture the leading-order non-equilibrium behavior resulting from the time-lagged
response of particles to turbulent fluid motion, and the consequent deposition phenomenol-
ogy. Thus, concise modeling of high-inertia deposition (and by implication, high-inertia be-
havior in general) is a greater challenge than is commonly supposed. One goal of the present
study is to encourage further progress in this regard by identifying some of the physics and
phenomenology that models need to capture.

Graham [5] addresses initial-condition sensitivity, slow relaxation of transients, non-
equilibrium effects, and implications concerning the design and interpretation of experi-
ments and numerical simulations, in the context of particle dispersion in isotropic turbu-
lence. This context allows more detailed analysis than is presented in Sect. 3. The present
contribution may be viewed as a demonstration, using heuristic analysis and modeling, of
the impact of these considerations in the context of deposition in confined turbulent flow.

Thus, the issues addressed here are broader than this particular application. It is antic-
ipated that future application of the analytical and numerical modeling approaches intro-
duced here to other multiphase turbulent flow regimes might provide further useful insight.
In this regard, generalization of the present two-phase-flow formulation of ODT to include
more elaborate drag laws and multiple scalars, allowing inter-phase couplings such as heat
and mass transfer and thermophoresis, should be possible. The modeling framework also
accommodates other generalizations such as two-way coupling. With these generalizations,
ODT will be complementary to other particle-eddy-interaction models [7]. Other models of
this type might be applicable to some of the issues considered here, but they generally lack
the spatial and temporal resolution of microphysical details needed for accurate representa-
tion of various molecular-transport contributions to inter-phase couplings.
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Appendix A: ODT Simulation of Channel Flow

An ODT formulation previously used to simulate turbulent channel flow [21] is adopted
in the present study. Because it is described and validated in the cited reference and other
published work [14], the description here is brief.

It is instructive to introduce for comparison a simple boundary-layer representation of
fully developed channel flow, statistically stationary and statistically homogeneous in the
streamwise (x) direction, based on eddy-viscosity modeling,

∂tu = ∂y(νe + ν)∂yu − (1/ρf )∂xp, (7)

where t is time (denoted tf in Appendix B to distinguish it from a particle time coordinate),
y is the lateral (wall-normal) coordinate, u(y, t) is the streamwise velocity, ν is kinematic
viscosity, νe is the modeled eddy viscosity, ρf is density (assumed constant), and ∂xp is an
imposed mean pressure gradient. νe is typically assumed to be a time-invariant function of
y, in which case (7) has a steady-state solution u(y) representing the mean flow velocity.

The eddy viscosity in (7) is a surrogate for advective transport of u by lateral velocity
fluctuations. There is no v∂yu term representing transport by the mean lateral velocity v

because v is identically zero under the stated assumptions.
For affordable simulation of high-intensity turbulence, a 1D formulation is sought that

likewise involves a surrogate representation of advective transport, but that captures both
the unsteady time evolution and the fine-grained spatial structure of the flow. These features
enable a detailed representation of particle-flow interaction, as described in Appendix B. The
adoption of a time-developing formulation based on streamwise statistical homogeneity is
consistent with 3D numerical formulations to which the model is compared in Sect. 4.

The surrogate representation that is adopted models unsteady lateral advection by means
of a stochastic sequence of maps applied to the y coordinate, such that the sequence of in-
duced lateral displacements emulates the statistical properties of turbulent advection while
obeying the applicable conservation laws. The sampling of maps, though stochastic, is de-
pendent on the instantaneous flow state in a manner that introduces a dynamic linkage be-
tween past and future map occurrences. Through this linkage, the model captures key turbu-
lence phenomena such as the inertial-range cascade.

Formally, the outcome of simulated evolution from time 0 to time t can be expressed as

u(y, t) = T [tn, t]E(pn) · · ·T [tj , tj+1]E(pj )T [tj−1, tj ]
· · ·E(p2)T [t1, t2]E(p1)T [0, t1]u(y,0), (8)
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where capital letters represent operators. T [tj−1, tj ] represents time advancement of the
operand u(y, tj−1) from tj−1 to tj , governed by

∂tui = ∂yν∂yui − (δi,1/ρf )∂xp, (9)

with boundary conditions u(y, t) = 0 at y = ±h. Equation (9) is analogous to (7) but
includes the full velocity vector u = (u1, u2, u3) and omits the eddy-viscosity term.
(ui velocity-component notation is used only in this Appendix.) In place of eddy viscos-
ity, lateral turbulent advection is represented by ‘eddy events’ E(pj ), each of which is an
instantaneous transformation of the operand u(y, tj ) representing a turbulent eddy motion,
where pj is the set (vector) of randomly sampled quantities that parameterize the j th trans-
formation. n is the number of eddy events during [0, t], tj is the time of occurrence of the
j th event for j > 0, and t0 = 0. The epochs tj , the quantities pj , and n are random variables
evaluated during each simulated realization by a sampling procedure whose rules embody
the principal physical content of the model. Event occurrences are sampled from an event
rate distribution, (14), that is based on a time scale τ(p; t), analogous to an eddy turnover
time, associated with each possible event p and evaluated as a function of the entire flow
state at time t .

Each eddy event consists of two mathematical operations. One is a measure-preserving
map representing the fluid displacements. The other is a modification of the velocity pro-
files that redistributes energy while conserving momentum. The combined effect of these
operations is denoted

ui(y) → ui(f (y)) + ciK(y). (10)

The fluid at location f (y) is moved to location y by the mapping operation, denoted the
‘triplet map’ (see below). This mapping is applied to all fluid properties, including scalars
in variable-property flows (not considered here). The additional term ciK(y), which is only
applied to the velocity components, is the ODT analog of pressure-induced kinetic-energy
redistribution among the velocity components, and also accommodates energy exchange
with sources and sinks such as gravitational potential energy in buoyant-flow applications.

The eddy parameters p are a lower eddy boundary y0 and a size l, determining the upper
boundary y0 + l. The triplet map maps the interval [y0, y0 + l] onto each of three images that
occupy successive thirds of the interval, thus filling the interval. Each image is a threefold
compression of the original interval, except that the central (second) image is also inverted
(spatially flipped). The map from location f (y) to location y is expressed formally as

f (y) ≡ y0 +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3(y − y0) if y0 ≤ y ≤ y0 + 1
3 l,

2l − 3(y − y0) if y0 + 1
3 l ≤ y ≤ y0 + 2

3 l,

3(y − y0) − 2l if y0 + 2
3 l ≤ y ≤ y0 + l,

y − y0 otherwise.

(11)

Graphical illustrations and extensive discussions of the triplet map are presented elsewhere
[10, 11]. Recently, it was independently reintroduced and used for analysis of the turbulent
cascade [9].

In the energy-redistribution term of (10), K(y) denotes y − f (y), the displacement of
the fluid element mapped to y. It is non-zero only within the eddy interval [y0, y0 + l] and it
integrates to zero so that the eddy event does not change the total (y-integrated) momentum
of individual velocity components.



Non-equilibrium Wall Deposition of Inertial Particles in Turbulent Flow 249

The remaining ingredient in the specification of the eddy event is the expression for ci ,

ci = 27

4l

[

−ui,K + sgn(ui,K)

√
1

3

(
u2

1,K + u2
2,K + u2

3,K

)
]

, (12)

where

ui,K = l−2
∫

ui(f (y))K(y)dy. (13)

This is obtained by requiring that the ‘available kinetic energy’ of the post-map profiles of
the respective velocity components should be the same for all velocity components (equal-
ization of available kinetic energy, the ODT analog of ‘return to isotropy’ terms in closure
models). The available kinetic energy of component ui is determined by finding the value
of bi that minimizes the kinetic energy of the profile ui + biK(y). The difference between
the kinetic energies of the ui and ui + biK(y) profiles is the available kinetic energy.

Eddy sampling is based on the eddy rate distribution

λ(y0, l; t) = C

l2τ(y0, l; t) = Cν

l4

√√√√1

3

[(
u1,K l

ν

)2

+
(

u2,K l

ν

)2

+
(

u3,K l

ν

)2
]

− Z, (14)

where λ(y0, l; t) dy0 dl dt is the probability of an event with parameters in the ranges
[y0, y0 + dy0] and [l, l + dl], respectively, during [t, t + dt]. If the radical in (14) has a
negative argument, the event rate is taken to be zero. Physically, this represents viscous sup-
pression of the eddy, governed by the parameter Z. C (which scales the rate distribution)
and Z are two adjustable parameters of the present ODT formulation. Following [21], they
are assigned the values C = 12.73 and Z = 98, and the constraint l < h (a third empirical as-
signment) is applied. Incorporation of inertial particles introduces one additional adjustable
parameter (see Appendix B).

Equation (14) embodies the core physical content of ODT. Its derivation and features
are discussed extensively in publications [12, 14] and in web-accessible reference material,
including a documented code,1 so they are not explained here. Efficient event sampling
based on (14) is done by ‘thinning,’ a generalization of the von Neumann rejection method.

Appendix B: Inertial-particle Submodel

B.1 Particle Response to Turbulent Motion

Because ODT evolves all three velocity components, an obvious way to incorporate inertial
particles is to evolve particle velocities U , V , and W by substituting the ODT-specified fluid
velocities u(Y, t), v(Y, t), and w(Y, t), into the particle drag law, where Y is the particle
lateral location at time t . Time integration of U , V , and W advances the particle loca-
tion (X,Y,Z). Because the particle is confined to the ODT domain, the ODT fluid state is
deemed to represent the lateral profiles of the fluid velocity components at the (X,Z) lo-
cation at which the particle currently resides. Flow time advancement on the ODT domain
thus represents the spatial as well as temporal variability of the fluid velocity seen by the

1http://groups.google.com/group/odt-research

http://groups.google.com/group/odt-research
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particle. This implies a relationship between particle and flow advancement that is explained
in Sect. B.2.

This approach has been implemented and results have been compared to measurements
and simulations of various particle statistics in turbulent channel flow [23]. Although this
approach is found to be successful in some respects, it is not pursued here because it violates
a key property of particle advection: in the zero-inertia (marker-particle) limit, a particle
should remain within the fluid element that contains it initially. To obey this requirement, the
particle-fluid coupling must allow instantaneous displacement of particles by eddy events.
Because this coupling is based on a drag law that must be time integrated to obtain its effect
on particle displacement, it is evident that some method must be devised to account for the
finite time duration of turbulent motions. The method used here is outlined below and further
elaborated in [20].

The needed ingredients are available within ODT. The specific goal is to interpret a map-
induced fluid displacement y → y ′ (different notation than in Appendix A) as fluid motion
at some specified velocity vE that is constant (for simplicity) for some specified time in-
terval tE that is here termed the eddy lifetime. In Appendix A, it is noted that eddy event
selection involves the specification of an eddy time scale τ . Because this is the only time
scale available in ODT to represent eddy properties, the eddy lifetime tE is modeled as βτ ,
where β is an adjustable parameter, the only new parameter required in the ODT particle
representation. To obtain the specified lateral displacement from motion at constant lateral
velocity during the time interval tE , the velocity must obey

vE = (y ′ − y)/tE. (15)

It is now straightforward in principle to specify the particle-eddy interaction, although
some details require care. The present approach has much in common with particle-eddy-
interaction sub-models that have been used in steady-state-flow formulations [6, 7], although
the implementation is different in several respects. To keep the development general, it is
not specialized to a particular form of the drag law until Sect. B.3.

Assume that a particle is located at (X,Y,Z) and has velocity components (U,V,W) at
the time tj when the j th eddy event occurs and assume that Y is within the eddy interval
[y0, y0 + l]. Then the particle location Y is mapped by the eddy event to each of three
locations y ′

k . y ′ in (15) is evaluated by randomly sampling one of the locations y ′
k , with

probability 1
3 of choosing each. Each sampling is independent for each particle within the

eddy event and for each eddy event encountered by a particle during the simulation. It has
been shown that this procedure yields a physically sound representation of the evolution of
a particle ensemble in turbulence [13].

Note that while y ′ is the location to which fluid at Y is mapped, the particle is not nec-
essarily mapped to y ′ if it has nonzero inertia. The procedure determining the final particle
location Y ′, as well as the other descriptors of the particle state at the conclusion of the
particle-eddy interaction, is now considered.

During the particle-eddy interaction, whose time duration is denoted tI , the lateral ve-
locity of the fluid initially at y = Y is modeled according to (15). It is not strictly accurate
to infer that the particle initially at y = Y is subject to this fluid velocity throughout the in-
teraction period because the trajectory of an inertial particle will deviate from the trajectory
of the fluid initially at Y . Nevertheless, the modeling assumption is adopted that vE is the
fluid velocity seen by the particle throughout the interaction period. Alternate assumptions
introduce additional complexity with no clear gain in overall physical fidelity because the
particle-eddy coupling is in any case an idealization.
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The duration of the interaction is denoted tI rather than tE because the particle may
cease to interact with the eddy before the eddy reaches the end of its life. This cessation
is due to the emergence of the particle from the spatial region occupied by the eddy. In
ODT, the y interval occupied by the eddy, denoted [y0, y0 + l], is specified by the eddy
sampling procedure. Taking the eddy to be a cube (solely for the purpose of evaluating tI ),
its streamwise and spanwise extent relative to the particle location are both taken to be
[−l/2, l/2]. The cube is advected in the streamwise direction at a velocity equal to the
average of u(y, t) over y0 ≤ y ≤ y0 + l. These geometrical properties, in conjunction with
the particle trajectory solution described shortly, determine the first occurrence, if any, of
particle emergence from the spatial region occupied by the eddy. If this occurs before elapsed
time tE , then tI is set equal to the time of this first occurrence, otherwise tI is set equal to tE .
Accounting for the distinction between tI and tE is important when particle-eddy interaction
is dominated by trajectory-crossing effects (see Sect. B.2).

Within this framework, the particle drag law is time integrated, based on the fluid velocity
modeled as (u(Y, tj ), vE,w(Y, tj )), to advance the particle from its state (X,Y,Z,U,V,W)

at time tj to its state (X′, Y ′,Z′,U ′,V ′,W ′) at time tj + tI , where this advancement con-
tributes to the determination of tI as explained above. For consistency, the streamwise and
spanwise, as well as lateral, fluid velocity components are evaluated at the initial (time tj )
particle location.

Although this advancement specifies new values of all particle coordinates and velocity
components, only the lateral particle location and velocity are modified by the particle-
eddy interaction. This is because evolution of the other coordinates and velocity components
are adequately represented by particle advancement during the time intervals between eddy
events. (Recall that the special treatment of lateral advancement is for the specific purpose
of assuring that eddy events result in appropriate marker-particle behavior in the zero-inertia
limit.) Thus, the updated state variables (X′,Z′,U ′,W ′) obtained from drag-law integration
play no role in subsequent advancement. These variables are time advanced during particle-
eddy interaction for the sole purpose of evaluating tI by following the particle trajectory
to determine whether emergence from the eddy occurs during the eddy lifetime, and if so,
when.

The provisional particle state (subject to a modification described shortly) at the end of
particle-eddy interaction is thus (X,Y ′,Z,U,V ′,W). The primed variables reflect advance-
ment for a time interval tI starting from the state at time tj and the unprimed variables
correspond to the state at tj .

ODT eddies are instantaneous, so the state immediately after eddy j corresponds to
time tj . Time advancement subsequent to particle-eddy interaction (particle T process; see
below) thus begins at time tj , implying a period of advancement in physical time that over-
laps the time advancement from tj to tj + tI that is implemented during particle-eddy inter-
action.

The duplication of particle advancement implied by this overlap is corrected as follows.
Particle-eddy interaction as described thus far determines new values (Y ′,V ′) of the par-
ticle lateral location and velocity by integrating the drag law for a time interval tI start-
ing from the initial state (Y,V ) and holding the fluid velocity seen by the particle fixed
at (u(Y, tj ), vE,w(Y, tj )). A second drag-law integration is introduced, over the same time
interval and starting from the same initial state, except that the fluid velocity seen by the
particle is held fixed at (u(Y, tj ),0,w(Y, tj )). The values of the particle lateral variables
upon completion of this integration are denoted (Y ′

0,V
′

0). The physical state of the parti-
cle upon completion of particle-eddy interaction is then taken to be (X,Y ′′,Z,U,V ′′,W),
where Y ′′ = Y + Y ′ − Y ′

0 and V ′′ = V + V ′ − V ′
0.
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Fig. 7 Schematic illustration of particle-eddy interaction for particles whose inertia is zero (– · –), finite
(- - - -), and infinite (——). •, location of fluid element containing the particles at the time of an eddy
event, but prior to fluid displacement; ◦, location of that fluid element after eddy-induced displacement; U
(uncorrected), notional particle trajectory omitting the correction; C (corrected), actual particle trajectory
incorporating the correction. For zero inertia, the correction vanishes, so trajectories U and C are identical
and coincide with the trajectory of the fluid element. For infinite inertia, trajectory U is discontinuous because
the particle-eddy interaction advances the particle drag law for a finite time interval but the physical time is
not incremented. The correction exactly compensates for this, so trajectory C is ballistic. For finite inertia,
trajectories U and C are both discontinuous and neither coincides with the fluid-element trajectory

The rationale for this procedure is illustrated by considering the limiting cases of infinite-
inertia and zero-inertia particles. For infinite particle inertia, the value of vE has no effect
on particle advancement, so Y ′ = Y ′

0, giving Y ′′ = Y . Likewise, V ′′ = V . Thus, the eddy
interaction has no effect on the particle and it continues on its ballistic (linear) trajectory
during subsequent advancement. (The particle T process governing time advancement be-
tween eddy interactions is explained shortly.) This is the physically correct result. For zero
particle inertia, Y ′ = y ′, Y ′

0 = Y , and thus Y ′′ = y ′, which is the physically correct marker-
particle behavior. The result for V ′′ is immaterial because the marker particle immediately
relaxes to zero velocity when the subsequent time advancement commences.

It is seen that the subtraction procedure is suitable for the limiting cases, and represen-
tative case studies show that it provides a reasonable interpolation between these cases for
finite-inertia particles [20]. Conceptually, the procedure evaluates the net effect of the in-
teraction on the particle relative to particle evolution if the eddy had not occurred. (See the
graphical illustration in Fig. 7; additional illustrations and explanation are provided in [20].)
By defining the particle-eddy interaction based on this difference, it is consistent to im-
plement the outcome of the interaction instantaneously at time tj despite the fact that it is
computed by time integration from tj to tj + tI .

For some configurations, e.g., particles moving rapidly in the ODT domain direction
y, the instantaneous nature of eddy events might cause particles to encounter eddy events
much less often than they would encounter physical eddies of finite time duration. Accurate
modeling of such configurations requires eddy events as perceived by particles to have finite
durations in the physical time coordinate as well as in the internal time coordinate introduced
to model particle-eddy interactions. A formulation of this type has been developed [20] but
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it is not used here because it is considerably more elaborate than the present formulation,
which is suitable for the flow regimes considered here.

The evolution of a particle within an ODT simulation can be represented schematically
by (8), but with different interpretation of symbols than for fluid evolution. In (8), u is
replaced by the particle state (X,Y,Z,U,V,W), evaluated at time t on the left-hand side
and at time 0 on the right-hand side. E is now interpreted as a particle-eddy interaction.
Description of the model is now completed by specifying the particle advancement T that
occurs during the time intervals between these interactions.

During the particle T process, the particle state (X,Y,Z,U,V,W) at time t is time
advanced based on the drag law with fluid velocity (u[Y (t), t],0,w[Y (t), t]), where the
lateral component of fluid velocity is set equal to zero in order to maintain consistency
with the marker-particle limit. In ODT as implemented here (Appendix A), fluid is advected
laterally only by eddy events. Hence, there is no v∂yui term in (9); the ODT v velocity
profile is an auxiliary variable that does not directly govern lateral fluid advection.

One consequence of this formulation is that V converges toward zero during the T

process (and vanishes instantly for zero inertia). This is an artifact of the separation of the
time coordinate into finite intervals with zero lateral motion, alternating with instantaneous
lateral displacements. This can result in unrealistically low particle V values upon the ini-
tiation of particle-eddy interactions. Therefore the initial V value in the time integration
performed to evaluate the particle-eddy interaction is taken to be not the current value, but
the value V ′′ obtained as the outcome of the most recent eddy interaction involving the given
particle. (As noted, V is nevertheless time advanced during the T process so that the particle
trajectory Y (t) obeys physical requirements such as correct behavior in the marker-particle
limit.)

B.2 Representation of Trajectory-crossing Effects

Trajectory-crossing effects are statistical biases of flow time histories seen by particles due
to their motion relative to the fluid. In Sect. 3.1, the estimate of tc for U0 � u′ models these
effects. Through the evaluation of tI , the ODT particle-eddy interaction has been formulated
to take account of trajectory-crossing effects.

Trajectory-crossing effects are likewise incorporated into the T process. Explicit treat-
ment of these effects during the T process is needed because the particle streamwise ad-
vancement dX = U dt implies trajectory crossing if dX �= dx where dx is the fluid stream-
wise advancement u(Y, t) dt at the particle location. Particle advancement from t to t + dt

subject to drag influence should reflect both flow temporal evolution from t to t + dt and
particle traversal of a streamwise interval dX − dx of the flow. The latter contribution is
not explicit in ODT because the 1D domain represents a flow profile co-moving with the
particle in x (and in z), so dx = dX.

Therefore the additional contribution to flow temporal variability seen by a particle due
to the difference between flow states separated by the streamwise distance dX − dx is mod-
eled by time advancing the flow more rapidly than the particle. Namely, ub is taken to be
the velocity scale relating spatial and temporal variability through the relation dx = ub dtf ,
where dtf is the flow time increment. This means that the velocity change of a fluid element
during dtf is assumed to be the same as the velocity difference between two points separated
by a distance ub dtf at a given instant. (The choices dtf = T and dx = h show the plausi-
bility of this assumption.) To model this effect, dtf is increased relative to dt by an amount
|dX − dx|/ub . Substitution of dX = U(t) dt and dx = u(Y, t) dt gives

dtf =
[

1 − |U(t) − u(Y, t)|
ub

]
dt. (16)
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This model is subject to verification, but present results do not test this model because
its effect is minor relative to other model assumptions for the cases discussed in Sect. 4.
Future applications of this formulation to cases involving more consequential streamwise
trajectory-crossing effects, such as the regime U0 � u′ considered in Sect. 3.1, will test (16)
and possibly motivate improvements, such as substituting a y-dependent velocity scale for
ub in order to improve the representation of trajectory-crossing effects near walls.

B.3 Simulation of Deposition in Channel Flow

Because the particles do not affect the flow, tf can be used as the time variable for simula-
tion advancement, with (16) then specifying a distinct time variable t for the advancement of
each particle. Asynchronous particle advancement implies limited applicability of this for-
mulation to multi-particle phenomena such as clustering, for which a variant of the present
approach is more suitable [13].

On this basis, turbulent-channel-flow simulation is implemented as in [21] using the same
ODT parameter values as in that study (see Appendix A). The flow configuration is fully
specified by the quantity Reτ .

Before particles are introduced, the flow simulation is run until it is statistically steady. At
a given instant, particles are introduced. For the cases shown in Figs. 1, 4, 5, and 6, the initial
velocity of each particle is chosen to match the local fluid velocity unless stated otherwise.
For the cases shown in Figs. 2 and 3, a method proposed by Graham [5] is used to assign the
initial velocity of each particle. (For steady-state deposition, initialization affects the speed
of transient relaxation but not the steady-state behavior.) The initial lateral distribution of
particles is spatially uniform unless stated otherwise.

Specifically, the flow evolves on a uniform mesh, and one particle is introduced in the
center of each mesh cell. The coarsest meshes have order 103 cells and the finest mesh has
order 104 cells. Grid insensitivity was verified by repeating simulations with double the
number of grid points and ensuring that the steady-state V +

d value does not change to two
significant figures.

The precision is dependent on the run time during statistically steady conditions. Efficient
utilization of computer resources mandates ending a given realization when the remaining
number of particles gets small compared to the initial number of particles. The desired preci-
sion is then obtained by running multiple realizations in order to accumulate the needed to-
tal run time, as determined by the needed number of particle depositions. Not all deposition
events are included in the evaluation of V +

d . Time-resolved deposition statistics, discussed
in Sect. 4.4, indicate transient relaxation that is especially significant for large τ+

p . Therefore
V +

d is evaluated on the basis of depositions during the period of statistically steady depo-
sition following transient relaxation (or for the transient results in Fig. 5, within individual
time bins that resolve the transient).

For steady-state deposition, the number of simulated realizations and run time per real-
ization were chosen for various cases so that the number of particle depositions per plotted
V +

d value ranged from a minimum of order 102 at low inertia to order 106 in the vicinity of
τ+
p = 100, then declining to order 104 at high inertia. In the log-log plots of V +

d versus τ+
p

that are shown in Sect. 4, the uncertainty of the results is in all instances smaller than the
symbol size.

Particles are assumed to be spherical. When a particle reaches a lateral location Y that
is within one radius of a wall, it is deemed to deposit on the wall and disappears from the
simulation. Although particle radii are finite for consistency with comparison cases, they are
small enough in all instances so that finite-size effects (relative to the limit of zero radius and
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infinite density such that τ+
p is fixed) are negligible. Ghost particles are assumed, i.e., there

is no particle-particle interaction, so the simulation can be run at arbitrary particle volume
fraction and still represent dilute conditions.

The model can accommodate drag laws of various degrees of complexity. Here, particle
motion is governed by

dS
dt

= (s − S)
f

τp

, (17)

dX
dt

= S, (18)

τp = 2

9

ρp

ρf

r2

ν
, (19)

f =
{

1,

1 + 0.15Re0.687
p ,

(20)

Rep = r|s − S|/ν, (21)

where ρ is density (subscript indicates particle or fluid), r is particle radius, and s and S are
fluid and particle velocities, respectively. f = 1 corresponds to Stokes drag and the lower
expression for f incorporates an empirical correction used in Sect. 4.4 [7, 18].

As explained in Sect. B.1, the model quantities corresponding to the components of s
in (17) depend on whether the particle is being advanced during particle-eddy interaction
or during the T process, and if the former, on whether it is the first or second drag-law
integration during the interaction. This explains the use of a notation in (17)–(21) that does
not indicate how s and S are defined in terms of model variables. When the corrected f

is used, (21) is evaluated based on s = (u, v,w) and S = (U,V,W) in all instances. Thus,
the ODT v velocity affects particle advancement when (21) is used, but not otherwise (see
Sect. B.1).

During flow evolution, triplet maps are applied to velocity profiles discretized on the
mesh, so the maps are implemented numerically as permutations of the discrete values, thus
automatically satisfying the conservation properties of the model, which is defined mathe-
matically as spatially continuous. Particle kinematics requires finer spatial resolution near
walls than flow evolution requires. Therefore it is advantageous to exploit the Lagrangian
representation of particles by using the continuum definition of the triplet map, (11), to eval-
uate the fluid displacements that determine fluid velocities seen by particles during particle
evolution.

B.4 Perspective

It has been noted that the particle-eddy-interaction sub-model formulated here is closely re-
lated to previous formulations of this type [6, 7]. Interaction sub-models within steady-state
turbulence models typically involve a supplementary stochastic representation of eddies that
interact with the particles, but in ODT, these eddies are intrinsic to the turbulence model it-
self. Particle response to the eddies in such models is conceptually the same as in ODT
(drag-law integration, etc.).

ODT has three key distinguishing features relative to these models. First, ODT resolves
all relevant flow scales and the corresponding range of eddy sizes within the turbulent
cascade, but only the large eddies are treated in steady-state models (which are multi-
dimensional, so the computational cost of fine-scale resolution is an obstacle). Therefore
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ODT is applicable over the full range of particle inertia (provided that the relevant drag-law
phenomenology is incorporated); at low inertia, the small eddies are the main contributors
to particle slip. This breadth of applicability enables parameter setting at low inertia before
applying the model to high inertia (Sect. 4). Second, the eddy sequence in ODT provides
a detailed representation of flow unsteadiness [11, 12, 14] that contributes to the fidelity of
simulated particle advancement. Third, because the eddies are the mechanism of advection
in the model, scalar fluid properties are subject to the same fluid flow as the particles, thereby
enforcing fine-grained consistency of the evolution of particles and their surrounding ther-
mochemical environments. This suggests that the present formulation will be particularly
advantageous for applications strongly influenced by complicated microphysical couplings.

In fact, the present formulation was developed with such applications in mind, and a
preliminary version was applied to droplet burnout in a turbulent combustor. The model re-
produced previously unexplained parameter dependences of droplet trajectory statistics [19].
For the channel-flow configuration considered here, model results for mean and fluctuation
profiles of particle velocity components have been compared to DNS results [20, 22].
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