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Non-linear waves of excitation are found in various biological, physical and chemical
systems and are often accompanied by deformations of the medium. In this paper, we
numerically study wave propagation in a deforming excitable medium using a two-
variable reaction-diffusion system coupled with equations of continuum mechanics.
We study the appearance and dynamics of different excitation patterns organized by
pacemakers that occur in the medium as a result of deformation. We also study the
interaction of several pacemakers with each other and the characteristics of pacemakers
in the presence of heterogeneities in the medium. We found that mechanical deformation
not only induces pacemakers, but also has a pronounced effect on spatial organization
of various excitation patterns. We show how these effects are modulated by the size
of the medium, the location of the initial stimulus, and the properties of the reaction-

diffusion-mechanics feedback.

KEY WORDS: reaction-diffusion-systems, oscillations, modeling in biology, pattern
formation, continuum mechanics, excitation-contraction-coupling, mechano-electrical

feedback

INTRODUCTION

Reaction-diffusion (RD) equations are one of the most studied classes of par-
tial differential equations (PDEs) in mathematics applied to biological, chemical
and physiological sciences.>> They describe various processes of spatial orga-
nization in different systems with the most important solutions being non-linear
waves, vortices and stationary Turing patterns. Each of these solutions have been
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studied extensively over the years using both analytical and numerical approaches.
Non-linear waves can be found in many biological, physical and chemical systems.
Examples of such waves include: chemical waves in the Belousov—Zhabotinsky
(BZ) chemical reaction,®® and waves of carbon monoxide oxidation on plat-
inum catalytic surfaces,!” both of which organize spatio-temporal patterns; and
electrical waves in retinal and cortical nerve tissue,'? where they may underly
neurological diseases such as epilepsy. >® Non-linear waves also control the mor-
phogenesis of the Dictyostelium discoideum (Dd) amoeba'") and the initiation
of the development of Xenopus oocytes after fertilization.!® One of the most
practically important applications of non-linear waves are activation waves in the
heart that give rise to cardiac muscle contraction.

The main function of the heart is to pump blood, which is achieved by the
coordinated contraction of millions of cardiac cells (myocytes). This coordination
is achieved via non-linear electrical waves that propagate through the cardiac tissue
and initiate cardiac contraction. Problems in the electrical system of the heart may
result in cardiac arrhythmias, e.g. rapid activation and spatial desynchronization
of mechanical contractions in the heart, ?>3% which cause the mechanical pump
function of the heart to malfunction. In the US alone, more than 450,000 people
die suddenly each year as a result of cardiac arrhythmias. “?)

Electrical excitation of a cardiac cell is a sudden change of its transmembrane
potential, from its resting state (which is around —90 mV), to an excited state
(around +10 mV). This rapid change of the membrane potential is a result of a
complex interaction of different membrane ionic channels and pumps, which are
time and voltage dependent. Excitation of a cardiac cell can be initiated by an
electrical stimulus that produces an initial depolarization of the cell membrane
from its resting state to exceed a certain threshold value (approximately —60 mV).
Once this threshold value is reached, a very rapid “all or none” response follows,
and brings the membrane potential up to +10 mV. This is called the depolarization
phase. After depolarization, there is a repolarization phase during which the resting
membrane potential is restored. However, during the repolarization phase cells are
unable to respond to a subsequent stimulus, because not all the ionic channels
have yet recovered from the depolarization phase. This is called the refractory
period. In cardiac tissue, muscle cells are electrically coupled such that if one cell
becomes excited (depolarized), the membrane potential of its neighboring cells
also increases. If the threshold is reached in these cells, then they also become
depolarized and in turn the membrane potentials of their neighbors is raised, and
so on. This results in the formation of a propagating wave of excitation.

Normally, cardiac excitation is produced by a specialized group of cells
in the heart (the sinus node) consisting of self-oscillating cells that periodi-
cally initiate propagating waves of excitation. The sinus node is a complex het-
erogeneous structure and the precise details of its function are not completely
understood.
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Mathematical modeling is widely used to study wave propagation in the heart.
There are many models available that describe the action potential of single cells.
(1.3.5.8.21.39) Important for these models is that they should cover the fundamental
features, which we described above. In particular cells must be excitable, they
require a refractory phase, and depolarization must propagate as a non-linear
wave. (13

Usually, propagation of non-linear waves is accompanied by other important
processes of which one of the most fundamental is mechanical deformation. Non-
linear waves during Dd morphogenesis induce cell-motion, which substantially
affects wave dynamics.*® Waves in BZ reactions cause deformation of the gel,
7 which in turn affects spiral wave dynamics.®® In the heart, electrical waves
initiate contraction of cardiac tissue.

The process by which cellular depolarization causes myocytes to contract
is called excitation-contraction coupling (ECC). During depolarization, a small
quantity of calcium ions flows into the cell through the so called L-type calcium
channels, which are located on the cell membrane. This calcium current causes
a subsequent release of a much larger quantity calcium stored within special-
ized cellular compartments called the sarcoplasmatic reticulum. The increase of
the intracellular calcium concentration initiates cardiac contraction via several
conformational changes of interacting proteins: troponin-C, actin, and myosin. 1%

Contraction of cardiac tissue also affects the process of wave propagation,
(13 which is called mechano-electrical feedback (MEF). MEF may have both anti-
arrhythmic and arrhythmogenic consequences, and has been studied for well over
a century.'® For example, mechanical deformation has been shown to alter the
electrical properties of myocytes ! and play an important role during arrhythmias.
(19 Two phenomena that involve MEF are commotio cordis*® and the precordial
thump. Commotio cordis is a situation in which a blunt, non-penetrating object
strikes the chest and produces cardiac arrhythmias that may lead to sudden death.
The precordial thump is a life saving technique during cardiac arrest in which the
heart beat can be re-activated by delivering a sharp blow to the chest.

The precise mechanisms underpinning the role of MEF in arrhythmogenesis
remain unclear. Modeling can be a helpful tool to investigate the underlying mech-
anisms of cardiac arrhythmias. Although the interplay of mechanical deformation
with the dynamics of RD systems is an important phenomenon, most studies have
separated mechanical deformation from non-linear wave propagation.

We have previously presented a general framework for studying the effects
of mechanical deformation on RD systems. ?”) There we described a deformable,
excitable medium capable of conducting non-linear waves of excitation. We did not
aim to perform a detailed study that combines physiologically detailed excitation
models with biophysically-based contraction models and realistic cardiac anatomy.
Rather, we have started from a fundamental description of the electromechanical
coupling using basic models of these processes together with simple rectangular
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geometries. This is because our aim was to study the fundamental effects that MEF
may have on wave propagation, and thus elucidate the underlying mechanisms.
The RD system was defined in a general curvilinear coordinate system, with
a metric tensor determined by the equations of continuum mechanics. In turn,
deformations were initiated and controlled by the RD system. We illustrated this
concept of a coupled reaction-diffusion-mechanics (RDM) system using a simple
two variable RD model of cardiac excitation. However, the model in ref. 27 lacks
several important feedback mechanisms, including a representation of the stretch
activated channels, which describe one of the main effects of MEF in cardiac
tissue.

In a subsequent study,®® we introduced another RDM model, which con-
tained a description of the stretch activated channels. There, we found that me-
chanical deformation can induce automatic pacemaking activity. Pacemaking was
shown to occur after a single electrical or mechanical stimulus in an otherwise
non-oscillatory medium. We showed that pacemaking activity resulted from stretch
of the medium and subsequent depolarization via the stretch activated channels.
However, we restricted our study to a small parameter region and only investigated
the onset and behavior of a single pacemaker.

In this article we extend the results of our previous paper ®® and study the ef-
fects of different conductivities for stretch activated channels, multiple pacemaker
sites and parametric gradients on drift and excitation patterns.

MODEL AND INTEGRATION METHODS
The Reaction—Diffusion equations are given by the following expression:
oV/ot =V -(DVV) + F(V) (1)

where V is a vector of concentrations, D is a diffusion tensor and F(V) is a non-
linear vector function. The number of components and properties of the diffusion
tensor are different for different types of systems.

For cardiac tissue, the minimal number of components of V is two: one
variable that describes the transmembrane potential and one variable that controls
the recovery processes.” Such low dimensional models can reproduce some
important measurable characteristics of cardiac tissue, such as action potential
restitution properties, the general shape of the action potential in the heart, and
the effects of tissue anisotropy and heterogeneity.(!** By adding one or two extra
variables these models can also describe experimentally measured conduction
velocity restitution and the exact shape of the action potential.”” However, low
dimensional models do not describe detailed biophysical mechanisms of excitation
that occur due to different dynamics of ionic channels on the cardiac membrane.
To describe ionic channel dynamics one should use so-called ionic models for
cardiac tissue that are based on the founding paper by Hodgkin and Huxley. (!4
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Ionic models describe the properties of each individual ionic channel and are
based on experimental studies of voltage and time dynamics using voltage clamp
techniques. Recent ionic models for cardiac tissue include around 60—100 variables
to model many details of ionic channel dynamics identified in cardiac cells.®®
Both low dimensional and ionic models can be used to study wave dynamics
in cardiac tissue. Low dimensional models are used as tools for more general
qualitative studies of possible new effects, while ionic models are used for detailed
quantitative studies of specific effects for which molecular membrane mechanisms
are established, e.g. drug applications, genetic disorders, etc.

Modeling Elastic Deformations

During a normal heart beat, cardiac cells deform up to the order of 15%.3

Therefore, finite deformation elasticity theory must be applied to describe the de-
formations in the medium. Following standard continuum mechanics, we use two
coordinate systems to describe the deformations. Assume that x = {x;} describes
the present (deformed) position in rectangular Cartesian coordinates of a material
particle that occupied the location X = {X),} in the reference (undeformed) con-
figuration. The deformation gradient tensor, F, transforms the undeformed line
segment, d X, into the deformed line segment, dx, by dx = FdX with F }V, = BBXXM
The right Cauchy-Green deformation tensor, C, describes how each component of
the undeformed line segment dX contributes to the squared length of the deformed
line segment dx and is defined in terms of the deformation gradient tensor:

Xy 0 XN

C=F'F or Cuy ={ 2)
The right Cauchy-Green deformation tensor is independent of rigid body motion.
We can define three principal components, which remain unchanged under coordi-
nate rotations at a given state of deformation: I; = trC, I, = 1/2[(trC)* — trC?]
and /53 = detC. Next, we introduce the Lagrangian Green’s strain tensor, E, which
is defined by:

1 1
E= E(C = or Eyn = E(CMN — Tun) 3)

where I is the unitary tensor. Note that both C and E are symmetric tensors by
definition. To represent material behavior independent of rigid body motion, we
use the second Piola—Kirchhoff stress tensor, 7™V (22) that represents the force
per unit undeformed area, acting on an infinitesimal element of surface in the
reference configuration.

The equations that govern finite deformation elasticity arise from the conser-
vation of linear momentum following Newton’s laws of motion®® and for static
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equilibrium are given by:

9 .
m( MNFL) =0 4)

The relationship between the stress and strain (T’ MN "and Cyy or Eyw) is given

by an appropriate constitutive relation and is described later.

Coupled Reaction-Diffusion-Mechanics Equations

Our model is based on the concept of a deforming RD medium, which we in-
troduced in ref. 27. In order to mathematically couple the RD system and the
mechanical equations, the relationship between Eqgs. (1) and (4) must be consid-
ered. In general, each term in Eq. (1) may depend on the state of deformation,
resulting in:

aV/dt = V- (D(C)VV) + F(V, C) (5)

where C is the right Cauchy-Green deformation tensor, defined by Eq. (2).

The effects of the RD equations on the mechanics equations arise from the
fact that some variables V; in Eq. (1) control the development of the active stress
in the medium. For example, the contractile force developed by cardiac myocytes
is determined by the intracellular concentration of calcium ions [Ca2+],- , which is
one of the variables of the RD model describing cardiac cells.!> In a modeling
context, we split the second Piola—Kirchhoff tensor into active and passive stress
components (see ref. 27), and use one or more of the variables of Eq. (5) to
modulate the active stress development:

™N = 1,"N(C) + 1,"N(C, V,) (6)

where 7,”"V(C) and 7,M"(C, V,) represent the passive and the active tissue re-

sponse, respectively. In ref. 27, passive tissue properties were chosen to obey the

isotropic Mooney—Rivlin constitutive law, and active tissue properties were also

considered to be isotropic, and was determined using 7,V (C, V) = V,CMV.

Other mechanical conditions, such as non-isotropic active stress, non-linear pas-

sive tissue properties, etc. can be implemented by modifying the terms in Eq. (6).
In this study, we used the following RDM model:

g—L; = V2u — ku(u — a)u — 1) — uv — I (7
Z;_'; = e(u)(ku — v) ®)
0T = e(u)kru — T,) ©)

ot
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9 ax;
2 (v ) — (10)
Xy Xy
1/ oW ow
TMN = — 7,C7) 11
2 <8EMN + 8ENM> + laCuy (an
0 Ju
Viu=——[Jcc;\—— 12
YT Xy (f MNaXN> (12

To describe non-linear waves of cardiac excitation we use a low dimensional
model based on the Aliev—Panfilov model.(!) Here, u is a dimensionless represen-
tation of the transmembrane potential and v is a dimensionless variable that de-
scribes the recovery properties of the tissue. The term (—ku(u — a)(u — 1) — uv)
represents the total transmembrane ionic current per unit area and controls the fast
processes, such as the initiation and upstroke of the action potential. ?”) The thresh-
old value a represents the excitability of the tissue and is an important parameter
for pacemaking®® (a = 0.05 unless otherwise noted). k controls the magnitude
of the transmembrane current (k = 8 in all simulations), and €(u) determines the
time scale of the recovery process and active stress: €(u) = 1 for u < 0.05, and
€(u) = 0.1 for u > 0.05. The other parameters do not have a clear physiological
meaning, but are chosen in order to reproduce key characteristics of cardiac tissue,
such as the shape of the action potential, refractoriness and restitution of action
potential duration. /; represents the stretch activated current, which is described
below.

The Aliev-Panfilov model") is a low dimensional model for cardiac tissue
that qualitatively describes the process of excitation and recovery of cardiac cells.
However, the model does provide an experimentally based description of the resti-
tution properties of action potential duration, which is important for the stability
of wave propagation in the heart. The model presented in Egs. (7)—(12) reproduces
the shape of the action potential and the phenomenon of refractoriness as well as
the effects of the stretch activated current /;, which is described below. The values
of the parameters of the model were found by fitting the overall characteristics
of cardiac propagation. Although the Aliev—Panfilov model uses dimensionless
units, simulation results can be compared to dimensional observations from ex-
perimental studies by comparing specific (dimensionless) model characteristics
with experimental observations.

Deformation is modulated by the variable 7, (described by Eq. (9)), which
represents the active stress generated by the medium. The rate of tension develop-
ment is determined by k7 (k7 = 10 for all simulations).

The mechanical part of this model is unchanged from ref. 29. The active stress
component of the second Piola—Kirchhoff stress tensor TV in Eq. (11),1s 7, CA_;N,
and the passive elastic stress component, is expressed in terms of the derivatives
of the strain energy function () with respect to components of the Green’s strain
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tensor from Eq. (3). The strain energy function was chosen to obey the Mooney—
Rivlin constitutive law!©: W = ¢;(I; — 3) + ¢2(I» — 3), where I; and I, are the
first two principal invariants of Cy,y, and ¢; and ¢; are stiffness coefficients, which
together with the parameter & from Eq. (9) modulate the local deformations during
contraction (¢; = 2, ¢, = 6 for all simulations, chosen to give rise to relative local
deformations of approximately 15% following excitation). Due to motion of the
material coordinate system, we used a general curvilinear expression given by
Eq. (12) to evaluate the Laplacian in Eq. (7), with C = det(C,y), which provides
a diffusive membrane current per unit undeformed area.

The direct influence of contraction on excitation is given by the stretch-
activated current /;, known to be present in cardiac tissue. (18) A in ref. 29 we use
a generic description of the stretch-activated current into the model:

I = Gy(vC — I)(u — Ey), (13)

where G, and E; are the maximal conductance and reversal potential of the
stretch-activated channels, respectively. The stretch activated current in Eq. (13)
is only present during stretch (i.e. when /C > 1). The value of the parameter E
in our model was typically 1, and describes the depolarizing effect of the current
observed experimentally. 133% G, determines the outcome of the simulations with
respect to drift and excitation patterns (G = 0.6 unless otherwise noted).

Numerical Integration Methods

The coupled electro-mechanical model was solved using a hybrid approach that
combines an explicit Euler time integration scheme to compute RD equations
of the medium, with non-linear finite element techniques to determine the large
deformation mechanics of the tissue. To formulate the finite element integral
equations, we introduced a weighting field of virtual displacements, v = {§v;},
and the weak form of the stress equilibrium (Eq. (4)) is given by:

/TMNF;VidVO:/ s-8vdS (14)
Vo Xy S

where V} is the undeformed volume and S; is the portion of the boundary subject to
external tractions s. Eq. (14) was solved using the finite element method described
in ref. 27.

The solution procedure is as follows: after Ny time integration steps for
the RD equations (Egs. (7)—(9)), the equations governing tissue mechanics are
solved, using active stress components produced by the variable V,, of the RD
equations (Eq. (9)). Non-linear Newton iterations are performed to solve the stress
equilibrium equations (Eq. (14)) and provide updated values of the deformation
tensor C, which modulates excitation properties (via Eqs. (12) and (13)) for the
subsequent Npch, €Xcitation time-steps.
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Fig. 1. Excitation patterns after application of a single stimulus at the center of the medium in Eqgs. (7)—
(12). The upper panels show wave propagation in the absence of mechanical deformation. The middle
panels show wave propagation in the presence of mechanical deformation with Gy = 0.2. In the Jower
panels, Gy = 0.6. The size of the medium is 61 x 61 grid points and @ = 0.05 for all simulations.
Dark shadings represent regions where # > 0.6. The period of the pacemakers in the middle and lower
panels were 15.42 and 9.3 [t.u.], respectively. Times in time units [t.u.] are indicated at the lower left
of each panel.

The model solution parameters were the following: Euler computations were
performed using a time integration step of Af = 0.03 (dimensionless time units)
and a space integration step of Ax = Ay = 0.6 (dimensionless space units),
consistent with previous studies. ?* The mechanics mesh was defined using up to
16 x 16 finite elements. Each mechanical element contained 7 x 7 electrical grid
points, and the value of Ny, = 3 was used. Thus, the finite difference mesh was
up to 97 x 97 grid points. No-flux boundary conditions were imposed for Eq. (7),
and the boundaries of the medium were fixed in space for Eq. (14). Mechanically,
the fixed boundaries are consistent with an isometric contraction regime.

RESULTS
Single Pacemaker

In Fig. 1, we illustrate the development of various patterns due to pacemaking
in a deforming medium. The wave was initiated at the center of the medium at
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time

Fig. 2. Time course of the excitation variable u (black line), active stress T, (divided by 5; dashed
line) and stretch activated current (multiplied by 5; grey line) at the center of the medium for the
computation presented in the lower panels of Fig. 1.

t = 0. The upper panels show the process of wave propagation after one single
stimulus in the absence of mechanical deformations. We see that the wave dis-
appeared after propagating across the medium, after which the medium returned
to a spatially homogeneous steady state configuration. Thus, in the absence of
mechanical activity the reaction-diffusion model did not show oscillatory activity.
The middle and lower panels of Fig. 1 illustrate the results obtained from the
same initial stimulus, but in the presence of mechanical deformations. The middle
panels show wave propagation from the same initial conditions for G; = 0.2. We
see that in this case the mechanical deformation generates a pacemaker at the
center of the medium, similar to that reported in ref. 29. Comparing the upper and
middle panels at t = 12, we observed that the conduction velocity of the propagat-
ing wave was slightly slower in the presence of mechanical deformation. This is
because contraction initiates stretch in front of the wave (see also Fig. 2), thus the
effective propagation distance is slightly increased. In the lower panels, we show a
similar simulation with a higher value of Gy = 0.6. We also observed the onset of
a pacemaker, but the spatial activation pattern was altered: as the wave propagated
away from the center, stretch was generated near the boundaries, which caused
local activations in these regions, resulting in a diamond like pattern of excitation
(see t = 12, t = 23, lower panels).

The mechanism of pacemaking is explained in Fig. 2, which shows the
excitation variable u (black line), active stress 7, (dashed line) and the stretch
activated current (grey line) for a point in the center of the medium.

Shortly after electrical activation, active stress 7, was generated in the center
causing contraction/shortening of the tissue. Because /; is only activated when
tissue is elongated, no stretch activated current /; is generated during contraction
(the grey line coincides with the x-axis). However, when the excitation wave
propagated to some distance from the center, the contraction at the back of this
wave caused stretch at the center, which led to an /; current in accordance with
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Fig. 3. Drift of a pacemaker starting at the point located in the lower-left corner. The size of the
medium is 97 x 97 grid points, Gy = 0.6 and a = 0.05.
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Eq. (13). As a result of this inward current, the tissue depolarized and generated a
new action potential, which resulted in subsequent excitations. Note, that because
the stretch of the tissue occurs after the contraction this results in a substantial delay
between the activation wave and [, and that the tissue at that point recovers from
the refractory period and is capable for new excitations. Therefore, mechanical
deformation acting via the stretch activated current can initiate self-oscillatory
activity in a RDM system. The activation patterns depend on the strength of the
stretch activated channel, which is modulated by the value of G;. In ref. 29, we
showed that other parameters that increase /g, or increase the excitability of the
tissue, cause the onset of oscillations.

Drift of a Single Pacemaker

In Fig. 1 the initial stimulus was in the center of the medium. We have shown
that if the initial excitation is not located in the center, then the pacemaker will
drift, and for a large size medium it will approach the center.?*> We show the
results of such a simulation in Fig. 3. Here, the primary point of excitation is
located at the lower left corner of the medium. We see that the pacemaker drifts
to the center, however, this occurs in a few stages. We observe that the site of the
second activation was substantially shifted from the site of the initial activation
and that this second activation occurred in a large arc-shaped area (see t = 34).
The subsequent activation was again located closer to the center and occurred
in a smaller area (see ¢t = 67). Note, however, that the overall excitation pattern
still remained complex. Following the next excitation, at # = 100, we observed a
regular ‘target’ pattern type of excitations similar to that at # = 144. Finally, the
pacemaker drifted to the center of the medium where it stabilized (see t = 595).

We have also performed a similar simulation with a decreased value of
G, = 0.5. We obtained excitation patterns that were qualitatively similar to that
shown in Fig. 3. We also observed an arc shaped area, which in turn was reduced to
a point. Similarly, the point drifted to the center of the medium where it stabilized.
To study the convergence of pacemaker drift, we determined the distance from the
subsequent locations of the pacemakers to the center of the tissue. We show this
for both G; = 0.5 (black) and G, = 0.6 (grey) on a logarithmic scale vs time in
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Euclidean distance

0.y 500 1000
Time
Fig. 4. Distance ([s.u.]) from the pacemaker site to the center of the tissue as a function of time in
[t.u.] for Gy = 0.5 (black line) and G5 = 0.6 (grey line).
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Fig. 5. Drift of a pacemaker starting at the point located in the lower-left corner. The size of the
medium is 145 x 97 grid points, Gy = 0.6 and a = 0.05.

Fig. 4. The last part of the curves can be well fitted to a straight line, indicating
exponential convergence of pacemaking activity to the center. Furthermore, we
see that for G; = 0.5 the dependency has a steeper slope than G, = 0.6, and drifts
faster to the center of the medium.

In the above simulations we used a square domain to investigate pacemaker
drift. We also studied pacemaker drift in a rectangular domain with the horizontal
side being 1.5 times longer than the vertical side (see Fig. 5). The primary point
of excitation here is located at the lower left corner of the medium. We observed
that the pacemaker drifted toward the center and that excitation patterns are qual-
itatively similar to that shown in Fig. 3: drift occurred in few stages, with fast
initial drift and slower secondary drift. We also observed arc shaped areas during
drift. When drift of the pacemaker stabilized in the center of the tissue, we see that
the shape of the wave is elliptical, while this is circular in Fig. 3. This is a result
of anisotropic stretch distribution in the horizontal and vertical directions for this
domain shape.

Drift of Two Pacemakers

We also studied the dynamics of two coexisting pacemakers and their interaction
(Fig. 6). The initial starting points were located symmetrically about the vertical
mid-line at the left and the right boundaries (see t = 6). We observed that both
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Fig. 6. Drift of two simultaneously initiated pacemakers located symmetrically about the vertical
mid-line. The size of the medium was 97 x 97 grid points. Other parameter values were the same as
those for Fig. 3.
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Fig. 7. Drift of two pacemakers starting from non-symmetric locations. Other parameter values were
the same as those for Fig. 6.

pacemakers drifted to the center of the tissue and merged with each other to form
one stable single pacemaker (see + = 480). Note that the final pattern of excitation
was the same as that in Fig. 3.

We have also studied the interaction and drift of two non-symmetrically
located pacemakers, which started from the initial conditions as illustrated in
Fig. 7 (see t = 9). Due to this non-symmetry, the upper pacemaker depolarized
more tissue than the lower pacemaker (see ¢ = 89). In this case, we also observed
drift of both pacemakers to the center of the tissue, but this proceeded differently.
We observed an initial drift of the ‘small’ lower pacemaker to the ‘large’ upper
pacemaker, which eventually formed one single pacemaking site on the diagonal
away from the center (see t = 132). Then, the single pacemaker drifted to the
center of the medium where it stabilized (see ¢ = 288). The final pattern in Fig. 6
is the same as that shown in Fig. 3.

From this we conclude that two coexisting pacemakers do not constitute a
stable configuration. They merge to form one stable pacemaker that drifts to the
center of the medium.

Pacemaker Activity Resulting from Non-Local Stimulation

In the previous simulations, we only investigated single or multiple pacemaker
sites. We now focus on an initial non-local stimulus. To this end, we studied the
excitation patterns that occurred as a result of applying an initial stimulation along
the vertical mid-line of the tissue as is shown in Fig. 8. We see that during the course
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Fig. 8. Pacemaker activity resulting from a non-local stimulation. The size of the medium is 61 x 61
grid points. Other parameter values were the same as those for Fig. 3.

of time the oscillating site becomes elliptic (see # = 60), then the asymmetry of the
ellipse decreases, and finally we obtained a stable point source that was located
in the center of the medium (see r = 180). We also observed that if the initial
condition of the line was not located in the center, the line developed to a single
point source, which then drifted to the center of the medium, and stabilized (results
not shown). Therefore, as for the case of two pacemakers, non-local stimulation
also approaches to one stable point pacemaker at the center of the medium.

Pacemaker Drift in a Medium with a Gradient of Excitability

Pacemaking activity of the heart normally occurs in the sinus node. The sinus node
has a complex heterogeneous structure and consists of different cell types, which
have different properties with respect to excitability, coupling conductance and
oscillation cycle lengths. ® We studied pacemaker dynamics in a heterogeneous
excitable medium with a gradient in excitability induced by changing the parameter
a in Eq. (7). The value of a vs x is shown in Fig. 9(lef?), the lower the value the
higher the excitability. Figure 9(right) shows the dynamics of a single pacemaker

0.08
e _
| [ 19
a0.04 '
-
% 30 6o I i
X X E

Fig. 9. Pacemaker drift in a heterogeneous medium with respect to the excitability parameter a. Left:
value of @ as function of x. Right: Trajectories of drift (solid black lines). The initial starting points
are marked with a black square and the end point is marked with black circle. The arrows denote the
direction of drift and the dashed lines represent the minimal value of a. The grey-scale picture shows
the final state of the pacemaker drift. Other parameter values were the same as those for Fig. 8.
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in such a heterogeneous medium. We studied the dynamics initiated from two
different initial conditions (marked by the black squares). The drift trajectories are
represented by the black lines, and the directions of the pacemakers are indicated
by the black arrows. In both cases, the pacemaker drifted from the initial location
to the region located in the middle of the medium in the vertical direction and to
the center of the horizontal region where the value of @ was minimal. Drift patterns
were qualitatively similar to the pattern shown in Fig. 3. For the first few excitations
following the initial stimulus, we also observed arc shaped areas of activation,
which were subsequently reduced to a point source. For both initial conditions,
it took approximately 500 time units to drift to the stable end configuration. We
varied the gradient-location in our simulations, and the pacemaker always drifted
to the lower value of a (results not shown). The excitability appeared to have a
strong influence on the final position of the pacemaker. Note, that for smaller
values of a, the pacemaker period was shorter. Thus, we observed that pacemakers
drifted to regions with shorter period.

DISCUSSION

In this paper, we studied drift of a single pacemaker and multiple pacemakers
in a homogeneous medium. We observed that mechanical deformation has a
pronounced effect on drift of pacemakers and induces different excitation patterns.
Independent of the initial conditions, multiple pacemakers merged with each other
to form one stable pacemaker at the center of the medium. Single pacemakers in
a homogeneous medium always drifted to the center of the medium, where they
stabilized. Thus, in a homogeneous model the center of the medium is a single
global attractor for pacemaking activity. Note that in ref. 29 the attractors for a
smaller medium are located differently. We did not study this in this paper, but
it would be interesting to investigate this in more detail. Also, here we have only
considered pacemaker drift in square/rectangular domains. It would be interesting
to study these effects in domains with different shapes and different parametric
gradients.

In the presence of a gradient of excitability, we found that pacemaker-drift
no longer stabilized at the center, but drifted to the region with the lowest period
(as determined by the excitability parameter a).

Although we use very general descriptions of the medium’s excitation-
mechanics properties and the dynamics of stretch-activated channels, we propose
that their effects may be important in cardiac tissue. Indeed, as shown in detailed
biophysical models of cardiac tissue,®*> and in experimental studies, '® stretch-
activated channels can depolarize cardiac tissue in a manner similar to that in our
computations. The induction of a pacemaker depends on the relation of the depo-
larizing effect of /; with the excitation properties of cardiac cells. These properties
differ substantially throughout the heart,!® and many types of cardiac cells show
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self-oscillating behavior, even in the absence of applied stretch. Therefore, given
the wide variety of properties of cardiac cells and the depolarizing action of the
stretch-activated channels in the heart, we propose that the effects of deformation
on pacemaking activity can exist for some types of cardiac cells, particularly those
that exhibit or are close to self-oscillation dynamics.

Recently, it was shown that calcium overload can lead to pacemaker activity in
neonatal rat ventricular myocytes in the form of delayed after depolarizations and
that in some cases pacemaker activity drifted throughout the medium. ® However,
the exact cause of the observed pacemaker activity drift is unresolved, and it
remains to be seen whether this is a mechanical or electrophysiological effect.

One of the limitations in this study is that we neglected the anisotropic
behavior of cardiac tissue, which is important for both the RD and mechanics
systems. We chose not to consider these effects, because the main aim of this
study was to investigate the basic effects of deformation on pacemaker dynamics.

The onset of pacemaker activity here is probably due to some type of super-
critical Hopf bifurcation. Therefore it is reasonable to assume, that close to that
bifurcation point the system is sensitive to small spatial and temporal variations
and it would be interesting to study that using methods of statistical physics. Note
also, that stochastic effects can be also important even for normal wave propaga-
tion in the heart as indicated in ref. 32. The influence of these features will likely
add additional effects and will be addressed in future studies.
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