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We study rooted spiral trees in 2,3 and 4 dimensions on a hyper cubic lattice
using exact enumeration and Monte-Carlo techniques. On the square lattice,
we also obtain exact lower bound of 1.93565 on the growth constant λ. Series
expansions give θ = −1.3667 ± 0.0010 and ν = 0.6574 ± 0.0010 on a square lat-
tice. With Monte-Carlo simulations we get the estimates as θ =−1.364±0.010,
and ν = 0.656 ± 0.010. These results are numerical evidence against earlier pro-
posed dimensional reduction by four in this problem. In dimensions higher
than two, the spiral constraint can be implemented in two ways. In either case,
our series expansion results do not support the proposed dimensional reduc-
tion.
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1. INTRODUCTION

Spiral structures are very common in nature. Some examples of the
beautiful spiral structures in galaxies, shoot arrangement in plants, poly-
mers with spiral structure etc may be found in the book by Hargittai.(1) In
statistical mechanics, lattice models of spiral self avoiding walks have been
studied and can be solved exactly in two dimension,(2,3) though no solu-
tion is known for the self avoiding walks without the spiral constraint. A
model of spiral trees and animals was proposed by Li and Zhou,(4) which
based on numerical studies was suggested to be in a new universality class.
This problem was further studied by Bose et al.(5) Based on the numerical
evidence, and guided by the fact that magnetic field acting perpendicular
to the motion of a charged particle produces spiralling motion and reduc-
tion by two in effective dimensionality, they conjectured that spiral tree
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problem would show a dimensional reduction by four. They conjectured
the exponents of the spiral tree problem follow the following relations

θ = (d −4)νpl for d =2 (1)

θ = (d −4)ν⊥ for d >2 (2)

where θ is the entropic exponent and νpl and ν⊥ are the exponents related
to the radius of gyration in the plane in which the tree has a rotational
constraint and perpendicular to that plane, respectively.

Since then this problem has not been studied further. Dimensional
reduction is an intriguing possibility. The lattice tree model without spi-
ral constraint is known to show a dimensional reduction by two.(6) The
directed version, show a dimensional reduction by one. For both mod-
els, the tree and animals are believed to lie in the same universality class.
In this paper, we revisit the problem and obtain a significantly longer
series for rooted spiral trees. Specifically in two dimensions we have added
twelve terms to the earlier series of 25 terms. In three and four dimen-
sions, we generated a seventeen and a thirteen term series, respectively.
The earlier known series in three and four dimensions had thirteen and
nine terms. In the process, we also correct some mistakes in the earlier
reported series. We also perform Monte-Carlo (MC) simulations using the
improved incomplete enumeration algorithm(7) and generate spiral trees up
to sizes of 1000 in two dimensions. Our analysis of exact series and MC
samples do not support the conjectured dimensional reduction by four in
this problem.

A lattice tree is a cluster of connected sites which contains no loops.
Spiral trees are a subclass of lattice trees. In a tree every cluster site is
attached to the origin through a unique path. In a spiral tree, this path
has a specific rotational constraint.

We define rooted spiral tree as a acyclic connected subgraph of a lat-
tice such that the projection of the path joining any site of the tree to the
root on x −y plane contains no left turn (Fig. 1). We will measure the size
of a spiral tree by the number of sites present in the tree. These are called
spiral site trees. The number of possibilities of spiral bond trees are more
than that for spiral site trees but both are thought to lie in the same uni-
versality class. For example, the site marked as X in Fig. 1 is not allowed
in spiral site tree as it would introduce a loop. But it can be present in a
spiral bond tree. Let the total number of distinct rooted spiral trees be An.
This is expected to have a asymptotic behaviour of the form

An ∼Cλnn−θ (3)
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Fig. 1. A rooted spiral tree of 15 sites on a square lattice. The root is the site enclosed in
the square. At the root site the tree has freedom of choosing any of the four neighbouring
sites. We count the spiral tree by number of sites and hence all bonds between two occupied
sites is always assumed to be present. The site marked by X, if present will result in a loop
for spiral site trees and hence will not be allowed. But it can be present in a spiral bond tree.

where C is a constant, θ is a critical exponent and is expected to depend
only on the dimension of the lattice and λ is known as the lattice depen-
dent growth constant. The existence of growth constant λ for unrooted
lattice trees and animals has been proved rigorously using concatenation
and super multiplicity arguments.(8) Also a rigorous lower bound for θ for
unrooted lattice trees and animals has been proved(9) using pattern theo-
rem. Specifically, it is θ � (d − 1)/d, for any dimension d � 2. Equation 3
is expected to hold for most cluster enumeration problems on regular lat-
tices, though other asymptotic forms are also possible. For example, for
spiral self-avoiding walks on square and triangular lattices, An tends to
a stretched exponential in n in the asymptotic limit.(2,3) Though we do
not prove existence of λ and θ for spiral trees in this paper, we derive
a lower bound for λ. Also, since spiral trees are a subset of lattice trees,
λspiral � λall, where λall is the growth constant for all trees, λall ≈ 3.795
on a square lattice.(10) In two dimensions, we have derived the generating
function for enumeration of a subset of all possible spiral trees. The value
of growth constant for this subset is 1.93565. This gives a lower bound
on the growth constant λspiral of the spiral trees on a square lattice. This
bound will be derived in Section 2.1.
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For the conventional lattice animals, one can prove θ �0 through con-
catenation and super-multiplicity arguments.(8,9) Concatenation does not
work for spiral trees. Interestingly, our numerical studies give a negative
value of θ in two and three dimensions.

The spiral trees are anisotropic. We measure the average extent of
a n-site spiral tree in x − y plane and perpendicular to the x − y plane
through the moment of inertia tensors, Ipl,n and I⊥,n, respectively. In the
asymptotic limit, they are expected to vary as

Ipl,n ∼An2νpl+1 (4)

and

I⊥,n ∼An2ν⊥+1 (5)

where νpl and ν⊥ define the length scale of the spiral tree in planar and
perpendicular direction, respectively.

2. TWO-DIMENSIONAL LATTICE SPIRAL TREES

Some pictures of randomly generated large spiral trees are shown in Fig. 2
(details later). One notes very long one-dimensional structures with infre-
quent turns. Hence, simple counting of structures of kind shown in Fig. 3
should give a good estimate of the growth constant λ. The generating
function of trees of this type is easy to determine. If A1(x) is the generat-
ing function, we get

A1(x)= x

1−x
+ x3

(1−x)2
A1(x) (6)

which gives A1(x)= x(1−x)

1+x2−2x−x3 . The number of trees of this type grows as
λ1

n, with λ1 =1.754878. It is straightforward to include more complicated
branches in such counting to get a better lower bound. This we proceed
to do below.

2.1. Lower Bound on Growth Constant on Square lattice

Consider a subset of all the spiral trees on a square lattice rooted at the
origin, which lie strictly in the first quadrant x � 0, y � 0; starting at the
origin, and not touching y =0 and y =1 except at points (0,0) and (0,1),
respectively. If Q(x) is the generating function for spiral trees in a quad-
rant and if q4,n is the coefficient of xn in the expansion of ([Q(x)]4)/x3,



Rooted Spiral Trees on Hyper-Cubic Lattices OF5

Fig. 2. Randomly generated spiral trees of 1000 sites in 2-dimensions using incomplete-
enumeration algorithm.

then

An �q4,n (7)

where An is the nth term of A(x), the generating function of all spiral trees
on the square lattice.
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Fig. 3. A simple counting problem of backbone with arbitrary long offshoots. Minimum
distance between two offshoots is 2 as else the tree constraint is violated. Solid squares rep-
resent the articulation points of the graph.

The enumeration of graphs contributing to Q(x) can be made easier
by noticing that these graphs can be formed by combination of smaller
graphs. We define an articulation point(11) as a point on y-axis such that
the tree above is an allowed spiral tree in the quadrant above that part
(note that these trees are defined in the upper quadrant and they never
touch y =0 axis, except at (0,0)). For example, the solid squares represent
the articulation points of the graph in Fig. 3, and Fig. 4 shows a spiral
tree with no articulation point. Hence, these spiral trees can be seen as
trees having y axis as a backbone on which spiral graphs are connected
at different articulation points maintaining the spiral constraint.

Let B(x) be the generating function of the quadrant spiral trees with
no articulation points. Hence B(x) can be seen as sum of generating func-
tion of irreducible graphs with i sites along y-axis. We represent them by
Bi(x) (see Fig. 5), then B(x)=∑∞

i=1 Bi(x). The full generating function in
terms of B(x) would be

Q(x)=x(1+B(x)+B2(x) . . . . . . )= x

1−B(x)
(8)
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Fig. 4. An example of an irreducible spiral graph with no articulation point. This is also an
example of a graph not included in Q1(x).

B 2 B i

i

B 1

Fig. 5. Schematic figure of spiral trees contributing to Bi(x). B1(x) is just a single vertex.

where Bi(x) are spiral graphs starting with i-sites along the y-axis. It is
easy to see that B1(x)=x, B2(x)= x3

1−x
and B3(x)= x6

(1−x−x3)(1−x)
. One can

write B4(x) with some effort but we do not have a general form for Bi(x)

for any i.
We restrict the graphs contributing to Bi(x) to be graphs such that

they have i sites along the y axis and have at least one downward branch
with i − 1 sites. This would not include structures like Fig. 4. We will
represent the generating function of these graphs by Q1(x). Then we can
represent Bi(x) in terms of two other generating functions, Vi(x) and
Wi(x). We define Vi(x) as the generating function of spiral subgraphs
starting with having i sites along y-axis. Wi(x) is the generating function
of spiral subgraphs starting with i-sites along y-axis and ending with a
downward branch with i −1 sites (Fig. 6). Then,

Bi(x)=Wi(x)+ Wi(x)Vi−1(x)

xi−1
(9)
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i

Wi(x)V i(x)

i

Fig. 6. Example of graphs contributing to Vi(x) and Wi(x), respectively.

Also, Vi(x) can be rewritten in terms of Wi(x) as

Vi(x)=xVi−1(x)+Wi(x)+ Wi(x)Vi−1(x)

xi−1
(10)

By expressing Q1(x) in terms of Bi(x) and Bi(x) in turn in terms
of Wi(x), we can reduce the computational time. If Wn is the number of
graphs of size n contributing to W(x) (W(x)=∑∞

i=1 Wi(x)), and Qn is the
number of graphs of size n contributing to Q1(x), then Wn grows more
slowly than Qn. We enumerated Wn and using them we could generate a
56 term series for Q1(x). The computation time for Wn grows as (1.8)n,
in contrast to (2.04)n for the Qn series.

If we restrict the graphs contributing to Bi(x), Wi(x) and Vi(x) to the
graphs having comb-like structure (by comb-like structure we mean graphs
with one-dimensional backbone having vertical straight lines of arbitrary
lengths), then it turns out that one can get the exact expression for these
generating functions. We represent them by Ṽi(x), W̃i(x) and B̃i(x). It is
easy to see that for comb like structures,

Wi(x)� W̃i(x)= x2i

1−x
+ x2i

1−x

K(x)

1−x
+ x2i

1−x

(
K(x)

1−x

)2

+· · · (11)

where K(x)=x2 ∑i−2
j=1 xj . Hence,

W̃i(x)= x2i (1−x)

1−2x +x2 −x3 +xi+1
(12)

Similarly, we get

Ṽi(x)= xi+1(1−x +x2 −xi)

1−2x +x2 −x3 +xi+1
(13)
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and hence

Bi(x)� B̃i(x)= x2i (1−x)2

(1−2x +x2 −x3 +xi)(1−2x +x2 −x3 +xi+1)
(14)

Substituting in Eq. (9) we get the generating function, Q̃1(x) for this
subset of spiral trees in a quadrant. This generating function has a sin-
gularity at xc = 0.51662 which gives the growth constant λ′ of these trees
to be 1.93565. Since this counts only a subset of all the spiral trees on a
square lattice, this is a rigorous lower bound on λspiral for spiral trees on
a square lattice.

For the full Q1(x), we derived a 56 term series. If we assume,

Qn ∼λn
1n−θ1 (15)

then we got estimates of λ1 and θ1 to be

λ1 =2.0449±0.0001 (16)

θ1 =0.830±0.01 (17)

2.2. Exact Enumeration

Since the number of configurations of a given cluster size is
exponential in cluster size, the computational complexity of the algorithm
for enumeration of all lattice animals or trees grows exponentially with the
cluster size. For direct enumeration algorithms like Martin’s algorithm,(12)

the time required to generate all the configurations of a given size grows
as λn, where λ is the growth constant and n is the cluster size and the
memory requirement grows like a polynomial in cluster size. For lattice
trees and animals, a finite lattice method(13) with an associated transfer
matrix algorithm was used by Conway.(14) Conway generated a 25 term
series for lattice animals using this algorithm. This series has recently
been extended to 46 terms by Jensen(10) with a slight improvement in the
algorithm. Both space and time requirements of this algorithm are found
numerically to approximately grow as 1.4n. The growth constant of lattice
animals in contrast is approximately 4.06. Hence a considerable improve-
ment in time is obtained by the transfer matrix algorithm at the cost of
memory.

The spiral constraint, cannot be easily implemented using the transfer
matrix. Hence we have used Martin’s algorithm for spiral trees, making use
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of the fourfold rotational symmetry of the lattice. Our series for number of
trees and their average moment of inertia is given in Appendix A.

Using this we generated a series of spiral trees on square lattice up to
37 terms (Appendix A). Earlier known series had only 25 terms.

For analysing the series data we tried a four parameter sequential fit
to the data of the form

An =Bλn(n+ δ)−θ (18)

where δ is an adjustable fixed parameter and B is a constant. We did
a linear fit on the logarithm of Eq. (18) using An, An+1, An+2 and An+3
to estimate values of Bn, δn, λn and θn. For spiral trees on square lattice
we found a good convergence in successive values of λn and θn for δ lying
between 2.03 and 2.04. Fixing δ = 2.0367 and B = 0.18124 we get a very
good convergence of λn and θn for different values of n. These are given
in Appendix B. From this we estimate

λ=2.11433±0.00010 (19)

θ =−1.3667±0.0010 (20)

We have tried fits with non analytic corrections to scaling of the
form, Bλn(n+ δ)−θ [1 + a/n�], but we didn’t get good convergence for �.
Instead, Bλn(n + δ)−θ [1 − αe−βn] seems to fit much better with α ≈ 0.32
and β ≈0.35.

For the radius of gyration data we used a sequential fit of the form

logIi,n = (2νi +1)ln(n+ δ)+u+ v

(n+ δ)2
(21)

where i stands for pl or ⊥ as the case maybe and u and v are constants.
For spiral trees in a plane I⊥,n would be zero and by symmetry the

sum of square of x coordinate of all sites for all configurations of clusters
of size n is symmetric with sum of squares of y-coordinate. Using Eq. (21)
for sequential fit to our 35 term series we get a good convergence for δ

lying between −0.33 and −0.35. Fixing δ =−0.338 we get the estimates of
νpl to be

2νpl =1.3148±0.0010 (22)
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Table I. Estimates of Critical Exponents and Growth Constant from Differential

Approximants

[l,m] xc =1/λ θ [l,m] xc =1/λ θ

[14,13] 0.47288256 −1.36083 [15,18] 0.47307144 −1.39078
[14,14] 0.47290325 −1.36384 [14,17] 0.47307308 −1.39106
[15,13] 0.47290516 −1.36413 [16,17] 0.47307863 −1.39209
[16,15] 0.47294898 −1.37035 [17,15] 0.47308675 −1.39369
[13,15] 0.47297513 −1.37499 [16,19] 0.47309052 −1.39421
[16,13] 0.47303007 −1.38409 [18,15] 0.47310355 −1.39686
[13,16] 0.47303305 −1.38436 [17,18] 0.47310906 −1.39788
[16,16] 0.47305593 −1.38800 [15,16] 0.47311001 −1.39775
[14,15] 0.47305793 −1.38863 [18,18] 0.47311071 −1.39822
[15,17] 0.47306712 −1.39002 [17,19] 0.47311091 −1.39826

We looked at approximants for l � 9 and l − 3 �m� l + 3. We have tabulated here 20 values
which showed best convergence.

These estimates are much more precise than the earlier estimates λ=
2.1166±0.001, θ =−1.307±0.006 and 2νpl =1.306±0.010 using a 25 term
series.(5) We can rule out the dimensional reduction conjecture with fair
confidence.

Above we presented our estimates using four parameter fits. Method
of differential approximants has almost become a standard technique for
such analysis.(15) In this case, the generating function has a divergent sin-
gularity at xc. We tried zeroth order differential approximants, they are
listed in Table I. We find a very poor convergence in values of xc and
θ . Out of 70 approximants, 15 show spurious singularities (singularities
with |xc|<0.45). We have listed 20 values which showed best convergence.
From these we get, λ = 2.1142 ± 0.002 and θ = −1.39 ± 0.02. Clearly the
series is not very well behaved. This is reflected in the slow convergence of
our series. Also Monte-Carlo generated random spiral trees of sizes 1000
(Fig. 2) suggest that the asymptotic behaviour of the series might set in
rather late. Because of poor convergence of differential approximants, we
have relied on parameter fits for series analysis in this paper.

2.3. Monte-Carlo Analysis

With exact enumeration, we are restricted to clusters of size thirty
seven in two dimensions. The main problem is with the extrapolation
since the crossover sizes are likely to be large, as the total angle turned
by the largest spiral arm about the origin for a spiral tree of size 1000
is about 2π only (Fig. 2). This indicates that the crossover value above
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which asymptotic behaviour sets in would be of order 103. We tried to
study larger spiral trees using MC methods. Monte-Carlo simulation of
branched polymers is a challenging problem. Because of branching, most
MC algorithms which are good for linear polymers show critical slowing
down for branched polymers. For lattice trees there have been some stud-
ies using the cut and paste dynamic MC technique.(9) But with spiral con-
straint, algorithms involving large scale non local moves are not useful. We
used an improved version of incomplete enumeration algorithm proposed
recently by us.(7) Using it we could study spiral trees of sizes up to one
thousand on a square lattice.

Incomplete enumeration is a simple modification of exact enumera-
tion algorithm and can be seen as a percolation process on the genealog-
ical tree of the underlying enumeration problem. The optimal behaviour
of the algorithm is achieved when we work around the percolation thresh-
old of the genealogical tree. This algorithm falls in the class of stochastic
growth algorithm like PERM.(16) We have shown in,(7) that the asymptotic
time to produce an independent sample of n sites for trees and animals
grows as exp(anb) with 0 < b < 1 for this algorithm. Though the coeffi-
cient in front of stretched exponential can be made small by optimising
the algorithm for small sizes. We will not give more details of the algo-
rithm in this paper. These can be found in.(7)

Figure 2 shows pictures of some typical spiral trees of one thousand
sites. Clearly, their structure is very different from lattice trees without the
spiral constraint. Because of the constraint they tend to branch much less.
For spiral constraint, earlier numerical evidence suggest that unlike lattice
trees and animals, spiral trees and animals do not lie in same universality
class. The reason is that by allowing loops, the polymer can bend much
more often and hence spiral animals would be more compact than the spi-
ral trees.

We studied spiral trees up to sizes 1000 using incomplete enumeration
MC method. We made 107 MC runs. The moment of inertia tensor Ipl,n

as a function of n is plotted in Figs. 7 and 8. Assuming the asymptotic
form to be such that

log(Ipl,n)= logC + (2νpl +1)logn+ D

n
(23)

Using above written form, we get the estimate of νpl to be (Figs. 7 and
Fig. 8)

2νpl =1.312±0.010 (24)
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Fig. 7. Plot of
Ipl,n

n2.312 as a function of n for Monte-Carlo generated spiral trees on a square
lattice.

In incomplete enumeration MC algorithm,(7) each configuration of n sites
is generated with equal probability Pn which is just

∏n
i=1 pi , where pi is the

probability with which an edge between level i and i +1 on the genealogical
tree of the problem is chosen. By keeping track of the average number of
clusters of a given size generated in a given run, one can estimate the growth
constant λ and the critical exponent θ . But, the variance of the number of
clusters increases as exp(nα), 0<α<1 for large n. Hence, instead we counted
the number of descendants of each spiral tree generated. This approach has

n

Ipl,n

1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

1  10  100  1000

Fig. 8. Plot of Ipl,n vs n for Monte-Carlo generated spiral trees on a square lattice.
The dotted line is a straight line with slope 2.312.
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Fig. 9. Monte-Carlo estimates of ratios of the number of configurations on a square lattice.
The straight line gives a linear fit of the form λ(1− θ/n) to the data.

been used previously in.(5,17) The mean number of descendants of a tree of
size n gives a direct estimate of An+1/An. We represent the mean number
of descendants by Mn. This is plotted in Fig. 9. A linear fit of the form
λ(1− θ/n) to this data gives λ=2.116±0.01 and θ =−1.29±0.02. For bet-
ter estimates we assume

logMn = logλ− θ log
(

n+ δ

n−1+ δ

)

(25)

With this we get the following estimates for n � 200 which are in agree-
ment with the value obtained by extrapolating the exact series expansions.

λ=2.1145±0.0010 (26)

θ =−1.364±0.010 (27)

with δ =1.8.

3. SPIRAL TREES ON A CUBIC LATTICE

In dimensions higher than two, the spiral constraint defined as the
projection of path joining any site of the tree to the root in x–y plane con-
tains no left turn can be employed in two ways. Bose et al.(5) defined it
such that for the projected path from origin to site on x − y plane only
forward and right turns are allowed. But in dimensions higher than two,
we can define another variation where trees as long as they do not violate
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Fig. 10. A spiral tree of six sites on a cubic lattice with a back-turn (drawn by a thicker
line). This configuration will contribute to spiral trees ST2 of six sites but not to ST1.

the tree constraint and the projection on x −y plane is spiral, are allowed.
We will call the spiral trees with only forward and right turns allowed as
ST1.

If we allow for back-turns also, we would get different series because
for example, Fig. 10 shows one spiral tree of six sites which would not be
a valid configuration if we consider only forward and right turns. We call
the spiral trees with back-turns allowed as ST2. Naively, one would expect
these two to belong to the same universality class. We generated the series
till n = 17 on a cubic lattice using both definitions, however we find the
two series behaving differently. Series for both ST1 and ST2 are given in
Appendix A.

For ST1, for An the number of configurations, using Eq. (18) we find
that the sequential fit shows a good convergence around δ = 2.43. With
δ=2.43 and B =0.094, the values of λ and θ obtained are listed in Table I.
For νpl and ν⊥, we used fitting form as given in Eq. (21), with δ =−1.46
and δ = −0.43, respectively. The sequential fits are given in Appendix B
and estimates are listed in Table II.

Similarly, we obtained 17 term series for ST2. The sequential fits are
given in Appendix B and the values of λ, θ , νpl and ν⊥ are listed in
Table II.

The difference in value of λ for ST1 and ST2 is understandable as
ST2 has a greater number of configurations. More surprisingly, the crit-
ical exponents θ , νpl and ν⊥ within our error estimates are different in
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Table II. Estimates of Critical Exponents and Growth Constant from Series Analysis

in Three and Four Dimensions

ST1(d =3) ST2(d =3) ST1(d =4) ST2(d =4)

λ 5.340±0.020 5.683±0.020 9.62±0.10 10.20±0.10

θ −0.675±0.050 −0.167±0.050 −0.11±0.10 0.29±0.10

νpl 0.44±0.05 0.477±0.05 0.34±0.05 0.37±0.05

ν⊥ 0.54±0.05 0.69±0.05 0.44±0.05 0.45±0.05

Note that the value of θ and ν for rooted lattice animals/trees in 3d and 4d is known exactly
(in 3d, θ =ν =1/2 and in 4d, θ =5/6 and ν =5/12).

Table III. Estimates of Critical Exponents and Growth Constants from Monte-Carlo

Simulations in Four Dimensions

ST1(d =4) ST2(d =4)

λ 9.60±0.1 10.2±0.1
θ −0.13±0.1 0.17±0.1
νpl 0.33±0.02 0.38±0.05
ν⊥ 0.451±0.020 0.455±0.050

two models. In neither case, the conjectured dimensional reduction(Eqs.
(1) and (2)) seems to be satisfied.

4. SPIRAL TREES IN FOUR DIMENSIONS

On a hyper cubic lattice in four dimensions we generated a series till
n=13. We also correct mistakes in the earlier series reported for ST1 in.(5)

The corrected series in given in the Appendix A. We also obtained a 13
term series for ST2 (see Appendix A). The estimates of λ and critical expo-
nents are listed in Table II.

We also performed Monte-Carlo simulations using incomplete enu-
meration algorithm for spiral trees up to size 50. Our estimates from MC
simulations for ST1 are given in Table III.

Though we cannot rule out the possibility of θ being zero in both
series analysis and Monte-Carlo simulations, but it seems unlikely.
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5. DISCUSSION

Bose et al. gave a plausible argument of curling up of the dimen-
sions in the spiralling plane and had conjectured a dimensional reduction
by four for spiral trees. Our numerical evidence as presented in this paper
does not support the conjecture. The spiral constraint for trees seems to
be very special. For example, the structure of spiral trees is very differ-
ent from spiral animals with loops allowed.(18) Different implementation
of the constraint in d > 2, seems to give different critical behaviour, sug-
gesting different universality classes. A variety of self avoiding walks with
different step restrictions rules on simple cubic lattice were studied in(19)

using exact enumeration. Their analysis suggested same universality class
for self avoiding walks with various restrictions (including the spiral con-
straint), as the unrestricted self avoiding walks. In contrast, our studies
show different critical behaviour of spiral trees with different geometrical
restrictions in three and four dimensions.

We should note that for the large clusters of size 103 generated by
Monte-Carlo, the total angle turned by the largest spiral arm about the
origin is about 2π . It is possible that the structure of spiral trees is
such that this angle tends to infinity as n tends to infinity. In this case
the crossover value above which asymptotic behaviour sets in would be
expected to be of order 103, and series analysis for smaller n may not give
correct limiting behaviour. One indication that trees where spiral turns a
lot are important is that the growth constant for spiral trees in a quad-
rant Q1(x) seems to be significantly smaller than for full spiral trees.

For quadrant spiral trees on a square lattice, we obtained exact series
up to sizes 56. There are very few such long series known for lattice mod-
els. The series gives a estimate of λ=2.044 for these quadrant spiral trees.
This value is significantly smaller than for the full spiral trees.

APPENDIX A

Exact series enumeration values in different dimensions
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A.1. Two Dimensions

Cluster size (n) An 〈Ipl,n〉

1 1 0
2 4 1
3 14 3.142857
4 40 6.800000
5 105 12.266667
6 268 19.656716
7 674 28.919881
8 1660 40.159036
9 4021 53.513056

10 9612 69.074906
11 22734 86.926014
12 53276 107.140851
13 123916 129.787372
14 286376 154.926432
15 658100 182.624835
16 1504900 212.938547
17 3426464 245.919131
18 7771444 281.619675
19 17565064 320.089299
20 39576360 361.374917
21 88916877 405.522760
22 199252252 452.577078
23 445438310 502.580546
24 993616344 555.575100
25 2211923712 611.601183
26 4914811468 670.697934
27 10901498938 732.903853
28 24141259980 798.256392
29 53379537257 866.791847
30 117861710196 938.545859
31 259891311248 1013.553288
32 572356464452 1091.848086
33 1259008971656 1173.463504
34 2766351037428 1258.432171
35 6071954146120 1346.786006
36 13314252070412
37 29167189621351
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A.2. Three Dimensions ST1

n An 〈Ipl,n〉 〈I⊥,n〉

1 1 0. 0.
2 6 0.66666 0.333333
3 41 1.85366 1.07317
4 260 3.63076 2.27692
5 1568 6.02296 3.98214
6 9190 9.06464 6.19913
7 53090 12.75954 8.91987
8 303900 17.09588 12.1405
9 1727691 22.0606 15.8606

10 9767426 27.6424 20.0821
11 54966550 33.8322 24.8071
12 308138528 40.6214 30.0376
13 1721739000 48.0022 35.7754
14 9592901762 55.9676 42.0229
15 53314247488 64.5112 48.7822
16 295644339728 73.6274 56.0556
17 1636179620652 83.3112 63.8454

A.3. Three Dimensions ST2

n An 〈Ipl,n〉 〈I⊥,n〉

1 1 0 0.
2 6 0.666666 0.333333
3 41 1.85366 1.07317
4 260 3.63076 2.27692
5 1576 6.00762 4.00761
6 9342 9.00192 6.30208
7 54890 12.60084 9.17041
8 320952 16.7848 12.6182
9 1869907 21.5398 16.651

10 10861750 26.8572 21.2772
11 62939998 32.7312 26.5047
12 364004296 39.156 32.3409
13 2101795408 46.1276 38.7927
14 12119643750 53.6422 45.8667
15 69805866848 61.6968 53.5693
16 401668709200 70.2898 61.9068
17 2309283650656 79.4192 70.8851
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A.4. Four Dimensions ST1

n An 〈Ipl,n〉 〈I⊥,n〉

1 1 0. 0
2 8 0.5 0.5
3 80 1.35 1.5
4 800 2.54 3.030
5 7912 4.05864 5.10010
6 77656 5.89816 7.70862
7 759172 8.04822 10.84584
8 7403292 10.49742 14.50268
9 72073417 13.23410 18.67008

10 700774524 16.24692 23.34
11 6806914432 19.52526 28.5052
12 66064406668 23.0592 34.1596
13 640741734643 26.8396 40.2974

A.5. Four dimensions ST2

n An 〈Ipl,n〉 〈I⊥,n〉

1 1 0. 0.
2 8 0.5 0.5
3 80 1.35 1.5
4 800 2.54 3.030
5 7960 4.05226 5.10754
6 79048 5.87628 7.74208
7 785748 7.99822 10.93174
8 7822676 10.40506 14.6724
9 78011513 13.08484 18.95778

10 779189988 16.0274 23.7816
11 7793590224 19.22410 29.1376
12 78049539204 22.6676 35.0206
13 782488672931 26.3518 41.4252
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APPENDIX B

B.1. Two Dimensions Sequential Fit

n λn θn 2νpl,n

5 2.078982187 −1.4143616 1.2918751
6 2.118727624 −1.3598402 1.3047319
7 2.117039314 −1.3623751 1.3092198
8 2.115352878 −1.3651395 1.3108492
9 2.114617151 −1.3664433 1.3117861

10 2.114771869 −1.3661493 1.312420
11 2.113813740 −1.3680905 1.3128895
12 2.113978775 −1.3677359 1.3132536
13 2.114183882 −1.3672706 1.3135423
14 2.114099443 −1.3674721 1.3137672
15 2.114103267 −1.3674625 1.3139586
16 2.114205656 −1.3671946 1.3141194
17 2.114223238 −1.3671466 1.3142505
18 2.114256310 −1.3670527 1.3143596
19 2.114279786 −1.3669834 1.3144497
20 2.114291286 −1.3669483 1.3145234
21 2.114301033 −1.3669174 1.3145839
22 2.114310834 −1.3668854 1.3146334
23 2.114311487 −1.3668832 1.3146734
24 2.114314464 −1.3668728 1.3147059
25 2.114318963 −1.3668566 1.3147321
26 2.114320428 −1.3668513 1.3147529
27 2.114321722 −1.3668464 1.3147694
28 2.114324605 −1.3668351 1.3147823
29 2.114326551 −1.3668274 1.3147921
30 2.114327932 −1.3668217 1.3147994
31 2.114329734 −1.3668142 1.3148047
32 2.114331349 −1.3668072 1.3148083
33 2.114332328 −1.3668029 1.3148104
34 2.114333055 −1.3667997 1.3148113
35 2.114333550 −1.3667974 1.3148113
36 2.114333553 −1.3667974

Es. Val. 2.11433±0.0001 −1.3667±0.001 1.3148±0.001
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B.2. Three Dimensions ST2

n λn θn 2νpl,n 2ν⊥,n

5 5.153269 −1.019107 0.847865 1.128949
6 5.275382 −0.810187 0.865641 1.098419
7 5.310873 −0.743662 0.871330 1.083814
8 5.319667 −0.725590 0.874191 1.077873
9 5.327658 −0.707695 0.875922 1.073809

10 5.334141 −0.691977 0.876525 1.070550
11 5.337903 −0.682161 0.876502 1.068326
12 5.339533 −0.677605 0.876303 1.067085
13 5.340111 −0.675880 0.876176 1.066526
14 5.340282 −0.675339 0.876139 1.066334
15 5.340255 −0.675428 0.876197 1.066365

Es. Val. 5.340±0.02 −0.675±0.05 0.876±0.05 1.066±0.05

B.3. Three Dimensions ST2

n λn θn 2νpl,n 2ν⊥,n

5 5.694072 −0.143802 1.054721 1.200021
6 5.719085 −0.123718 1.013833 1.171160
7 5.710159 −0.132441 0.989310 1.153823
8 5.695471 −0.149408 0.977105 1.147515
9 5.689143 −0.157845 0.969817 1.144294

10 5.687350 −0.160552 0.963977 1.141637
11 5.686110 −0.162645 0.959561 1.139686
12 5.684763 −0.165153 0.956738 1.138646
13 5.683809 −0.167099 0.955250 1.138243
14 5.683473 −0.167843 0.954653 1.138124
15 5.683632 −0.167463 0.954662 1.138134

Es. Val. 5.683±0.02 −0.167±0.05 0.954±0.05 1.138±0.05
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