
J Stat Phys (2009) 135: 107–132
DOI 10.1007/s10955-009-9701-9

A Mathematical Study of the One-Dimensional Keller
and Rubinow Model for Liesegang Bands

D. Hilhorst · R. van der Hout · M. Mimura · I. Ohnishi

Received: 2 September 2008 / Accepted: 23 February 2009 / Published online: 14 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Our purpose is to start understanding from a mathematical viewpoint experiments
in which regularized structures with spatially distinct bands or rings of precipitated material
are exhibited, with clearly visible scaling properties. Such patterns are known as Liesegang
bands or rings. In this paper, we study a one-dimensional version of the Keller and Rubinow
model and present conditions ensuring the existence of Liesegang bands.

Keywords Reaction-diffusion · Liesegang bands · Scaling laws · Nonlocal terms

1 Introduction

In 1896, colloid-chemist R.E. Liesegang [6] observed strikingly regular patterns in
precipitation-reaction processes, which are referred to as Liesegang bands or rings, accord-
ing to their shape. These precipitation reactions are briefly described as follows. A solution
of soluble electrolyte (Pb(NO3)2, say) at relatively low concentration is placed in a test tube
which is occupied by gel. Then a second electrolyte (say KI) at high concentration is added
on top of the gel so that I− ions diffuse into the gel and react with Pb+ ions to form PbI2,
which is insoluble. Then layers of PbI2-precipitate appear, with fronts parallel to the surface
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Fig. 1 Precipitation fronts and scaling laws

of the diffusion front, as it is shown in the left-hand part of Fig. 1; this figure also shows a
pattern of Liesegang rings in a radially symmetric situation.

These precipitate-layers exhibit several scaling properties. If we denote by Xn the dis-
tance from the n-th band location to the first one, then it is surprising to observe that
Xn+1 = σXn for some positive constant σ . This phenomenon is the so called spacing law.
In addition, it has been observed that there exists a positive constant α such that Xn = α

√
tn,

where tn is the time at which the n-th band germinates. This relation is generally referred
to as the time law. Finally, if wn denotes the thickness of the n-th layer, it appears that
wn+1/wn is approximately constant: this is the so-called width law. We refer to Fig. 2 be-
low for a sketch of a possible configuration; however this figure neither represents a real
experiment nor the result of a numerical simulation.

In order to understand the mechanism behind these laws, intensive studies have been
done, both from experimental and from theoretical viewpoints (see [7] and the references
therein). Two important theories have been developed. The first one is the pre-nucleation
theory, which is based upon super-saturation ideas [9]: in this context a reaction-diffusion
model was proposed by Keller and Rubinow [5]. This is the model which we will study
in this paper. Numerical experiments for this model clearly show one-dimensional bands
which satisfy the spacing law; however ring patterns do not seem to occur in radially sym-
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Fig. 2 Illustration of the
time-law

metric situations. In other words, the Keller and Rubinow model is not valid in higher space
dimension. The second theory is the post-nucleation theory, which is based upon the Ost-
wald’s ripening process for colloidal particles. This theory includes instability and com-
petitive growth theory. In two space dimensions, the proposed model, which describes the
dynamics of colloidal particles and includes nucleation effects, does not only exhibit rings
but also spiral patterns [4].

The object of this paper is to theoretically discuss the existence of discrete precipitation
bands arising in experiments. In order to do so, we choose a one-dimensional model, based
upon the ideas of Keller and Rubinow. However results of numerical simulations clearly
show that this model does not permit to exhibit the width law. Let a, b and c be the concen-
trations of the monomers A, B and the product C for the reaction process A + B → C and
let d be the concentration of the precipitate D, formed by the precipitation C → D. Then
the processes in one space dimension can be described by the following reaction-diffusion
system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

at = Daaxx − kab,

bt = Dbbxx − kab,

ct = Dccxx + kab − P (c, d),

dt = P (c, d),

(1)

where Da,Db and Dc are respectively the diffusivities of A,B and C. P (c, d) is the precip-
itation term which includes a super-saturation effect. It is given by the following expression:

P (c, d) =
{

0 if c < Cs and d = 0,

λ(c − c∗)+ if c ≥ Cs or d > 0,
(2)

where Cs and c∗ (Cs > c∗) are the super-saturation and saturation concentrations, respec-
tively; λ is the rate constant of the precipitation C → D. The superscript + denotes nonneg-
ative parts. In this paper, we simplify (1), under the following assumptions:

(i) The diffusion rate Db is much smaller than Da .
(ii) The reaction rate k is very large.

(iii) c∗ = 0.
(iv) The processes occur in a semi-infinite slab 0 < x < ∞.

Assumption (i) permits to perform a number of explicit computations. Without this assump-
tion, we can formally perform similar calculations, but we have no proof of their validity.
Assumption (ii) is realistic from a chemical view point.
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Fig. 3 Concentration profiles,
appropriately scaled

Fig. 4 Simulation results:
spacing law, appropriately scaled

This leads to the simplified system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

at = Daaxx − kab, 0 < x < ∞, t > 0,

bt = −kab, 0 < x < ∞, t > 0,

ct = Dccxx + kab − P (c, d), 0 < x < ∞, t > 0,

dt = P (c, d), 0 < x < ∞, t > 0,

(3)

where we assume k to be very large. The initial and boundary conditions read

{
a(x,0) = c(x,0) = d(x,0) = 0, b(x,0) = b0, 0 < x < ∞,

a(0, t) = a0, cx(0, t) = 0, t > 0,
(4)

where a0 and b0 are positive constants. In experiments, a0 is much larger than b0.
We first show some numerical simulations of (3)–(4), where, in contrast to (iii) above,

we have assumed that c∗ > 0.
Figure 3 shows profiles of a, b, c and d at a certain time. Note that several precipi-

tation events have occurred; these events are characterized by peaks of the function d and
corresponding discontinuities of the space derivative of the function c.

Figures 4 and 5 show numerical evidence of the spacing- and time laws, respectively.



A Mathematical Study of the One-Dimensional Keller and Rubinow 111

Fig. 5 Simulation results: time
law, appropriately scaled

The purpose of the subsequent sections is to show that the simplified Keller-Rubinow
model (3)–(4) exhibits infinitely many distinct precipitations (Theorem 3.13), under suit-
able conditions and assumptions, and that the time-law is satisfied. The problem formula-
tion which we obtain turns out to involve a nonlocal discontinuous term. We prove existence
of a weak solution which exhibits a bounded precipitation region (a precise definition fol-
lows later); we prove the existence of infinitely many distinct precipitation regions under an
additional assumption on the behavior of the weak solution.

This paper is organized as follows. In Sect. 2, we discuss the limit as k → ∞. In partic-
ular, we formulate the resulting problem for the limiting concentration c. Finally, in Sect. 3,
we show the conditional existence of discrete precipitation bands as well as the time law
discussed above.

2 Asymptotic Analysis

To begin with, we rewrite Problem (3), (4), as follows, taking into account the assumption
that c∗ = 0:

(P∗
k)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = Daaxx − kab, 0 < x < ∞, t > 0,

bt = −kab, 0 < x < ∞, t > 0,

ct = Dcxx + kab − λcH̃
(
(c − Cs)

+ + d
)
, 0 < x < ∞, t > 0,

dt = λcH̃
(
(c − Cs)

+ + d
)
, 0 < x < ∞, t > 0,

a(0, t) = a0 > 0, t > 0,

cx(0, t) = 0, t > 0,

a(x,0) = c(x,0) = d(x,0) = 0; b(x,0) = b0 > 0 0 < x < ∞,

where Dc is now replaced by D and where H̃ is the Heaviside function:

H̃ (y) =
{

0 when y ≤ 0,

1 when y > 0.

The equations for c and d in Problem (P∗
k ) have been formulated to express the chemical

assumption that dt = λc if c > Cs or if d > 0 and that dt = 0 otherwise. The above for-
mulation gives rise to a non-uniqueness issue that may be avoided if we choose a different
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formulation. The right-hand sides of the equations for c and d are not continuous. For this
reason, we cannot be sure that the solution is unique, even if c −Cs ≤ 0 everywhere. Chem-
ical arguments imply that d(x, t) can only be positive if its growth has been initiated by a
positive value of c(x, τ ) − Cs for some τ ≤ t . This leads us to look for a solution such that
d(x, t) = 0 if c(x, τ ) ≤ Cs for all τ < t . Against this background, we reformulate Problem
(P∗

k ) in a slightly different way, which is more precise from a chemical point of view, since
it excludes the possibility of spontaneous growth of d . Assuming, for a moment, that c is
continuous, we introduce the function

w(x, t) =
∫ t

0
(c(x, s) − Cs)

+ ds.

We claim that w(x, t) > 0 if and only if (c(x, t) − Cs)
+ + d(x, t) > 0. Indeed let us first

assume that w(x̄, t̄) > 0. Then there exist t1 < t2 ≤ t̄ such that c(x, t) > Cs for all t1 <

t < t2. The differential equation for d implies that d(x̄, t̄) > 0, which, in turn, implies that
(c(x̄, t̄ ) − Cs)

+ + d(x̄, t̄) > 0. Conversely, if w(x, t) = 0, it is clear that c(x, τ ) ≤ Cs for all
τ ≤ t . The chemical arguments discussed above now imply that d(x, t) = 0.

Therefore, it is justified to replace the argument (c − Cs)
+ + d of H̃ by the new argu-

ment w. Note that, upon this change of arguments, any reference to d can be completely
omitted from Problem (P∗

k ). We are left with the following problem, which we still refer to
as Problem (P∗

k ):

(P∗
k)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = Daaxx − kab, 0 < x < ∞, t > 0,

bt = −kab, 0 < x < ∞, t > 0,

ct = Dcxx + kab − λcH̃
(∫ t

0 (c(x, τ ) − Cs)
+dτ

)
, 0 < x < ∞, t > 0,

a(0, t) = a0 > 0, t > 0,

cx(0, t) = 0, t > 0,

a(x,0) = c(x,0) = 0; b(x,0) = b0 > 0, 0 < x < ∞.

It is our aim to study Problem (P∗
k ) for very large values of k, or in other words to study its

asymptotic behavior as k tends to infinity. With this purpose in mind, we shall use the nota-
tion ak, bk, ck for a solution of Problem (P∗

k ). Our strategy is to first solve for ak and bk , then
compute kakbk and use this expression as a given source in the equation for ck . In particular,
we are interested in the validity of this approach as k tends to infinity. The behavior of ak

and bk has been studied in [1] and [2]. In particular, it has been shown that a := limk→∞ ak

is the solution of a one-phase Stefan problem with melting boundary ζ(t) = α
√

t for some
positive constant α. Thus we are lead to study the problem

(Pk)

⎧
⎪⎨

⎪⎩

ckt = Dckxx + kakbk − λckH̃
(∫ t

0

(
ck(x, τ ) − Cs)

+)
dτ

)
, 0 < x < ∞, t > 0,

ckx(0, t) = 0, t > 0,

ck(x,0) = 0, x > 0,

and in particular the singular limit of ck as k → ∞. In order to do so, we first study the
asymptotic behavior of the source term kakbk .
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2.1 The Singular Limit of kakbk as k → ∞

In this section we consider the problem,

(Sk)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

akt = Daakxx − kakbk, 0 < x < ∞, t > 0,

bkt = −kakbk, 0 < x < ∞, t > 0,

ak(0, t) = a0 > 0, t > 0,

ak(x,0) = 0, bk(x,0) = b0 > 0, x > 0.

It follows from the results of [1] and [2] that, as k → ∞, the unique classical solution (ak, bk)

of system (Sk) is such that

(ak, bk) → (a, b) in L
p

loc(R
+ × (0, T )) and a.e.

for all p ∈ [1,∞), with a b = 0, where a is the unique solution of the classical one phase
Stefan problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = Daaxx, 0 < x < ζ(t), t > 0,

a(0, t) = a0, t > 0,

ζ ′(t) = −Da

b0

∂a
∂x

(ζ(t)−, t), t > 0,

a(ζ(t), t) = 0, t > 0,

a(x,0) = 0, x > 0,

ζ(0) = 0

and
{

b = 0 in {0 < x < ζ(t), t > 0} ,

b = b0 in {x > ζ(t), t > 0} .
(5)

Let us first recall a result of [2] which will be our starting point.

Theorem 2.1 For all T > 0, it holds that

∫ T

0

∫

R+
akbk � C

k
,

where the constant C depends on T .

Corollary 2.2 There exists a Radon measure μ such that as k → ∞
kakbk ⇀ μ

(along a subsequence) in the sense of weak convergence of measures.

Theorem 2.3 The measure μ is concentrated on the free boundary ζ , or more precisely

μ = −b0
∂

∂t
H̃ (x − ζ(t)) = ζ ′(t) b0 δ(x − ζ(t)),

for all x > 0, t > 0.
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Proof Let T > 0 be arbitrary. We multiply the equation for bk by a continuously differen-
tiable test function with compact support in (0,∞) × (0, T ), namely φ ∈ C1

c (R
+ × (0, T )).

This yields
∫ T

0

∫

R

bktφ = −
∫ T

0

∫

R

kakbkφ

for all φ ∈ C1
c (R

+ × (0, T )), which gives after integration by parts,

∫ T

0

∫

R

−bkφt + kakbkφ = 0

for all φ ∈ C1
c (R

+ × (0, T )). Letting k → ∞ in the equation above, we obtain

∫ T

0

∫

R

−bφt + μφ = 0,

for all φ ∈ C1
c (R

+ × (0, T )), in which we perform the substitution

b = b0H̃ (x − ζ(t)),

which follows from (5), to obtain

∫ T

0

∫

R

(
−b0H̃ (x − ζ(t))φt + μφ

)
= 0,

for all φ ∈ C1
c (R

+ × (0, T )), that is,

∫ T

0

∫

R

(

b0
∂

∂t
H̃ (x − ζ(t)) + μ

)

φ = 0,

for all φ ∈ C1
c (R

+ × (0, T )). This completes the proof of Theorem 2.3. �

It also follows from [1] that

ζ(t) = α
√

t, t > 0,

for some positive constant α. Therefore the measure μ is given by:

Corollary 2.4

μ = −b0
∂

∂t
H̃ (x − α

√
t) = b0α

2
√

t
δ(x − α

√
t).

The next step is to prove the existence of a solution ck of Problem (Pk) and to show that
ck → c along a subsequence as k → ∞, where c satisfies

(P)

⎧
⎪⎪⎨

⎪⎪⎩

ct = Dcxx + b0α

2
√

t
δ(x − α

√
t) − λcH̃

(∫ t

0(c(x, τ ) − Cs)
+dτ

)
, 0 < x < ∞, t > 0,

cx(0, t) = 0, t > 0,

c(x,0) = 0, x > 0

in a weak sense, to be defined later. We begin with.
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2.2 The Limiting Behavior as k → ∞ of the Solution of a Corresponding Linear Problem

In this section, we consider the linear problem

(Qk)

⎧
⎪⎨

⎪⎩

ψt = Dψxx + kakbk, 0 < x < ∞, t > 0,

ψx(0, t) = 0, t > 0,

ψ(x,0) = 0, x > 0,

and we prove the following result.

Theorem 2.5 As k → ∞ the solution ψk of Problem (Qk) converges to the unique weak
solution ψ of the problem

(Q)

⎧
⎪⎨

⎪⎩

ψt = Dψxx + b0α

2
√

t
δ(x − α

√
t), 0 < x < ∞, t > 0,

ψx(0, t) = 0, t > 0,

ψ(x,0) = 0, x > 0.

Proof We define the new unknown function

zk(x, t) =
∫ t

0
ψk(x, τ )dτ,

where ψk is the unique classical solution of Problem (Qk). Then zk is the solution of the
problem

⎧
⎪⎨

⎪⎩

zt = Dzxx + ∫ t

0 kakbk, 0 < x < ∞, t > 0,

zx(0, t) = 0, t > 0,

z(x,0) = 0, x > 0.

Since bkt = −kakbk , it follows that

0 �
∫ t

0
kakbk = b0 − bk(t) � b0,

so that ‖ ∫ t

0 kakbk‖L∞((0,∞)×(0,T )) � b0 for all T > 0. We deduce that for all p ∈ (1,∞) and
for all R > 0 there exists a positive constant C = C(R,p) such that

‖zk‖W
2,1
p ((0,R)×(0,T ))

� C,

and that

‖zk‖
C

1+β,
1+β

2 ([0,R]×[0,T ])
� C,

for all β ∈ (0,1), where we have used the embedding

W 2,1
p ((0,R) × (0, T )) ⊂ C1+β,

1+β
2 ([0,R] × [0, T ]) ,

for all p > 3, where β = 1 − 3
p

. Therefore as k → ∞,

zk ⇀ z, weakly in W 2,1
p ((0,R) × (0, T )) ,
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and

zk → z, in C1+β,
1+β

2 ([0,R] × [0, T ]) ,

for all p ∈ (1,∞) and β ∈ (0,1), where z is the unique solution of the problem
⎧
⎪⎨

⎪⎩

zt = Dzxx + b0 − b0H̃ (x − α
√

t), 0 < x < ∞, t > 0,

zx(0, t) = 0, t > 0,

z(x,0) = 0, x > 0.

Taking the difference of the equations for zk and for z we deduce that
⎧
⎪⎨

⎪⎩

(zk − z)t = D(zk − z)xx − (bk − b), 0 < x < ∞, t > 0,

(zk − z)x(0, t) = 0, t > 0,

(zk − z)(x,0) = 0, x > 0.

Therefore

‖zk − z‖
W

2,1
p ((0,R)×(0,T ))

� C‖bk − b‖Lp((0,R)×(0,T )).

Thus, as k → ∞,

zk → z strongly in W 2,1
p ((0,R) × (0, T )) ,

for all p ∈ (1,∞) and in particular

zkt → zt strongly in Lp((0,R) × (0, T )),

so that, if we define ψ = zt ,

ψk → ψ strongly in Lp((0,R) × (0, T )),

as k → ∞, where ψ is the weak solution of the problem
⎧
⎪⎨

⎪⎩

ψt = Dψxx + b0α

2
√

t
δ(x − α

√
t), 0 < x < ∞, t > 0,

ψx(0, t) = 0, t > 0,

ψ(x,0) = 0, x > 0. �

We present below a complete characterization of the function ψ . We set

ψ(x, t) = 
(η) with η = x√
t
.

Then 
 satisfies the problem
⎧
⎪⎨

⎪⎩

D
 ′′ + η

2 
 ′ + b0α

2 δ(η − α) = 0, η ∈ (0,∞),


η(0) = 0,


(∞) = 0,

so that


(η) =
⎧
⎨

⎩

A(D,b0, α) := (b0αe
α2
4D /(2D))

∫ ∞
α

e− s2
4D , if η � α,

(b0αe
α2
4D /(2D))

∫ ∞
η

e− s2
4D , if η > α,

see Fig. 6.
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Fig. 6 Shape of the function 


In particular


 ∈ BC(R+), lim
η→∞
(η) = 0,

and thus

ψ ∈ BC(R+ × R
+), lim

x→∞ψ(x, t) = 0 for t ∈ R
+, ψ(x,0) = 0 for x ∈ R

+.

More precisely, the following results hold.

Lemma 2.6 ψ ∈ L2(0, T ;H 1(0,∞)) ∩ H 1((0,∞) × (τ0, T )) for any 0 < τ0 < T .

Proof Recall that ψ(x, t) = 
( x√
t
) so that


 ′(η) ≡ 0 when η < α; 
 ′(η) = −b0α

2D
e

α2−η2

4D when η > α. (6)

We only need to prove that ψt ∈ L2((0,∞) × (τ0, T )) for any 0 < τ0 < T . To that purpose,
we prove that there exists a constant C1 > 0 such that, for every t∗ > 0,

∫ ∞

t∗

∫ ∞

0
ψ2

t dxdt ≤ C1√
t∗

. (7)

Indeed, ψt = − η

2t

 ′(η). For fixed t , we have that dx = √

tdη and

∫ ∞

t∗

∫ ∞

0
ψ2

t dxdt =
∫ ∞

t∗

∫ ∞

0

(η
 ′(η))2

4t
3
2

dηdt.

The proof now follows from (6). �

2.3 Existence of a Solution of Problem (Pk)

We extend the unknown concentration ck to the whole domain R × R
+ according to

ck(−x, t) = ck(x, t), x > 0, t > 0.

and ak and bk similarly. Problem (Pk) becomes

(Pk)

{
ct = Dcxx + kakbk − λcH̃

(∫ t

0 (c − Cs)
+)

, x ∈ R, t > 0,

c(x,0) = 0, x ∈ R.



118 D. Hilhorst et al.

In order to be able to work with partial differential equations with a bounded right-hand
side, we perform a change of the unknown function. We set

ψk(−x, t) = ψk(x, t), x > 0, t > 0,

and

c̃k = ck − ψk.

Problem (Pk) can be rewritten as

(Pk)

{
c̃t = Dc̃xx − λ(c̃ + ψk)H̃

(∫ t

0 (c̃ + ψk − Cs)
+
)

, x ∈ R, t > 0,

c̃(x,0) = 0, x ∈ R.

However we will only prove the existence of a weak solution of a slightly different problem,
namely Problem (Pk), which one obtains by replacing the Heaviside function H̃ in Problem
(Pk) by the Heaviside graph

H(y) ∈

⎧
⎪⎨

⎪⎩

0 when y < 0,

[0,1] when y = 0,

1 when y > 0.

Definition A weak solution of Problem (Pk) is a function pair {ck, Xk} with the properties:

(i) for each T > 0, ck − ψk ∈ C1+γ,
1+γ

2 (R × [0, T ]) ∩ H 1
loc(R × [0, T ]) for all 0 < γ < 1;

(ii) for all ϕ ∈ C1(R × [0, T ]) such that ϕ vanishes for large |x| and for t = T ,

∫ T

0

∫

R

(ψk − ck)ϕt =
∫ T

0

∫

R

[D(ψk − ck)xϕx − λckϕXk], (8)

where Xk ∈ H(
∫ t

0 (ck −Cs)
+(x, τ ) dτ) is such that Xk(x, t) = 0 if ck(x, τ )−Cs < 0 for

all τ ≤ t .

The remainder of this section is devoted to proving existence of a weak solution of Prob-
lem (Pk). To begin with we consider the boundary value problem

⎧
⎪⎨

⎪⎩

ψt = Dψxx + kakbk, x ∈ (−R,R), t > 0,

ψ(±R, t) = 0, t > 0,

ψ(x,0) = 0, x ∈ (−R,R),

and denote its unique solution by ψkR
. Next, we prove the existence of a solution of the

problem

(PkR
)

⎧
⎪⎨

⎪⎩

c̃t = Dc̃xx − λ(c̃ + ψkR
)H 1

R

(∫ t

0 (c̃ + ψkR
− Cs)

+
)

, x ∈ (−R,R), t > 0,

c̃(±R, t) = 0, t > 0,

c̃(x,0) = 0, x ∈ (−R,R),
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where Hε is a smooth nondecreasing approximation of the Heaviside graph H such that

Hε(s) = H(s) for all s > ε and s < 0. (9)

We consider the map � : φ → γ , where γ is the unique solution of the auxiliary problem

(PA)

⎧
⎪⎨

⎪⎩

γt = Dγxx − λ(γ + ψkR
)H 1

R

(∫ t

0 (φ + ψkR
− Cs)

+
)

, x ∈ (−R,R), t > 0,

γ (±R, t) = 0, t > 0,

γ (x,0) = 0, x ∈ (−R,R).

We set

Lu = ut − Duxx + λ(u + ψkR
)H 1

R

(∫ t

0
(φ + ψkR

− Cs)
+
)

,

and observe that

L0 = λψkR
H 1

R

(∫ t

0
(φ + ψkR

− Cs)
+
)

� 0,

and that

L(−ψkR
) = (−ψkR

)t − D(−ψkR
)xx = −kakbk � 0.

We define

C = {
u ∈ C([−R,R] × [0, T ]),−ψkR

� u � 0,

u(−x, t) = u(x, t) for all (x, t) ∈ (−R,R) × (0, T )
}
,

and remark that � maps C into itself, which implies that

|γt − Dγxx | � λ‖ψkR
‖L∞((−R,R)×(0,T )) � Ck.

Therefore there exists a positive constant C̃k such that

‖γ ‖
C

1+β,
1+β

2 ([−R,R]×[0,T ])
� C̃k.

Thus � is a compact map from C into itself. Furthermore it is continuous; indeed suppose
that

φn → φ in C([−R,R] × [0, T ]), as n → ∞,

then as n → ∞
Fn = H 1

R

(∫ t

0
(φn + ψ − Cs)

+
)

converges uniformly to its limit

F = H 1
R

(∫ t

0
(φ + ψ − Cs)

+
)

in [−R,R] × [0, T ]. Next, we define γn = �(φn) and take the difference of the equations
for γ and for γn to obtain

(γ − γn)t = D(γ − γn)xx − λ(γ − γn)F − λγn(F − Fn) + λψkR
(Fn − F ).
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Since ‖γn(Fn − F )‖C([−R,R]×[0,T ]) and ‖ψkR
(Fn − F )‖C([−R,R]×[0,T ]) tend to zero as n → ∞,

it follows, since also γ and γn satisfy the same boundary and initial conditions, that

‖γ − γn‖
C

1+β,
1+β

2 ([−R,R]×[0,T ])
→ 0, as n → ∞.

Therefore it follows from the Schauder fixed point theorem that the map � has a fixed point
c̃kR

which is a classical solution of Problem (PkR
). Since ‖kakbk‖L∞(R×(0,T )) � ka0b0, it

follows that

‖ψkR
‖

C
1+β,

1+β
2 ([−R,R]×[0,T ])

� Ck

for all β ∈ (0,1); in turn since

−ψkR
� c̃kR

� 0,

we deduce that
∥
∥
∥
∥(c̃kR

+ ψkR
)H 1

R

(∫ t

0
(c̃kR

+ ψkR
− Cs)

+
)∥

∥
∥
∥

L∞((−R,R)×(0,T ))

� Ck.

Therefore there exist c̃kRn
and c̃k such that

c̃kRn
→ c̃k as Rn → ∞

in C1+β,
1+β

2 ([−L,L] × [0, T ]) for all L > 0. Then

EkRn
=

∫ t

0
(c̃kRn

+ ψkRn
− Cs)

+ → Ek =
∫ t

0
(c̃k + ψk − Cs)

+,

as Rn → ∞, uniformly in compact sets of R × [0, T ], and there exist Xk ∈ H(Ek) and a
subsequence of EkRn

which we denote again by EkRn
such that

H 1
Rn

(EkRn
) ⇀ Xk,

as Rn → ∞, weakly in L2((−L,L) × (0, T )) for all L > 0. Next we show that the function
pair {c̃k, Xk} is a weak solution of the Problem (Pk).

Indeed extend c̃kRn
by zero for |x| � Rn. Then c̃kRn

satisfies the integral identity

∫ T

0

∫

R

{
c̃kRn

σt + Dc̃kRnx
σx − λ(c̃kRn

+ ψkRn
)H 1

Rn

(EkRn
)σ

}
= 0,

for all σ ∈ C2,1(R × [0, T ]) such that σ vanishes for large |x| and for t = T . Letting
Rn → ∞, we deduce that

∫ T

0

∫

R

{
c̃kσt + Dc̃kx σx − λ(c̃k + ψk)Xkσ

} = 0, (10)

for all test functions σ ∈ C2,1(R × [0, T ]) with the above properties.
We claim that Xk(x, t) = 1 if Ek(x, t) > 0, Xk(x, t) = 0 if c̃k(x, τ ) + ψk(x, τ )

− Cs < 0 for all τ ≤ t and that Xk(x, t) ∈ [0,1] anywhere. To see this, we discuss the
case that Ek(x, t) > 0, the other cases being similar. If we choose n so large that

(i)
1

Rn

<
Ek(x, t)

2
and (ii) EkRn

(x, t) >
Ek(x, t)

2
,



A Mathematical Study of the One-Dimensional Keller and Rubinow 121

then, by (9), H 1
Rn

(EkRn (x,t)) = 1. This implies that Xk(x, t) = 1 as well.

Therefore we have proved the existence of a weak solution {c̃k, Xk} of Problem (Pk) such
that

−ψk � c̃k � 0 and c̃k(−x, t) = c̃k(x, t) for all (x, t) ∈ R × [0, T ),

where we recall that

‖ψk‖Lp((−R,R)×(0,T )) � C(R,p)

for all p ∈ [1,∞) and R > 0.

2.4 Singular Limit as k → ∞ of Solutions of Problem (Pk)

We consider the limit Problem (P̂) which we define by

(P̂)

⎧
⎪⎨

⎪⎩

ct = Dcxx + b0α

2
√

t
δ(x − α

√
t) − λc X (x, t), 0 < x < ∞, t > 0,

cx(0, t) = 0, t > 0,

c(x,0) = 0, x > 0,

where

X (x, t) ∈ H

(∫ t

0
(c − Cs)

+(x, τ )dτ

)

(11)

is such that X (x, t) = 0 when c(x, τ ) − Cs < 0 for all τ ≤ t .

Definition A weak solution of Problem (P̂ ) is a function pair {c, X } with the properties:

(1) for each T > 0, c − ψ ∈ C1+γ,
1+γ

2 ([0,∞) × [0, T ]) ∩ H 1
loc([0,∞) × [0, T ]) for all

0 < γ < 1;
(2) for all ϕ ∈ C1([0,∞) × [0, T ]) such that ϕ vanishes for large |x| and for t = T ,

∫ T

0

∫ ∞

0
(ψ − c)ϕtdxdt =

∫ T

0

∫ ∞

0
[D(ψ − c)xϕx − λcϕX ]dxdt, (12)

where X ∈ H(
∫ t

0 (c −Cs)
+(x, τ )dτ) is such that X (x, t) = 0 when c(x, τ )−Cs < 0 for

all τ ≤ t .

We remark that by Lemma 3.2 below a weak solution c of Problem (P̂ ) also belongs to
L2(0, T ;H 1(0,∞)).

Again restricting the functions ck, c̃k and ψk to [0,∞) × [0, T ], we prove the following
result.

Theorem 2.7 There exists subsequences {ckn} and {Xkn}, and functions

c ∈ C1+γ,
1+γ

2 ([0,R] × [0, T ]) for all γ ∈ (0,1) and

X ∈ L2(((0,L) × (0, T )), such that, as kn → ∞, ckn − ψkn → c − ψ (13)

in C1+γ,
1+γ

2 ([0,R] × [0, T ]) for all γ ∈ (0,1) and Xkn ⇀ X weakly in L2((0,L) × (0, T )),
R and T positive. The function X satisfies (11), the pair (c, X ) is a weak solution of Prob-
lem (P̂), and the function c is such that 0 ≤ c ≤ ψ .
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Proof In what follows we use the notation

Fk = (c̃k + ψk)Xk

and deduce from the inequalities 0 � Fk � ψk that

‖Fk‖Lp((0,R)×(0,T )) � C(R,p).

Therefore, we have that

‖c̃k‖W
2,1
p ((0,R)×(0,T ))

� C(R,p)

for all R > 0 and p ∈ [0,∞), which implies that

‖c̃k‖
C

1+β,
1+β

2 ([0,∞)×[0,T ])
� C(R,β)

for all β ∈ (0,1). As a consequence there exist a function c̃ ∈ C1+β,
1+β

2 ([0,∞) × (0, T )) ∩
W

2,1
p,loc((0,R) × [0, T ]), and a subsequence {c̃kn} such that as kn → ∞

c̃kn → c̃ in C1+β,
1+β

2 ([0,R] × [0, T ])
for all β ∈ (0,1) and

c̃kn ⇀ c̃ weakly in W 2,1
p ((0,R) × (0, T )) for all R > 0 and p ∈ [1,∞). (14)

Furthermore there exists a function X ∈ [0,1] and a subsequence of Xkn which we denote
again by Xkn such that as kn → ∞,

Xkn ⇀ X weakly in L2((0,L) × (0, T ))

for each L > 0. If (x, t) is such that
∫ t

0
(c̃ + ψ − Cs)

+(x, τ )dτ > 0,

then there exists κ > 0 such that
∫ t

0
(c̃kn + ψkn − Cs)

+(x, τ )dτ > 0

for all kn � κ , so that

Xkn (x, t) = 1, for all kn � κ,

and therefore

X (x, t) = 1.

If (x, t) is such that

c̃(x, τ ) + ψ(x, τ ) − Cs < 0 for all τ ≤ t

we have that

X (x, t) = 0.
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The argument is similar to the previous one: obviously, there is a δ > 0 such that c̃(x, τ ) +
ψ(x, τ )−Cs ≤ −δ for all τ ≤ t . Therefore, if n is sufficiently large, c̃kn (x, τ )+ψkn(x, τ )−
Cs < − δ

2
for all τ ≤ t . This, in turn, implies that Xkn (x, t) = 0. Taking the limit, we see that

X (x, t) = 0 as well. Obviously, in the remaining cases it holds that

X ∈ [0,1].
Now letting k → ∞ in (10) we obtain the integral equality

∫ T

0

∫ ∞

0
{c̃σt + Dc̃xσx − λ(c̃ + ψ)X σ } = 0,

for all σ ∈ C2,1([0,∞) × [0, T )) such that σ vanishes for large |x| and for t = T . Here,

X ∈ H

(∫ t

0
(c̃ + ψ − Cs)

+
)

.

Therefore the function pair {c̃, X } is a weak solution of the problem

(P)

⎧
⎪⎨

⎪⎩

c̃t = Dc̃xx − λ(c̃ + ψ)X , x ∈ (0,∞), t > 0,

c̃x(0, t) = 0, t > 0,

c̃(x,0) = 0, x > 0.

Writing c = c̃ + ψ we have that 0 ≤ c ≤ ψ . The function pair {c, X } is a weak solution of
Problem (P̂ ). �

Finally, we mention a useful scaling property of Problem (P̂ ):

Lemma 2.8 Define, for β > 0, uβ(x, t) = c(x
√

β, tβ). Then uβ satisfies
⎧
⎪⎨

⎪⎩

uβt = Duβxx + b0α

2
√

t
δ(x − α

√
t) − βλuβ Hβ(x, t), 0 < x < ∞, t > 0,

uβx(0, t) = 0, t > 0,

uβ(x,0) = 0, x > 0,

where

Hβ(x, t) ∈ H

(∫

0

t

(uβ(x, τ ) − Cs)
+dτ

)

is such that H(x, t) = 0 when uβ(x, τ ) − Cs < 0 for all τ ≤ t .

The proof is by direct computation. This lemma enables us to assume that λ = 1, which
we shall do from now on.

3 Liesegang Bands

Definition A Liesegang band is a connected component of the set
{

(x, t) ∈ [0,∞) × [0, T ): w(x, t) :=
∫

0

t

(c(x, τ ) − Cs)
+dτ > 0

}

.
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In this section, we shall prove that Liesegang bands do indeed exist under suitable con-
ditions and that their starting points satisfy the time law that has been mentioned in Sect. 1.
Further it follows from the facts:

1. c ≤ ψ ≤ A(D,b0, α), and
2. Liesegang bands can germinate only if c > Cs ,

that Liesegang bands can only exist if the condition

Cs < A(D,b0, α) (15)

is satisfied, which we shall assume from now on. Concerning the value of A(D,b0, α), we
have:

Lemma 3.1 A(D,b0, α) only depends on α√
D

and b0. It is strictly increasing in α√
D

and

lim
α√
D

→∞
A(D,b0, α) = b0. (16)

Proof Define θ(D,α) := αe
α2
4D

D

∫ ∞
α

e
−s2
4D ds. It is simple to see that θ(D,α) = θ̃ (ζ ), with ζ =

α√
D

and that θ̃ (0) = 0 and limζ→∞ θ(ζ ) = 2. Note that θ̃ satisfies the differential equation

θ̃ ′′ = θ̃ + ζ

2
θ̃ ′ − 2.

It follows easily that θ̃ cannot assume a maximum > 2; nor can it assume a minimum
or a saddle value < 2. Finally, given that θ̃ (0) = 0, by uniqueness it cannot happen that
θ̃ (ζ ∗) = 2, θ̃ ′(ζ ∗) = 0 for any ζ ∗ < ∞. �

In the sequel, we shall need:

Lemma 3.2 Let c be a weak solution of Problem (P̂ ). Then

1

2

∫ ∞

0
c(T )2dx +

∫ T

0

∫ ∞

0
Dc2

xdxdt +
∫ T

0

∫ ∞

0
c2χdxdt ≤ b0αA(D,b0, α)

√
T .

Proof We know that c is a weak solution of the equation

ct = Dcxx + b0α

2
√

t
δ(x − α

√
t) − cχ. (17)

It follows from (7) and (14) that ct ∈ L2((0,R) × (t∗, T )) for all R > 0 and t∗ ∈ (0, T ].
Given some R∗ > 0, let, for R > R∗, ζR ∈ C∞([0,∞)) be a smooth function such that

ζR(x) ∈

⎧
⎪⎨

⎪⎩

1 when 0 ≤ x ≤ R,

[0,1] when R ≤ x ≤ 2R,

0 when x ≥ 2R,
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and such that |ζ ′′
R| ≤ C for some positive constant C which does not depend on R. We

multiply (17) by cζ and integrate by parts to deduce that for all t∗ ∈ (0, T ]

1

2

∫ ∞

0
{c(x,T )2 − c(x, t∗)2} ζR(x) dx + D

∫ T

t∗

∫ ∞

0
c2
xζRdxdt + D

∫ T

t∗

∫ 2R

R

{
c2

2

}

x

ζ ′
Rdxdt

+
∫ T

t∗

∫ ∞

0
c2χζRdxdt ≤ b0αA(D,b0, α)

√
T , (18)

in which we let t∗ tend to zero to obtain

1

2

∫ ∞

0
c(x,T )2ζR(x,T )dx + D

∫ T

0

∫ ∞

0
c2
xζRdxdt + D

∫ T

0

∫ 2R

R

{
c2

2

}

x

ζ ′
Rdxdt

+
∫ T

0

∫ ∞

0
c2χζRdxdt ≤ b0αA(D,b0, α)

√
T . (19)

Next we remark that the term

∫ T

0

∫ 2R

R

{
c2

2

}

x

ζ ′
R dxdt = −

∫ T

0

∫ 2R

R

{
c2

2

}

ζ ′′
R dxdt

tends to zero as R tends to infinity. Therefore letting R tend to infinity in (19) and applying
the Lebesgue monotone convergence theorem, we deduce the result of Lemma 3.2. �

Lemma 3.3 c − ψ is nonincreasing in time.

Proof For h ≥ 0, let yh be defined by yh(x, t) = c(x, t + h) − ψ(x, t + h). Since c ≤ ψ we
know that

yh(x,0) ≤ 0. (20)

We have

yht = Dyhxx − c(x, t + h)χ(x, t + h).

Note that χ is nondecreasing in t . It follows that

(yh − y0)t = D(yh − y0)xx − c(x, t + h)χ(x, t + h) + c(x, t)χ(x, t)

≤ D(yh − y0)xx − [c(x, t + h) − c(x, t)]χ(x, t)

= D(yh − y0)xx − [ψ(x, t + h) − ψ(x, t)]χ(x, t)

− [c(x, t + h) − ψ(x, t + h) − c(x, t) + ψ(x, t)]χ(x, t).

Because ψ is nondecreasing in t , we obtain that

(yh − y0)t ≤ D(yh − y0)xx − (yh − y0)χ(x, t).

Next, we multiply by (yh − y0)
+, integrate by parts, and use (20). �

Remark 3.4 Lemma 3.3 implies that c is nonincreasing in t when x ≤ α
√

t .
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We start with a discussion of the first precipitation band. To be precise, we define

B(t) = {x ≥ 0: w(y, t) > 0 for all 0 ≤ y < x}.

First, we show the existence of such set, under appropriate conditions.

Lemma 3.5 Define S(t) = max{x : x ∈ B(t)} if B(t) �= ∅ and S(t) = 0 otherwise. If
A(D,b0, α) > Cs , then S(t) > 0 for all t > 0. Moreover, S(·) is nondecreasing.

Proof Clearly,

ct ≥ Dcxx + b0α

2
√

t
δ(x − α

√
t ) − c ≥ Dcxx + b0α

2
√

t
δ(x − α

√
t) − A(D,b0, α).

Consequently,

[c + A(D,b0, α)t]t ≥ D[c + A(D,b0, α)t]xx + b0α

2
√

t
δ(x − α

√
t )

and c ≥ ψ − A(D,b0, α)t . So, if A(D,b0, α) > Cs and if t is sufficiently small, then
c(x, t) > Cs in the region 0 ≤ x < α

√
t . The lemma follows immediately. �

Lemma 3.6 Suppose that t is such that S(t + ε) > S(t) for all ε > 0. Then c(S(t), t) = Cs .

Proof This follows from the continuity of c. �

Lemma 3.7 S is continuous on [0,∞).

Proof Suppose, to the contrary, that x1 := S(t∗−) < S(t∗+) := x2 for some t∗ ≥ 0. Then for
every x ∈ (x1, x2) it holds that:

(1) c(x, t) ≤ Cs for t ≤ t∗, and
(2) there is a sequence t1 > t2 > · · · → t∗ such that c(x, ti) > Cs .

We deduce that c(x, t∗) = Cs for x1 < x < x2 and, by Lemma 3.3, that α
√

t∗ ≤ x1. Choose
x3 = x1+x2

2 . Clearly, c(x3, t
∗) = Cs and c assumes its maximum over the region [x1,∞) ×

[0, t∗] in the point (x3, t
∗). By the maximum principle we deduce that c ≡ Cs in [x3,∞) ×

[0, t∗], which is in contradiction with the initial condition c(x,0) = 0 (note that the curve
{x = α

√
t} does not enter this region). �

In what follows, we shall prove that, under the additional technical condition that 2Cs >

A(D,b0, α), there is a time t̂ such that S(t) = s(t̂) for all t > t̂ . That is: after some time the
first “precipitation region” (that is, a region where w > 0) does not grow further. Assuming
an additional property of the weak solution, it is not difficult to show that this implies that
a new precipitation region must come into existence if D,α,b0 and Cs are appropriate. The
proof which we are going to present can be used for the subsequent precipitation regions
as well, so that we are able to prove the existence of an infinite sequence of such regions
(provided that our assumption holds true).

Lemma 3.8 For any γ > 0, there exists a time t > 0 such that c(S(t), t) < γ .
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Proof Suppose that on the contrary there exists γ > 0 such that c(S(t), t) ≥ γ for all t > 0.
Let δ > 0 and t̃ > 0 be such that S(t) > δ when t > t̃ , see Lemma 3.5. By the Cauchy-
Schwarz inequality it holds that, when 0 ≤ S(t) − δ ≤ x ≤ S(t),

[c(S(t), t) − c(x, t)]2 ≤ (S(t) − x)

∫ S(t)

x

cξ (ξ, t)2dξ ≤ (S(t) − x)

∫ ∞

0
cξ (ξ, t)2dξ.

For T > t̃ we obtain

1

T

∫ T

t̃

[c(S(t), t) − c(x, t)]2dt ≤ S(t) − x

T

∫ T

0

∫ ∞

0
cξ (ξ, t)2dξdt,

which we integrate with respect to x over {S(t) − δ < x < S(t)} to obtain

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

[c(S(t), t) − c(x, t)]2dxdt ≤ δ2

2T

∫ T

0

∫ ∞

0
cξ (ξ, t)2dξdt.

By Lemma 3.2, the right-hand side of this expression tends to 0 as T → ∞. Therefore,

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

[
c(S(t), t)2 − 2c(S(t), t)c(x, t), t) + c(x, t)2

]
dxdt → 0 as T → ∞.

However, we also have that

lim inf
T →∞

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

[c(S(t), t)]2dxdt ≥ δγ 2.

Moreover we deduce from Lemma 3.2 that

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

χ(x, t)[c(x, t)]2dxdt → 0 as T → ∞.

Note that Lemma 3.6 implies that, for any x < S(t), it holds that w(x, t) > 0 and therefore
that χ(x, t) = 1. It follows that

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

[c(x, t)]2dxdt → 0 as T → ∞.

Finally, by the Cauchy-Schwarz inequality, we get

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

χ(x, t)c(x, t)dxdt ≤ 1

T

√

δ(T − t̃ )

√
∫ T

t̃

∫ S(t)

S(t)−δ

χ(x, t)[c(x, t)]2dxdt,

which by Lemma 3.2 implies that

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

c(x, t)dxdt ≤ CT
−1
4 → 0 as T → ∞.

Thus

1

T

∫ T

t̃

∫ S(t)

S(t)−δ

c(S(t), t)c(x, t)dxdt ≤ A(D,b0, α)
1

T

∫ T

t̃

∫ S(t)

S(t)−δ

c(x, t)dxdt
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which tends to zero as T → ∞, so that we have reached a contradiction. This completes the
proof. �

Lemma 3.9 If S(t̂) ≤ α
√

t̂ for some t̂ > 0, then S(t) = S(t̂) for all t > t̂ .

Proof When x̂ := S(t̂) ≤ α
√

t̂ , then Lemma 3.3 implies that ct (x̂, t) ≤ 0 for all t > t̂ . Since
c(x̂, t) ≤ Cs for all t ≤ t̂ we deduce that c(x̂, t) ≤ Cs for all t > 0, so that S(·) cannot grow
further. �

Theorem 3.10 Provided that 2Cs > A(D,b0, α), there is a T ∗ > 0 such that S(t) = S(T ∗)
for every t > T ∗.

Proof Let β > 0 be defined by the relation 
(β) = Cs . It is clear that ψ(x, t) ≥ Cs when-
ever x ≤ β

√
t . Moreover, from Theorem 2.7 we deduce that S(t) ≤ β

√
t , so that

ψ(x, t) ≥ Cs whenever x ≤ S(t). (21)

Choose 0 < γ < 2Cs − A(D,b0, α) and apply Lemma 3.8 to obtain a time T ∗ such that
c(S(T ∗), T ∗) < γ < Cs . We claim that T ∗ satisfies the requirements of the theorem. To see
this, suppose, for contradiction, that there is a t∗ > T ∗ such that S(t∗) > S(T ∗). Then, since
by Lemma 3.7 S is continuous, it must continuously grow from S(T ∗) to S(t∗), and before
it grows it may remain constant for some time, namely, there exists a time t̄ ∈ (T ∗, t∗) such
that

S(t̄) = S(T ∗) for every T ∗ ≤ t ≤ t̄ .

At the time t̄ when it starts to grow, then by Lemma 3.6 the concentration value on S has to
be equal to Cs , namely

c(S(T ∗), t̄) = Cs.

By (21), c(S(T ∗), T ∗) − ψ(S(T ∗), T ∗) < γ − Cs . But now, Lemma 3.3 implies that

c(S(T ∗), t̄) − ψ(S(T ∗), t̄) = Cs − ψ(S(T ∗), t̄) ≤ c(S(T ∗), T ∗) − ψ(S(T ∗), T ∗) < γ − Cs.

The choice of γ implies that ψ(S(T ∗), t̄) > 2Cs − γ > A(D,b0, α), which is a contradic-
tion. �

Theorem 3.10 states that S comes to a halt, eventually. But it does not exclude the possi-
bility that S(t) = S(T ∗) for every t > T ∗ and that, for x > S(T ∗) and x −S(T ∗) sufficiently
small, there is a time t > T ∗ such that c(x, t) > Cs . That is: if t is sufficiently large, the
line {(S(T ∗), t)} ⊂ R

2 separates two regions where precipitations have occurred, whereas
the line itself is “precipitation-free”. In order to deal with that situation, we define

B(t) = {x ≥ 0: w(y, t) > 0 for almost all 0 ≤ y < x}, and

S(t) = max{x: x ∈ B(t)} if B(t) �= ∅; S(t) = 0 otherwise.

Lemma 3.11 If S(t̂) < α
√

t̂ for some t̂ > 0, then S(t) = S(t̂) for all t > t̂ .

Proof For x ≥ S(t̂) sufficiently close to S(t̂) it holds that x < α
√

t for all t ≥ t̂ . Remark 3.4
completes the proof. �
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Theorem 3.12 Provided that 2Cs > A(D,b0, α), there is a T # > 0 such that S(t) = S(T #)

for every t > T #.

Proof Suppose, to the contrary, that for all t there is a t̃ > t such that S(t̃) > S(t). Then Re-
mark 3.4 implies that S(t) ≥ α

√
t for all t > 0. Next we choose 0 < γ < 2Cs − A(D,b0, α)

and apply the arguments of Lemma 3.8 to deduce that there exists a time T # such that
c(S(T #), T #) < γ . Note that γ < Cs . Using that α

√
t ≤ S(T #) for all t ≤ T #, we easily de-

duce from the maximum principle that c(x,T #) < Cs for all x ≥ S(T #). The same argument
as the one used in the proof of Theorem 3.10 yields that there exists an ε > 0 such that, for
all t > T #, c(S(T #), t) < Cs −ε. In particular, if α

√
t# = S(T #), we find that t# ≥ T # and we

obtain, again by the maximum principle, that there exists δ > 0 such that c < Cs −δ in the set
{(x, t) : x ≥ S(T #), T # ≤ t ≤ t#}. We claim that there exists t∗ > t# such that c < Cs in the
set {(x, t) : x ≥ S(T #), t# ≤ t < t∗}. Otherwise, there would exist sequences {xi ≥ S(T #)}
and {ti ∈ [t#, t# + 1]} such that ti ↓ t# and c(xi, ti) ≥ Cs . Since Cs ≤ c(xi, ti) ≤ 
(

xi√
t i
), it

would follow that S(T #) ≤ xi ≤ β
√

t i ≤ β
√

t# + 1, with β as in the proof of Theorem 3.10.
Then there would exist x̄ and a subsequence of {xi} which we denote again by {xi} such that
xi → x̄. By continuity, this would lead to a contradiction. Using Remark 3.4 we deduce that,
for all S(T #) < x < α

√
t∗, it holds that w(x, t) = 0 for all t > T #. �

We shall now establish conditions for the existence of infinitely many distinct precipita-
tion bands. We do that under the additional:

Assumption X (x, t) = 0 whenever
∫ t

0 (c(x, τ ) − Cs)
+dτ = 0.

Theorem 3.13 If 2Cs > A(D,b0, α) > Cs and if α√
D

is sufficiently large, then there are
infinitely many distinct precipitation regions.

Proof Let T # be as in Theorem 3.12. By Lemma 3.7, we may suppose that T # is mini-
mal. Set x̄ := S(T #). By Remark 3.4 and the minimality of T # we have that x̄ ≥ α

√
T #;

consequently, there is a t∗ ≥ T # such that α
√

t∗ = x̄. We shall first prove that a second pre-
cipitation region must exist. To that purpose we suppose that, on the contrary, c(x, t) ≤ Cs

for all x > x̄, t > 0. Then c satisfies

(P∗)

⎧
⎪⎨

⎪⎩

ct = Dcxx + b0α

2
√

t
δ(x − α

√
t), x > x̄, t > t∗,

c(x̄, t) ≥ 0, t > t∗,
c(x, t∗) ≥ 0, x > x̄.

Upon the transformation of variables

ξ = x√
t
; τ = log t; c̃(ξ, τ ) = c(x, t)

and omitting the tilde again, we deduce that c is a solution of

(P#)

⎧
⎪⎪⎨

⎪⎪⎩

cτ = Dcξξ + ξ

2 cξ + b0α

2 δ(ξ − α), ξ > x̄e−τ/2, τ > log t∗,

c(x̄e−τ/2, τ ) ≥ 0, τ > log t∗,

c(ξ, log t∗) ≥ 0, ξ > x̄√
t∗ (= α).
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The maximum principle implies that c(ξ, τ ) ≥ 0 for all (ξ, τ ) with ξ ≥ x̄e−τ/2, τ ≥ log t∗.
For τ̂ > 0 given, let τ ∗ = log t∗ + τ̂ and ξ ∗ = x̄e−τ∗/2; we have that

c(ξ, τ ) ≥ 0 for all (ξ, τ ) with ξ ≥ ξ ∗, τ ≥ τ ∗.

Note that ξ ∗ < α. We obtain that c ≥ z in the region ξ ≥ ξ ∗, τ ≥ τ ∗, where z satisfies

(P)

⎧
⎪⎨

⎪⎩

zτ = Dzξξ + ξ

2 zξ + b0α

2 δ(ξ − α), ξ > ξ ∗, τ > τ ∗,

z(ξ ∗, τ ) = 0, τ > τ ∗,

z(ξ, τ ∗) = 0, ξ > ξ ∗.

The maximum principle implies that z ≥ 0 and it is easy to see that zh(ξ, τ ) := z(ξ, τ +h) ≥
z(ξ, τ ) for h > 0. Thus z is nondecreasing in τ and since it is bounded from above by 
 ,
we deduce that, as τ → ∞, z tends to the steady state z̄ defined by

Dz̄ξξ + ξ

2
z̄ξ + b0α

2
δ(ξ − α) = 0; z̄(ξ ∗) = z̄(∞) = 0.

It is easy to obtain z explicitly. It holds in particular that

‖z̄‖∞ = z̄(α) = B(D,b0, α, ξ ∗) := A(D,b0, α)

∫ α

ξ∗ e−η2/4Ddη
∫ ∞

ξ∗ e−η2/4Ddη

= A(D,b0, α)

∫ α/
√

D

ξ∗/
√

D
e−s2/4ds

∫ ∞
ξ∗/

√
D

e−s2/4ds
. (22)

Note that, given D, we can choose τ̂ so large that ξ∗√
D

is arbitrarily close to 0. Clearly,
B(D,b0, α, ξ ∗) is arbitrarily close to A(D,b0, α) once α√

D
and τ̂ are sufficiently large (re-

call that A(D,b0, α) remains bounded as α → ∞, see Lemma 3.1). It follows from The-
orem 3.12 that, under the conditions of Theorem 3.13, a second precipitation region must
exist. That is, the assumption that no second precipitation region exists leads to a contradic-
tion.

Similarly to the first precipitation region, the second one (and all subsequent ones) will
also be bounded in the x-direction, given that 2Cs > A(D,b0, α); this is also valid for the
“generalized” precipitation regions where w > 0 almost everywhere. To prove the occur-
rence of subsequent precipitations we use the same arguments as above; we remark that the
essential ingredient of the proof has been the existence of ξ ∗ such that B(D,b0, α, ξ ∗) is suf-
ficiently close to A(D,b0, α). It is clear from the above construction and (22) that this can be
again realized provided that α√

D
is sufficiently large, independently of the value of x̄. Thus,

our conditions guarantee the existence of infinitely many, distinct, precipitation regions. �

Remark 3.14 It is easy to see, by the maximum principle, that if a new precipitation region
germinates at (x, t), we must have that x = α

√
t . By Lemma 3.3 (or Remark 3.4) we deduce

that, in the (x, t) plane, such a precipitation region can only extend to the right of the point
of initiation.
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Discussion

In this paper we have performed the mathematical study of a one-dimensional Keller and
Rubinow model for Liesegang bands; under suitable assumptions, we prove the existence of
Liesegang bands and justify the time law.

Discussing about quantitative properties of patterns in problems involving sharp fronts is
technically easier than dealing with diffusive fronts with a certain width. This leads us to first
take the singular limit of part of the Keller and Rubinow system in order to obtain a sharp
interface system. This subsystem describes an irreversible chemical reaction for two species
of concentrations ak and bk . Chemical arguments imply that the reaction rate k is very large
and it has been shown previously that, as k → ∞, ak and bk converge to limit profiles ā

and b̄, in such a way that āb̄ = 0 and that kakbk tends to a δ-distribution moving with the
velocity ∼ 1√

t
. In turn this moving δ-interface acts as a source term in a reaction-diffusion

equation for a third species of concentration c, which makes it quite natural to derive the
time law. Eventually, we obtain a limiting Keller and Rubinow model for which we prove
that the time law is satisfied, by means of arguments essentially based upon the maximum
principle.

This singular limit procedure is a kind of a mathematical idealization in which the re-
action between ak and bk is modeled to occur in an infinitely narrow interface, whereas in
the real physical context this reaction occurs throughout space. Actually, outside a certain
narrow region, namely the interface, which has a width of the order of, say, the size of a few
molecules, the reaction has almost finished or is still in a very initial state. This idealization
brings a technical difficulty from the mathematical viewpoint, namely a “discontinuity” in
the system at the moment that the super-saturation density is achieved and that the precipi-
tation occurs. In particular we cannot prove the uniqueness of the solution, and one cannot
prove either the spacing law except if one makes extra assumptions on the solution profile
at the precipitation times. We refer to Theorem 3.6 by [8], where they show the spacing law
under the assumption that the solution profiles at each precipitation time are approximately
the same. This property is indeed satisfied in our numerical simulations and the spacing law
holds, as it is shown in the numerical simulations of Fig. 4.

On the other hand, things are slightly different for the width law. In fact, we know from
numerical evidence that the width law is neither valid in the Keller and Rubinow model nor
in the sharp interface limit. In particular the width seems to strongly depend upon the phys-
ical properties of the colloids. Moreover it clearly appears in numerical simulations that this
model does not permit to represent Liesegang bands nor rings in higher space dimension.
Therefore, we should probably analyse the way in which the precipitation of colloids occurs
in more details in order to be able to derive a new model. Mimura, Ohnishi, and Ueyama
[7] attempt to construct such a model; to that purpose they thoroughly study the precipita-
tion procedure by means of the physical theory for the creation of colloids. Kai and Muller
[4], and Kai [3] state that the width law is often not satisfied: occasionally the width varies
randomly, and it even satisfies a very different law in a special case. The width law proba-
bly depends on which materials or matrix substrates are used in the chemical experiments.
Therefore, we should construct a model which varies according to the experiment. Future
work will involve searching for and studying such a new model which should not only be
valid in higher space dimension, but also be suitable in special cases of interest. However it
is already interesting to understand the Keller and Rubinow model which both contains the
time and spacing laws.
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