Skip to main content
Log in

Spontaneous Resonances and the Coherent States of the Queuing Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an example of a highly connected closed network of servers, where the time correlations do not vanish in the infinite volume limit. The limiting interacting particle system behaves in a periodic manner. This phenomenon is similar to the continuous symmetry breaking at low temperatures in statistical mechanics, with the average load playing the role of the inverse temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bramson, M.: Instability of FIFO queueing networks. Ann. Appl. Probab. 4, 414–431 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bramson, M.: Instability of FIFO queueing networks with quick service times. Ann. Appl. Probab. 4, 693–718 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Probab. 5, 49–77 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobrushin, R.L., Karpelevich, F.I., Vvedenskaya, N.D.: Queuing systems with choice of shortest queue—asymptotic approach. Probl. Pereda. Inf. 32(1), 20–36 (1996)

    MathSciNet  Google Scholar 

  5. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  6. Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 574–603 (1973)

    Google Scholar 

  7. Kleinrock, L.: Communication Nets, Stochastic Message Flow and Delay. McGraw-Hill, New York (1964)

    Google Scholar 

  8. Kumar, P., Seidman, T.: Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Trans. Automat. Contr. 35, 289–298 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. LeBoudec, J.Y., Thiran, P.: Network Calculus—A Theory of Deterministic Queuing Systems. Lecture Notes in Computer Science, vol. 2050. Springer, Berlin (2001)

    Google Scholar 

  10. Liggett, T.M.: Interacting particle systems. Grundlehren der Mathematischen Wissenschaften, vol. 276. Springer, New York (1985)

    MATH  Google Scholar 

  11. McKean, H.P. Jr.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56, 1907–1911 (1966)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. McKean, H.P. Jr.: An exponential formula for solving Boltzmann’s equation for a Maxwellian gas. J. Comb. Theory 2, 358–382 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  13. Puhalsky, A., Rybko, A.: Non-ergodicity of queueing networks when their fluid model is unstable. Probl. Inf. Transm. 36, 26–46 (2000)

    MathSciNet  Google Scholar 

  14. Rybko, A.N., Shlosman, S.B.: Poisson hypothesis for information networks, http://fr.arxiv.org/PS_cache/math/pdf/0406/0406110.pdf. Sinai’s Festschrift, Moscow Math. J. 5, 679–704 (2005). Tsfasman’s Festschrift, Moscow Math. J. 5, 927–959 (2005)

  15. Rybko, A.N., Shlosman, S.B., Vladimirov, A.: Self-averaging property of queuing systems, http://fr.arxiv.org/abs/math.PR/0510046. Probl. Inf. Transm. (4) (2006)

  16. Rybko, A.N., Stolyar, A.L.: Ergodicity of stochastic processes describing the operation of open queuing networks. Probl. Inf. Transm. 28, 199–220 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Stolyar, A.L.: The asymptotics of stationary distribution for a closed queueing system. Probl. Pereda. Inf. 25(4), 80–92 (1989) (in Russian). Translation in Probl. Inf. Transm. 25(4), 321–331 (1990)

    MathSciNet  Google Scholar 

  18. Stolyar, A.L.: On the stability of multiclass queueing networks: a relaxed sufficient condition via limiting fluid processes. Markov Process. Relat. Fields 1, 491–512 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senya Shlosman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybko, A., Shlosman, S. & Vladimirov, A. Spontaneous Resonances and the Coherent States of the Queuing Networks. J Stat Phys 134, 67–104 (2009). https://doi.org/10.1007/s10955-008-9658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9658-0

Keywords

Navigation