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Abstract We study a scheduling model with speed scaling
for machines and the immediate start requirement for jobs.
Speed scaling improves the system performance, but incurs
the energy cost. The immediate start condition implies that
each job should be started exactly at its release time. Such
a condition is typical for modern Cloud computing systems
with abundant resources.We consider two cost functions, one
that represents the quality of service and the other that corre-
sponds to the cost of running. We demonstrate that the basic
scheduling model to minimize the aggregated cost function
with n jobs is solvable in O(n log n) time in the single-
machine case and in O(n2m) time in the case of m parallel
machines. We also address additional features, e.g., the cost
of job rejection or the cost of initiating a machine. In the case
of a single machine, we present algorithms for minimizing
one of the cost functions subject to an upper bound on the
value of the other, as well as for finding a Pareto-optimal
solution.
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1 Introduction

In this paper, we study scheduling models that address two
important aspects of modern computing systems: machine
speed scaling for time and energy optimization and the
requirement to start jobs immediately at the time they are sub-
mitted to the system. The first aspect, speed scaling, has been
the subject of intensive research since the 1990s, seeYao et al.
(1995), and has become particularly important recently, with
the increased attention to energy-saving demands, see sur-
veys Albers (2009, 2010a), Jing et al. (2013), Gerards et al.
(2016). It reflects the ability of modern computing systems
to change their clock speeds through the technique known
as Dynamic Voltage and Frequency Scaling (DVFS). The
higher the speed, the better the performance from users’ per-
spective, but the energy usage and other computation costs do
increase. The goal is to select the right speed value from the
full spectrum of speed to achieve a desired trade-off between
performance and energy. DVFS techniques have been suc-
cessfully applied in Cloud data centers to reduce the energy
usage, see, e.g., VonLaszewski et al. (2009),Wu et al. (2014),
DoLago et al. (2011).

The second aspect, the immediate start condition, is moti-
vated by the advancements of modern Cloud computing
systems, and it is widely accepted by practitioners. This
feature is not typical for the traditional scheduling research
dealing with scenarios arising from manufacturing. In such
systems, jobs compete for limited resources. They often have
to wait until resources become available, and job starting
times can be delayed if the system is busy.
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In modern computing systems (Clouds and data centers),
processing units are no longer scarce resources, but quite
opposite, abundant resources; see, e.g., Kushida et al. (2015).
Clouds give the illusion of infinite computing resources avail-
able on demand. Cloud providers agree with customers on a
service-level agreement (SLA) and sell computing services
to customers as utilities. Special mechanisms allow Cloud
providers to ensure that the actual demand for resources
is met at practically any point in time (Armbrust et al.
2009, 2010; Jennings and Stadler 2015). In the modern
competitive market, Cloud providers achieve high availabil-
ity of resources, promise their customers instant access to
resources and allow customers to monitor how that promise
is kept (Aceto et al. 2013). These features are unprecedented
in the history of IT and have now become a standard.

The infrastructure for Cloud computing systems is pro-
vided by data centers. Data centers execute a large number
of computing processes (which we call jobs from now on).
In order to guarantee on-demand access, the execution of a
job needs to be started immediately upon its submission to
the system. Customers experiencing waiting times in order to
get their jobs started become unsatisfied with the service and
are likely to change the provider next time (Armbrust et al.
2010). It is therefore in the interest of providers to start job
execution as soon as jobs are submitted to the system. This
phenomenon is ourmotivation forwhatwe call the immediate
start condition.

The optimization criteria are typically of two types: those
related to the system performance and the quality-of-service
(QoS) provision, as well as those related to the operational
cost of the processing system. The criteria of the first type
may represent the mean flow times of jobs, total (or mean)
tardiness or a more general function F defined as the sum
of penalty functions of job completion times. The second
objective G is the sum of operational costs for using individ-
ual resources, each ofwhich depends on the time the resource
is used. It can be linear, tomodel themonetary resource usage
cost, or convex, to model the energy consumption cost.

Observing the immediate start condition is one of the key
priorities for resource providers, and it is usually included in
the QoS protocols. The case study presented by Garg et al.
(2013) characterizes a possible waste of execution time due
to the resource unavailability. It is estimated as low as 0.5%
for customers of Amazon EC2 and 0.1% forWindows Azure
customers. The Rackspace web hosting company guaran-
tees 100% network availability and 99.95–99.99% platform
availability; seeRackspace (2015); in realityRackspace often
achieves 100% availability of its resources (Garg et al. 2013).
Nowadays, special software is being developed in order to
strengthen service-level agreements (SLAs) for customers by
fixing the maximum response time, which can be as small as
a few seconds (Iqbal et al. 2009). Due to a strong competition
in the area, the customers choose providers who are prepared

to demonstrate that handling the submitted jobs is their top
priority.

The immediate start requirement is not a seemingly
strong assumption, but a fact of today’s life. It is widely
accepted in distributed computing, but generally overlooked
by the scheduling community, where the traditional percep-
tion remains, that of limited resources and acceptable delayed
starting times.

In this paper, we initiate the study of the immediate start
off-line scheduling models, assuming that accurate job char-
acteristics can be available in advance through historical
analysis, predicting techniques or a combination of both;
see, e.g., Moreno et al. (2014) for off-line scenarios in Cloud
computing. To satisfy the immediate start condition, we rec-
ommend a policy of changing the processing speeds, so that a
certainmeasure of the schedule quality and the cost of speeds
(normally understood as energy) are both taken into consid-
eration. The owners of submitted tasks and the providers
of processing facilities both want an early completion of
tasks, as recorded in the SLAs, and this in practice leads
to a no-preemption requirement; see Tian and Zhao (2015).
We understand that the models that we address in this paper
are rather ideal and simple, but we see our work as a nec-
essary step that should be made before more advanced and
practically relevant models are investigated.

In the remainder of this section, we provide a formal def-
inition of the model under study and discuss the relevant
literature.

1.1 Definitions and notation

Formally, in the models under consideration, we are given a
set of jobs N = {1, 2, . . . , n}. A job j ∈ N can be under-
stood as a computational task characterized by its volume
or work γ j , measured in millions of instructions to be per-
formed on a computing device. Each job j ∈ N is associated
with a release date r j before which it is not available. For
completeness, assume that rn+1 = +∞.

It is also possible that job j is given a due date d j , before
which it is desired to complete that job, and/or a deadline
d̄ j . The due dates d j are seen as “soft”, i.e., it is possible
to violate them, and usually a certain penalty is associated
with such a violation. On the other hand, the deadlines d̄ j are
“hard”, i.e., in any feasible schedule job j must be completed
by time d̄ j . If for a job j ∈ N no deadline is given, we assume
that d̄ j = +∞. Additionally, job j can be given weight w j ,
which indicates its relative importance.

Each job is processed without preemption either on a sin-
glemachine or on one ofm parallel machines. For processing
job j ∈ N , the corresponding machine has to be assigned
speed s j , measured in millions of instructions performed per
time unit, so that the actual processing time of job j is defined
by
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p j = γ j

s j
. (1)

The main feature of the models that we study in this paper
is the requirement of the immediate start or dispatch of each
job, i.e., job j ∈ N must start its processing immediately
upon its arrival at time r j . Without loss of generality, we
assume that all release dates are distinct and the jobs are
numbered in increasing order of their release dates, i.e.,

r1 < r2 < · · · < rn . (2)

For a fixed schedule, let C j denote the completion time of
job j ∈ N . Provided that job j ∈ N is processed at speed s j ,
we have that

C j = r j + p j ,

where the actual processing time p j is defined by (1).
We associate each job j ∈ N with two types of penalties:

(i) a traditional scheduling cost function f j
(
C j

)
, where f j

is a non-decreasing function, so that f j
(
C j

)
represents

the penalty for completing job j at time C j ; the total
cost is then

F =
n∑

j=1

f j
(
C j

) =
n∑

j=1

f j
(
r j + p j

) ;

(ii) the speed cost function g j
(
s j

)
, which is often inter-

preted as the energy that is required for running job j
for one time unit at speed s j ; the operational cost is then

G =
n∑

j=1

γ j

s j
g j

(
s j

) =
n∑

j=1

p j g j

(
γ j

p j

)
.

Notice that our model is formulated for a homogeneous dis-
tributed system: all physical machines have the same speed
and energy characteristics, and the cost functions g j are inde-
pendent of machines.

It is widely accepted in the literature on power-aware
scheduling that energy is proportionate to the cube of speed;
see, e.g., Brooks et al. (2000) and Pruhs et al. (2008). This is
why in most illustrative examples presented in the remainder
of this paper we assume that

g j
(
s j

) = β j s
3
j , j ∈ N , (3)

so that

G =
n∑

j=1

β jγ j s
2
j =

n∑

j=1

β jγ
3
j

p2j
. (4)

Depending on the type of the objective function, in this
paper we address several different models with immediate
start:

– �+: it is required to find a feasible schedule that mini-
mizes the aggregated cost F + G;

– �1: it is required to find a feasible schedule that mini-
mizes one of the cost functions subject to an upper bound
on the other function, e.g., to minimize total energy G
subject to an upper bound on the value of F ;

– �2: it is required to find feasible schedules that simulta-
neously minimize two cost components, e.g., to find the
Pareto-optimal solutions for the problem of minimizing
total cost F and total energy G.

1.2 Related work

Both features, machine speed scaling and the immediate start
condition, have a long history of study. However, so far they
have been considered separately and in different contexts.
One point of difference is related to preemption, the ability
to interrupt and resume job processing at any time. This fea-
ture is typically accepted in speed scaling research in order to
avoid intractable cases, while it is forbidden in the immedi-
ate start model on a single machine and on parallel identical
machines. Notice that preemptive version with immediate
start should have additional condition on immediate migra-
tion and restart, which makes preemption redundant. In what
follows, we provide further details about the two streams of
research.

The speed scaling research stems from the seminal paper
by Yao et al. (1995), who developed an O(n3)-time algo-
rithm for preemptive scheduling of n jobs on a singlemachine
within the time windows

[
r j , d̄ j

]
given for each job j ∈ N .

Note that in that paper time windows are treated in the
traditional sense, without the immediate start requirement.
Subsequent papers by Li et al. (2006, 2014), Albers et al.
(2011, 2014) and Angel et al. (2012) proposed improved
algorithms for the single-machine problem and extended
this line of research to the multi-machine model. The run-
ning times of the current fastest algorithms are O(n2) and
O(n4) for the single-machine and parallel-machine cases,
see Shioura et al. (2015).

Speed scaling problems which involve not only the speed
cost function G, but also a scheduling cost function F =∑n

j=1 f j (C j ) have been under study since the paper by Pruhs
et al. (2008). The two most popular functions are the total
completion time F1 = ∑n

j=1 C j and the total rejection cost

F2 = ∑n
j=1 w j sgn

(
max

{
C j − d j , 0

})
, where w j is the

cost incurred if job j cannot be processed before its dead-
line and therefore is rejected. Without the immediate start
condition, the tractable cases of problems �+ and �1 with
objectives F1 and F2 are very limited.
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In the case of function F1, the version of problem �+
with equal release dates is solvable in O

(
n2m2(n + logm)

)

time, where m is the number of machines; see Bampis et al.
(2015). Notice that preemptions are redundant in that model.
If jobs are available at arbitrary release times r j , then prob-
lem �1 is NP-hard even if there is only one machine and
preemption is allowed, see Barcelo (2015). For problems
with arbitrary release dates and equal-work jobs, preemption
allowance makes no difference to an optimal solution, and
due to a nonlinear nature of the problem an optimal value
of the objective can be found within a chosen accuracy ε.
For example, for problem �1 on a single machine an algo-

rithm by Pruhs et al. (2008) takes O(n2 log G
ε
) time, where

G is the upper bound on the speed cost function (energy),
while for problem �+ on parallel machines an algorithm
by Albers and Fujiwara (2007) requires O(n3 log 1

ε
) time.

The difficulties associated with arbitrary-length jobs are dis-
cussed by Pruhs et al. (2008), Bunde (2009), Barcelo et al.
(2013). For the problem of preemptive scheduling on a sin-
gle discretely controllable machine, Antoniadis et al. (2014)
provide an algorithm with time complexity O(n4k), where k
is the number of possible speed values of the processor.

In the speed scaling research, the problems of minimizing
the total rejection cost F2 are typically studied as those of
maximizing the throughput, defined as the number of jobs
that can be processed by their deadlines. Polynomial-time
algorithms are known only for special cases, where various
conditions are imposed, in addition to the assumption that all
jobs have equal weights w j . Notice that strict assumptions
of those models make preemption redundant. The single-
machine problem�1 withw j = 1 for all j ∈ N is solvable in
O

(
n4 log n log

(∑
γ j

))
time and in O

(
n6 log n log

(∑
γ j

))

time, depending on whether the jobs are available simul-
taneously (r j = 0 for all j ∈ N ) or not; in the latter
case, it is further required that release dates and deadlines
are agreeable, see Angel et al. (2013). The parallel-machine
problem �1 with the jobs of equal size and equal weight
(γ j = w j = 1, j ∈ N ) is solvable in O(n12m+9) time or in
O(n4m+4m) time, if additionally release dates and deadlines
are agreeable, see Angel et al. (2016).

Research on speed scaling problems extends to the design
of approximation algorithms and the study of their online
versions. Without providing a comprehensive list of results
of this type, we refer an interested reader to the survey papers
by Albers (2009, 2010a, b) and Bampis (2016).

As far as the immediate start condition is concerned, the
most relevant problems studied in the literature fall into the
category of interval scheduling. In such models, each job
is characterized by time intervals where it can be processed
(Kovalyov et al. 2007). One of themost well-studied versions
of interval scheduling assumes that there is only one interval
per job [r j , d j ]. In interval scheduling, there is no freedom

in selecting job starting times and in making preemption:
every job j ∈ N should start precisely at a given time r j and
complete at a given deadline d̄ j . There is also no control over
machine speeds, which are fixed and cannot be changed. The
decision making consists in (i) selecting a subset of jobs that
can be processed within their time intervals and (ii) assigning
them to themachines for processingwithout preemption. The
two typical objectives are the job rejection cost, which is
defined similarly to the function F2, and the machine usage
cost defined typically as the (weighted) number of machines
which are selected to process the jobs. Note that unlike the
operational cost function G used in our model, the machine
usage cost in interval scheduling does not take into account
the actual time of using a machine.

Within the broad range of interval scheduling results (see
the survey papers by Kolen et al. (2007) and Kovalyov
et al. (2007)), those relevant to our study deal with identical
parallel machines or uniformmachines. In the case of identi-
cal parallel machines, the fastest algorithms for minimizing
the job rejection cost have time complexity O(n log n) if
all jobs have equal weights (Carlisle and Lloyd 1995) and
O(mn log n) if jobweights are allowed to be different (Bouz-
ina and Emmons 1996); the fastest algorithm for minimizing
the machine usage cost is of time complexity O(n log n) if
machine weights are equal (Gupta et al. 1979).

The version of the problem with uniform machines is
less studied. For uniform machines, both problems, with
job rejection cost and machine usage cost, are strongly NP-
hard; see Nakajima et al. (1982) and Bekki and Azizoğlu
(2008). Polynomial-time algorithms, all of time complexity
O(n log n), are known for the problem of minimizing the
machine usage cost, if there are only two types of machines,
slow and fast (Nakajima et al. 1982), and for the problem
of minimizing the job rejection cost, in one of the following
two cases: if all jobs are available simultaneously and have
equal weights, or if all jobs have equal volume and there are
only two processing machines (Bekki and Azizoğlu 2008).

Onemore problem related to our study is a relaxed version
of interval scheduling, where the jobs are allowed to start at
any time after their release dates r j , but they are required to
complete exactly at their deadlines d j . Such a problem can
be considered as a counterpart of our problem, where the jobs
are required to start at release dates r j , but they are allowed
to complete at any time before deadlines d j .

For the model with fixed job completion times, the
scheduling cost function F = ∑

f j
(
C j

)
can be only of

type F2 representing the job rejection cost, since for any
accepted job j , C j = d j and therefore there is no scope
for optimizing a function f j (C j ). Prior study focuses on
the model with identical parallel machines, where machine
speeds are equal and cannot be changed. Algorithms of time
complexities O(n log n) and O(n2m) are proposed by Lann
andMosheiov (2003) andHiraishi et al. (2002) for the case of
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equal-weight jobs and for the general case, respectively. The
latter result is generalized further to the case of controllable
processing times (Leyvand et al. 2010), where a job consum-
ing x j amount of resources gets a compressed processing
time given by an arbitrary decreasing function p′

j (x j ); the
associated resource consumption cost is linear,

G ′ =
n∑

j=1

β ′
j x j .

The two typical examples of p′
j are

p′
j (x j ) = p j − a j x j and p′

j (x j ) =
(

θ j
x j

)k
,

where p j and θ j are given job-related parameters, while k
is a positive constant; see Shabtay and Steiner (2007). The
secondmodel is linked to the power-awaremodel: if k = 1/2,
θ j = γ 3

j and x j = γ j s2j , then we get G = G ′ assuming a

cubic power function (compare p′
j (x j ) = γ j

s j
with (1) and

G ′ = ∑n
j=1 β ′

jγ j s2j with (4)). Notice that as observed above,
the research with fixed completion times is limited to only
one type of scheduling objective: job rejection cost.

As demonstrated in Leyvand et al. (2010), the counterpart
of problem �+ with fixed completion times can be solved
in O(mn2) time, while the counterparts of problems �1 and
�2 are NP-hard. For discrete versions of NP-hard problems,
Leyvand et al. (2010) develop algorithms of time complex-
ity O(mnm+1Xmax), where Xmax is the maximum resource
usage cost, Xmax = ∑n

j=1 βcontr
j max

{
x j

}
, assuming that

resource amounts x j are allowed to take only discrete values
from a given range.

We study the most general versions of �+, �1 and �2

with arbitrary functions f j
(
C j

)
, reflecting diverse needs

of customer-oriented quality-of-service provisioning in dis-
tributed systems. Problem �+ is solvable in O(n) time on
a single machine (Sect. 2), and in O(n2m) on m parallel
machines (Sect. 3). The �1 model of minimizing energy G
on a single machine subject to an upper bound on the total
flow time is handled in Sect. 4; we formulate it as a nonlinear
resource allocation problem with continuous variables and
explain how it can be solved in O(n log n) time. In Sect. 5,
we present a method, also of time complexity O(n log n), for
finding Pareto-optimal solutions for the �2 model, in which
the functions F and G have to be simultaneously minimized
on a single machine. Conclusions are presented in Sect. 6.

2 Problem �+ on a single machine

In this section, we consider the problem of minimizing the
sum of the performance cost function F and total energy G

on a single machine, provided that each job j ∈ N starts
immediately at time r j .

It is clear that in the single-machine case, in order to
guarantee the immediate start of job j + 1, each job j ,
1 ≤ j ≤ n − 1, must be completed no later than time r j+1.
Taking into account deadlines d̄ j , we conclude that in a fea-
sible schedule each job j ∈ N must be completed by its
imposed deadline Dj given by

Dj = min
{
d̄ j , r j+1

}
, 1 ≤ j ≤ n.

Recall that rn+1 = +∞.
Due to the immediate start condition, the actual processing

time p j of job j ∈ N should not exceed

u j = Dj − r j .

In order to minimize the sum of total cost F and total
energy G, we need to solve a problem, which in terms of the
decisions variables p j , j ∈ N , can be formulated as

Minimize Z =
n∑

j=1

f j
(
r j + p j

) +
n∑

j=1

p j g j

(
γ j

p j

)

subject to 0 < p j ≤ u j , j ∈ N .

(5)

Due to a separable structure of the objective in (5), the opti-
mal processing times can be found independently for each
job j ∈ N by solving the following n problems with a single
decision variable p:

Minimize Z j = f j
(
r j + p

) + pg j

(
γ j

p

)

subject to 0 < p ≤ u j .

(6)

For problem (6), let Z∗
j denote the smallest value of the

objective function Z j , and p∗
j be the value of p that mini-

mizes Z j . In the schedule that minimizes F + G, the jobs
are processed in the order of their numbering, and the actual
processing time of job j ∈ N is equal to p∗

j .
For most practically relevant cases, we may assume that

for each j ∈ N problem (6) can be solved in constant time.
Under this assumption, we obtain the following statement.

Theorem 1 The problem �+ of minimizing the sum of total
cost F and total energy G on a single machine is solvable
in O (n) time, provided that the jobs are numbered in accor-
dance with (2) and for each j ∈ N problem (6) can be solved
in constant time.

Belowwe present several illustrations, taking two popular
scheduling performance measures and, as agreed in Sect. 1,
a cubic speed cost function (3). Notice that for the latter

function, pg j

(
γ j
p

)
= β jγ

3
j

p2
, j ∈ N .
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For job j ∈ N , suppose that f j
(
C j

) = w jC j , i.e., F
represents the weighted sum of the completion times. Then,
problem (6) can be written as

Minimize Z j = w j p + w j r j + β jγ
3
j

p2
subject to 0 < p ≤ u j ,

so that p∗
j = min

{
γ j

(
2β j
w j

)1/3
, u j

}
.

For another illustration, assume that job j ∈ N is
given a “soft” due date d j , but no “hard” deadline d̄ j , i.e.,
Dj = r j+1, 1 ≤ j ≤ n − 1. Suppose that f j

(
C j

) =
w j max

{
C j − d j , 0

}
, i.e., F represents total weighted tar-

diness.
If for a job j ∈ N , the inequality r j+1 ≤ d j holds, then

job j will be completed before its due date and problem (6)
can be written as

Minimize
β jγ

3
j

p2
subject to 0 < p ≤ r j+1 − r j ,

so that p∗
j = min

{
γ j

(
2β j
w j

)1/3
, r j+1 − r j

}
. Otherwise, i.e.,

if r j+1 > d j , in order to solve problem (6), we need to solve
two problems:

Minimize
β jγ

3
j

p2
subject to 0 < p ≤ d j − r j ,

which corresponds to an early completion of job j so that no
tardiness occurs, and

Minimize w j (p + r j − d j ) + β jγ
3
j

p2
subject to d j − r j ≤ p ≤ r j+1 − r j ,

where job j completes after its due date. For job j ∈ N , the
optimal actual processing time p∗

j is equal to the value of
p that delivers the lowest value of the objective function in
these two problems.

In the presented examples, which can be extended to most
traditionally used objective functions, the actual processing
time p∗

j of each job is essentially written in closed form,
which justifies our assumption that each problem (6) can be
solved in constant time.

3 Problem �+ on parallel machines

In this section, we study the problem of finding an immediate
start schedule for processing the jobs of set N on m parallel

Fig. 1 Network H = (V, T )

machines M1, M2,. . . , Mm that minimizes the sum of the
total cost F and total energy G. Adapting the ideas from the
work by Hiraishi et al. (2002) and Leyvand et al. (2010), we
reduce our problem to a minimum-cost flow problem in a
special network (Fig. 1).

Introduce a bipartite network H = (V, T ). The node set
V = {s, t} ∪ NA ∪ NB consists of a source s, a sink t , two
sets NA = {A1, A2, . . . , An} and NB = {B1, B2, . . . , Bn},
where each node A j and Bj is associated with job j ∈ N .
The set T of arcs is defined as T = TA ∪ TAB ∪ TBA ∪ TB ,
where

TA = {(s, A j ) | A j ∈ NA},
TB = {(Bj , t

) | Bj ∈ NB},
TAB = {(A j , Bj ) | j ∈ N },
TBA = {(Bj , Ak) | Bj ∈ NB, Ak ∈ NA, 1 ≤ j < k ≤ n}.

Each arc
(
q, q ′) ∈ T is associated with capacity μ(q, q ′)

and cost c(q, q ′). Recall that a feasible flow x : A → R

satisfies the capacity constraint

0 ≤ x(q, q ′) ≤ μ(q, q ′), (q, q ′) ∈ T, (7)

i.e., the flow on an arc cannot be larger than its capacity, and
the flow balance constraint

∑

q: (q ′,q)∈TAB∪TBA

x(q ′, q) =
∑

q: (q,q ′)∈TAB∪TBA

x(q, q ′), (8)

for q ∈ V \ {s, t}, i.e., for each node q other than the source
and the sink the flow that enters the node must be equal to
the flow that leaves the node.

The value of a flow x is equal to the total flow on the arcs
that leave the source (or, equivalently, enter the sink):

the value of flow x =
∑

j∈N
x(s, A j ) =

∑

j∈N
x(Bj , t).

For network H , let us set all arc capacities to 1. By
appropriately defining the costs on the arcs of network H ,
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we reduce the original problem of minimizing the objec-
tive function F + G on m parallel machines to finding the
minimum-cost flow of value m in H .

Suppose a flow of value m in network H is found. Since
the network is acyclic, the arcs with a flow equal to 1 will
form m paths from s to t , and the order of arcs of set TBA in
each path defines the sequence of jobs on a machine. A path
starts with an arc

(
s, A j

)
, proceeds with pairs of arcs of the

form (A j , Bj ), (Bj , Ak), and concludes with the final pair
(A�, B�), (B�, t). An arc

(
s, A j

)
implies that job j is the first

on some machine. A pair (A j , Bj ), (Bj , Ak) corresponds
to scheduling two jobs, j and k, one after another on the
same machine, while a pair (A�, B�), (B�, t) corresponds to
assigning job � as the last job on a machine.

The arc costs reflect the selected sequence of jobs on a
machine. If a job j ∈ N has no “hard” deadline, define
d̄ j = +∞. For the final pair of the chain (A�, B�), (B�, t),
the cost of scheduling job � as the last job on a machine
is equal to the contribution of job � ∈ N to the objective
function. It can be found as the optimal value Z∗

� for the
problem (6) with j = � and u j = d̄ j . Thus, for each j ∈ N ,
we compute the value Z∗

j and assign this value as a cost of
the arc (Bj , t).

If a pair of arcs (A j , Bj ), (Bj , Ak) with r j < rk belongs
to a certain path from s to t , then job j is sequenced on
some machine immediately before job k, and therefore must
complete before time min

{
d̄ j , rk

}
. The cost associated with

the job sequence ( j, k) is equal to the smallest value Z∗
j,k of

the objective function Z j,k for the problem

Minimize Z j,k = f j
(
r j + p

) + pg j

(
γ j

p

)

subject to 0 < p ≤ min
{
d̄ j − r j , rk − r j

}
,

(9)

which can be seen as problem (6), where u j = min{d̄ j −
r j , rk − r j }. For each pair ( j, k) where 1 ≤ j < k ≤ n, we
compute the value Z∗

j,k and assign this value as a cost of the
arc (Bj , Ak).

For each arc (A j , Bj ) ∈ TAB , the cost is set equal to−M ,
where M is a large positive number. This guarantees that
every arc (A j , Bj ) ∈ TAB receives a flow of 1, so that each
job j ∈ N will be scheduled. If we ignore the costs of the
arcs (A j , Bj ) ∈ TAB , the total cost of the found flow is equal
to the optimal value of the function F + G.

Thus, if one of the paths from s to t visits the sequence
of nodes (s, A j1 , Bj1 , A j2 , Bj2 , . . . , A jy , Bjy , t), then in the
associated schedule on some machine the sequence of jobs
( j1, j2, . . . , jy) is processed. The actual processing time p∗

ji
of job ji , 1 ≤ i ≤ y − 1, is equal to the value of p that
delivers the smallest value of Z∗

ji , ji+1
, while for the last job

jy the actual processing p∗
jy
is defined by the value of p that

delivers the smallest value of Z∗
jy
.

As in Sect. 2, we may assume that determining the cost
of each arc of network H takes constant time, so that all
the costs will be found in O

(
n2

)
time. The required flow

can be found in O
(
n2m

)
by applying the successive shortest

path algorithm, similar to the Ford–Fulkerson algorithm; see
Ahuja et al. (1993).

Theorem 2 The problem �+ of minimizing the sum of total
cost F and total energy G onm parallel machines is solvable
in O

(
n2m

)
time by finding the minimum-cost flow of value

m in network H, provided that the cost of each arc of H can
be computed in constant time.

The described approach can be extended to the problem of
determining the optimal number of parallel machines to be
used. This aspect is particularly important in modern com-
puting systems, as there are overheads related to initialization
of virtual machines in Clouds, and overheads for activating
the machines which are in the sleep mode.

Suppose that using v parallel machines incurs cost σv ,
1 ≤ v ≤ m, and we are interested in minimizing F + G
plus additionally the cost σv of all used machines. This can
be done by solving the sequence of flow problems in net-
work H , trying flow values 1, then 2, etc. up to an upper
bound m on the machine number. For each tried value of v,
1 ≤ v ≤ m, the function F + G + σv is evaluated and the
best option is taken. The running time for solving the result-
ing problem remains O

(
n2m

)
, since the successive shortest

path algorithm for finding the min-cost flow of value m will
iteratively find the min-cost flows with all required interme-
diate values 1, 2, . . . ,m − 1.

Theorem 3 The problem �+ of minimizing the sum of total
cost F, total energy G and the cost σv for using v ≤ m
machines, where v is a decision variable, is solvable in
O

(
n2m

)
time, under the assumptions of Theorem 2.

A drawback of the model with the aggregated objective
function is that it schedules all arrived jobs. In the case of a
rather short interval available for processing a job, this can
only be achieved if a very high speed is applied, which may
be unacceptably expensive. It may appear to be beneficial not
to accept certain jobs and to pay an agreed rejection fee.

Suppose that the cost of rejecting job j ∈ N is δ j . Let
NA be the set of accepted jobs, while NR = N\NA be the
set of rejected jobs. If we want to minimize the sum of the
performance function for the accepted jobs, total energy used
and total rejection penalty, we need to solve the problemwith
the objective function

Z =
∑

j∈NA

f j
(
p j + r j

) +
∑

j∈NA

p j g j

(
γ j

p j

)
+

∑

j∈NR

δ j ,
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which is equivalent (up to the additive constant
∑

j∈N δ j ) to

Z ′ =
∑

j∈NA

f j
(
p j + r j

) +
∑

j∈NA

p j g j

(
γ j

p j

)
−

∑

j∈NA

δ j .

In the network model, we replace the cost on an arc(
A j , Bj

) ∈ TAB by − δ j , keeping the cost of an arc(
Bj , Ak

) ∈ TBA the same as in the basic model. Recall that
the latter cost is found by solving problem (9). Since in an
optimal solution less than m machines can be used, we add
an extra arc (s, t) of capacity m and zero cost.

For example, suppose that the minimum-cost flow of
value �, � ≤ m, in the modified network is found, and
one of the paths from s to t visits the sequence of nodes
(s, A j1 , Bj1 , A j2 , Bj2 , . . . , A jy , Bjy , t). Then, the sequence
of accepted jobs

(
j1, j2, . . . , jy

)
is processed on some

machine, and the contribution of job ji is equal to the cost of
the arc that leaves node Bji , found by solving problem (9),
plus the cost − δ ji of the arc that enters node Bji , 1 ≤ i ≤ y.
The described adjustments do not change the time complex-
ity of the approach.

Theorem 4 The problem�+ in which it is required to deter-
mine the set NR of rejected jobs to minimize the sum of total
cost F, total energy G and the cost

∑
j∈NR

δ j is solvable in

O
(
n2m

)
time, under the assumptions of Theorem 2.

4 Problem �1 on a single machine

In this section, we consider the problem of minimizing total
energy G subject to a constraint on total cost F on a sin-
gle machine. The presented solution approach is based on
Karush–Kuhn–Tucker (KKT) reasoning in relation to the
associated Lagrange function. This approach works for a
wide range of functions G and F ; however, below for sim-
plicity it is presented for the case that F = ∑

j∈N
(
C j − r j

)
,

i.e., F represents total flow time. Moreover, a natural inter-
pretation of the obtained results occurs if for each j ∈ N the
energy function g j is polynomial, strictly convex, decreasing
in p j and job-independent, e.g., satisfies (3) with β j = 1.

Due to the immediate start condition,we see thatC j−r j =
p j , and let P be a given upper bound on F = ∑

j∈N p j .
Let u j be an upper bound on the actual processing time p j ,
defined as in Sect. 2. Denote

G j
(
p j

) = p j g j

(
γ j

p j

)
, j ∈ N .

Then, the problem we study in this section can be formu-
lated as

Minimize G =
n∑

j=1

G j
(
p j

)

subject to
∑n

j=1 p j ≤ P,

0 < p j ≤ u j , j ∈ N .

(10)

Such a problem can be classified as a nonlinear resource
allocation problem with continuous decision variables; see
the survey by Patriksson (2008). Note that we can limit our
consideration to the case of P <

∑
j∈N u j ; otherwise, in an

optimal solution p j = u j for all j ∈ N .
For a vector p = (p1, p2, . . . , pn) and a non-negative

Lagrange multiplier λ, introduce the Lagrangian function

L (p, λ) =
n∑

j=1

G j
(
p j

) + λ

⎛

⎝
n∑

j=1

p j − P

⎞

⎠

and its dual

Q (λ) = − λP +
n∑

j=1

min
0<p j≤u j

{
G j

(
p j

) + λp j
}
,

see Patriksson (2008). The derivative of the Lagrangian dual
Q (λ) is equal to

Q′ (λ) = −P +
n∑

j=1

p j (λ) ,

where vector p (λ)= (p1 (λ) , p2 (λ) , . . . , pn (λ)) delivers
the unique minimum to the Lagrangian function for a given
λ.

The KKT conditions guarantee that there exists a value
λ∗ such that Q′ (λ∗) = 0. Such a multiplier λ∗ and vector
p (λ∗) deliver the minimum to the Lagrangian function, so
that vector p (λ∗) is a solution to problem (10), i.e., defines
the optimal values of the actual processing times.

Differentiating functions G j
(
p j

)
denote

λ j = −G ′
j

(
u j

)
, 1 ≤ j ≤ n.

For a polynomial energy function, e.g., G j
(
p j

) =
p j

γ 3
j

p3j
= γ 3

j

p2j
, j ∈ N , the values λ j admit a natural inter-

pretation. Indeed, λ j = −G ′
j

(
u j

) = 2γ 3
j

u3j
= 2s3j , i.e., if for

a job j the actual processing time is equal u j , then this job
is processed at speed 3

√
λ j/2.

Let π = (π (1) , π (2) , . . . , π (n)) be a permutation of
the numbers 1, 2, . . . , n such that

λπ(1) ≥ λπ(2) ≥ · · · ≥ λπ(n).
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For a k, 1 ≤ k ≤ n, in accordancewith theKKT reasoning
for the resource allocation problem (Patriksson 2008), define

pπ( j)
(
λπ(k)

) =
{
uπ( j), if 1 ≤ j ≤ k,
p0π( j), if k + 1 ≤ j ≤ n,

(11)

where the values p0π( j) for k + 1 ≤ j ≤ n are solutions of
the system of equations

G ′
π( j)

(
pπ( j)

) = − λπ(k), k + 1 ≤ j ≤ n. (12)

By applying binary search with respect to k, we find a
value k∗ such that either

n∑

j=1

p j
(
λπ(k∗)

) = P

or

n∑

j=1

p j
(
λπ(k∗)

)
> P >

n∑

j=1

p j
(
λπ(k∗+1)

)
.

In the former case, we define λ∗ = λπ(k∗) and p (λ∗) =
p

(
λπ(k∗)

)
; otherwise, solve the system of equations

G ′
π( j)

(
p∗
π( j)

)
= − λ∗, k∗ + 1 ≤ j ≤ n,

∑k∗
j=1 uπ( j) + ∑n

j=k∗+1 p
∗
π( j) = P.

(13)

Having solved the latter system, we determine λ∗ and the
values p∗

π( j), k∗ + 1 ≤ j ≤ n. The components of the
solution vector p (λ∗) are defined by

pπ( j)
(
λ∗) =

{
uπ( j), if 1 ≤ j ≤ k∗,
p∗
π( j) if k∗ + 1 ≤ j ≤ n.

The search for the value k∗ takes at most log n iterations,
and system (12) has to be solved in each iteration. Addition-
ally, system (13) has to be solved at most once. If energy
functions are cubic, we may assume that solving systems
(12) and (13) requires time that is linear with respect to the
number of decision variables. Indeed, the solution to (12) is
given by

p0π( j) = 3

√
2

λπ( j)
γπ( j) = uπ(k)

γπ(k)
× γπ( j), k+1≤ j ≤n. (14)

The solution to (13) is given by

λ∗ = 2
(∑n

j=k∗+1 γπ( j)

)3

(
P−∑k∗

j=1 uπ( j)

)3 ;

pπ( j) (λ∗) = 3
√

2
λ∗ γπ( j), k∗ + 1 ≤ j ≤ n.

Thus, we have proved the following statement.

Theorem 5 The problem �1 of minimizing total energy G
on a single machine, subject to the bounded total flow time
F ≤ P, reduces to the nonlinear resource allocation problem
and can be solved in O (n log n) time, provided that energy
functions g j are polynomial, strictly convex, decreasing in
p j and job-independent.

The following remark is useful for justifying the solu-
tion method for the bicriteria problem, presented in the next
section. Simultaneous equations ( 13) imply that in an opti-
mal solution for each job π ( j), 1 ≤ j ≤ k∗, the equality
pπ( j) (λ∗) = uπ( j) holds, i.e., each of these jobs fully uses
the interval

[
rπ( j), rπ( j) + uπ( j)

]
available for its process-

ing. The processing speed of job π ( j), 1 ≤ j ≤ k∗, is
γπ( j)
uπ( j)

= 3
√

λπ( j)/2. Besides, for k∗ + 1 ≤ j ≤ n, due to (13),

it follows that G ′
π( j)

(
p∗
π( j)

)
= − λ∗, so that all jobs π ( j),

k∗ +1 ≤ j ≤ n , are processed at the same speed 3
√

λ∗/2 and
none of these jobs fully uses the available interval.Moreover,
since λπ(1) ≥ · · · ≥ λπ(k∗) > λ∗ > λπ(k∗+1) ≥ · · · ≥ λπ(n),
we conclude that the common speed at which each job π ( j),
k∗+1 ≤ j ≤ n, is processed is less than the processing speed
of the jobs π ( j), 1 ≤ j ≤ k∗.

5 Problem �2 on a single machine

In this section, we describe an approach to solving the
bicriteria problem, in which it is required to simultane-
ously minimize total cost F and total energy G on a single
machine. Recall that a schedule S′ is called Pareto-optimal
if there exists no schedule S′′ such that F(S′′) ≤ F(S′) and
G(S′′) ≤ G(S′), where at least one of these inequalities is
strict.

Although the outlined approach can be extended to deal
with rather general cost functions, below we present it for

F = ∑n
j=1

(
C j − r j

)
and G = ∑n

j=1 p j g j

(
γ j
p j

)
=

∑n
j=1

γ 3
j

p2j
. The solution of the problem of finding the Pareto

optimum is given in the space of variables F and G by
(i) a sequence of break-points F0, F1, F2, . . . , Fν of the
variable F and (ii) an explicit formula that expresses vari-
able G as a function of variable F ∈ [

Fk, Fk+1
]
for all

k = 0, 1, . . . ., ν − 1. As we show below, ν = n.
In line with the reasoning presented in Sect. 4, compute

s j = γ j

u j
, j ∈ N .

The value s j represents the speed at which job j ∈ N has to
be processed to get the actual processing time u j . Determine
a permutationπ = (π (1) , π (2) , . . . , π (n)) of the numbers
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1, 2, . . . , n such that

sπ(1) ≥ sπ(2) ≥ · · · ≥ sπ(n).

For completeness, define sπ(0) = +∞.
Define

Uk (π) = ∑k
j=1 uπ( j), Γk (π) = ∑k

j=1 γπ( j),

Rk (π) = ∑k
j=1

γ 3
π( j)

u2
π( j)

, 1 ≤ k ≤ n.

Additionally, for completeness, define U0 (π) = Γ0 (π) =
R0 (π) = 0.

Denote Γ = ∑
j∈N γ j . Introduce F0 = 0 and

Fk = ∑k
j=1 uπ( j) + uπ(k)

γπ(k)

∑n
j=k+1 γπ( j)

= Uk (π) + Γ −Γk (π)
sπ(k)

, 1 ≤ k ≤ n.
(15)

Theorem 6 For the bicriteria problem �2 of minimizing
total flow time F and total energy G on a single machine,
the values Fk, 0 ≤ k ≤ n, defined by (15) correspond to the
break-points of the variable F, and the variable G can be
expressed as

G = Rk(π) + (Γ − Γk (π))3

(F −Uk (π))2
, F ∈ (Fk, Fk+1], (16)

for 0 ≤ k ≤ n − 1. Problem �2 is solvable in O(n log n)

time.

Proof The fact that the values Fk , 0 ≤ k ≤ ν, are indeed
break-points and that ν = n follows from the structure of an
optimal solution of the problem of minimizing total energy
G subject to an upper bound on the sum of actual processing
times; see (11) and (14) from Sect. 4. For F ∈ (Fk, Fk+1]
considering the jobs in accordance with the permutation
π , the actual processing times of the first k jobs are fixed
to their upper bounds, while the actual processing times
of the remaining jobs are obtained by running these jobs
at a common speed s, that decreases starting from sπ(k).
The next break-point Fk+1 occurs when s becomes equal
to sπ(k+1). Note that break-points Fk and Fk+1 coincide if
sπ(k) = sπ(k+1), but we count them separately so that indeed
ν = n. The last break-point Fn corresponds to the situation
that the actual processing time of job π(n) is equal to its
largest possible value uπ(n).

Consider the interval (F0, F1]. In this interval, the jobs
are run with a speed s ≥ sπ(1), so that for F ∈ (F0, F1],
F = ∑

j∈N p j = ∑
j∈N γ j/s = Γ/s. We deduce that

G = ∑n
j=1

γ 3
j

p2j
= s2

∑n
j=1 γ j = Γ 3

F2

= R0(π) + (Γ −�0(π))3

(F−U0(π))2
, F ∈ (F0, F1],

which complies with (16) for k = 0.
Now consider the next interval (F1, F2]. It follows that

F ∈ (F1, F2] can be written as

F = uπ(1) + 1

s

n∑

j=2

γπ( j) = U1 (π) + Γ − Γ1 (π)

s
,

as a function of speed s, where s decreases from sπ(1) to
sπ(2), so that

s = Γ − Γ1 (π)

F −U1 (π)

and

G = γ 3
π(1)

u2π(1)

+ s2
n∑

j=2

γπ( j) = R1(π) + (Γ − Γ1 (π))3

(F −U1 (π))2
,

as (16) for k = 1.
Consider an interval (Fk, Fk+1] for some k, 0 ≤ k ≤ n−1.

It follows that F ∈ (Fk, Fk+1] can be written as

F =
k∑

j=1

uπ( j) + 1

s

n∑

j=k+1

γπ( j) = Uk (π) + Γ − Γk (π)

s
,

where s decreases from sπ(k) to sπ(k+1), so that

s = Γ − Γk (π)

F −Uk (π)
and

G =
k∑

j=1

γ 3
π( j)

u2π( j)

+ s2
n∑

j=k+1

γ j = Rk(π) + (Γ − Γk (π))3

(F −Uk (π))2
.

Computing G for all values of k, 0 ≤ k ≤ n − 1, takes
O (n log n) time. This proves the theorem. ��

6 Conclusions

In this paper, we address several versions of the schedul-
ing model that combines a well-established feature of speed
scaling and a requirement of immediate job starting times,
that is typical for modern Cloud computing systems. Both
objectives are of the min-sum type, one depending on the
job completion times, and another one on the machine usage
cost. We show that the single-machine model with n jobs
can be solved in O(n log n) time for two single criterion ver-
sions of our problem, �+ and �1, or for the most general
bicriteria version �2. The single criterion version �+ of the
multi-machinemodel with n jobs andm machines is solvable
in O(n2m) time.

Presented results for immediate start models can be natu-
rally generalized to handle problems that combine amax-type
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scheduling objective Fmax = max j∈N
{
f j (C j )

}
and the

energy component G. For example, for f j (C j ) = C j or
f j (C j ) = C j − d j the objective Fmax becomes either the
makespanCmax or the maximum lateness Lmax, respectively.

– For problem �max
1 (minimizing energy G subject to an

upper bound F on the value of Fmax), define deadlines
induced by a given value of F , eliminate Fmax from con-
sideration by setting f j (C j ) = 0, j ∈ N , and solve
problem �+ to minimize G + 0 using the techniques
from Sects. 2, 3.

– As far as problem �max+ is concerned, function Fmax is
convex in p j for the most popular min-max schedul-
ing objectives, such as Fmax ∈ {Cmax, Lmax}. Since the
energy component G is also convex in p j , it follows that
the objective Fmax + G is convex and its minimum can
be found by a numerical method of convex optimization.

To summarize, our study can be considered as the first
attempt to explore fundamental properties of the new model
with the immediate start condition. Future researchmay elab-
orate further the applied aspects of our study: the basic system
model can be enhanced to address a range of issues typical
formodernCloud computing systems, such as heterogeneous
physical machines having different speed characteristics and
energy usage functions, introduction of virtualmachineswith
possible allocation of several virtual machines to one phys-
ical machine, the possibility of migrating virtual machines
and associated tasks. Our study may also serve as a basis for
the development of the online algorithms for problems with
the immediate start condition. Notice that the online versions
of the traditional models of power-aware scheduling, with-
out immediate start, are proposed by Albers and Fujiwara
(2007), Bansal et al. (2010), Chan et al. (2013), Lam et al.
(2008, 2012).
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