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Abstract We consider the problem of packing rectangles
into bins that are unit squares, where the goal is to min-
imize the number of bins used. All rectangles have to be
packed non-overlapping and orthogonal, i.e., axis-parallel.
We present an algorithm with an absolute worst-case ratio of
2 for the case where the rectangles can be rotated by 90 de-
grees. This is optimal provided P # N P. For the case where
rotation is not allowed, we prove an approximation ratio of 3
for the algorithm HYBRID FIRST FIT which was introduced
by Chung et al. (STAM J. Algebr. Discrete Methods 3(1):66—
76, 1982) and whose running time is slightly better than the
running time of Zhang’s previously known 3-approximation
algorithm (Zhang in Oper. Res. Lett. 33(2):121-126, 2005).

Keywords Bin packing - Rectangle packing -
Approximation algorithm - Absolute worst-case ratio
1 Introduction

In the rectangle packing problem, a list I = {ry,...,r,} of
rectangles of width w; < 1 and height h; <1 is given. An
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unlimited supply of unit sized bins is available to pack all
items from [ such that no two items overlap and all items
are packed axis-parallel into the bins. The goal is to mini-
mize the number of bins used. The problem is also known
as two-dimensional orthogonal bin packing and has many
applications, for instance in stock-cutting or scheduling on
partitionable resources. In many applications, rotations are
not allowed because of the pattern of the cloth or the grain
of the wood. However, in other applications, it might be pos-
sible to rotate the items.

Most of the previous work on rectangle packing has fo-
cused on the asymptotic approximation ratio, i.e., the long
term behavior of the algorithm, and on packing without ro-
tations. Chung et al. (1982) proposed the algorithm HYBRID
FIRST FIT and proved that its asymptotic approximation ra-
tio is at most 2.125. Caprara was the first to present an al-
gorithm with an asymptotic approximation ratio less than 2
for rectangle packing without rotations. Indeed, he consid-
ered 2-stage packing, in which the items must first be packed
into shelves that are then packed into bins, and showed that
the asymptotic worst case ratio between rectangle packing
and 2-stage packing is T = 1.691.... Therefore, the as-
ymptotic FPTAS for 2-stage packing from Caprara et al.
(2005) achieves an approximation guarantee arbitrary close
10 To.

Recently, Bansal et al. (2006a) presented a general frame-
work to improve subset oblivious algorithms and obtained
asymptotic approximation guarantees arbitrarily close to
1.525.. . for packing with or without rotations. These are the
currently best-known approximation ratios for these prob-
lems. For packing squares into square bins, Bansal et al.
(2006b) gave an asymptotic P7ZAS. On the other hand, the
same paper showed the AP AX-hardness of rectangle pack-
ing without rotations, thus no asymptotic P7AS exists un-
less P = N'P. Chlebik and Chlebikov4 (2006) were the first
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to give explicit lower bounds of 1 +1/3792 and 1 4 1/2196
on the asymptotic approximability of rectangle packing with
and without rotations, respectively.

In the current paper, we consider the absolute worst-case
ratio. Attaining a good absolute worst-case ratio is more dif-
ficult than attaining a good asymptotic worst-case ratio, be-
cause in the second case an algorithm is allowed to waste
a constant number of bins, which allows, e.g., the classi-
fication of items followed by a packing where each class
is packed separately. Zhang (2005) presented an approxi-
mation algorithm with an absolute approximation ratio of 3
for the problem without rotations. For the special case of
packing squares, van Stee (2004) showed that an absolute
2-approximation is possible.

A related two-dimensional packing problem is the strip
packing problem, where the items have to be packed into a
strip of unit basis and unlimited height such that the height
is minimized. Steinberg (1997) and Schiermeyer (1994) pre-
sented absolute 2-approximation algorithms for strip pack-
ing without rotations. Kenyon and Rémila (2000) and Jansen
and van Stee (2005) gave asymptotic FP7ASs for the prob-
lem without rotations and with rotations, respectively. The
additive constant of these algorithms was recently improved
from O(1/€2) to 1 by Jansen and Solis-Oba (2007). Thus,
most versions of the strip packing problem are now closed.

Our contribution We present an approximation algorithm
for rectangle packing with rotations with an absolute ap-
proximation ratio of 2. As Leung et al. (1990) showed that it
is strongly A/P-complete to decide whether a set of squares
can be packed into a given square, this is best possible un-
less P = N'P. The algorithm is based on a separation of
large and small items according to their area. It is very
time-efficient for inputs consisting of small items but uses
a less efficient subroutine to deal with large items. Our main
lemma on the packability of certain sets of small items is of
independent interest.

Furthermore, we prove Zhang’s conjecture (Zhang 2005)
on the absolute approximation ratio of the HYBRID FIRST
F1T (HFF) algorithm by showing that this ratio is 3.

Organization In Sect. 2, we present our absolute 2-approx-
imation algorithm for bin packing with rotations. In Sect. 3,
we analyze the algorithm HFF and prove that it has absolute
approximation guarantee 3.

2 An absolute 2-approximation algorithm for bin
packing with rotations
We start our presentation in Sect. 2.1 with the introduction

of notations and two algorithms for strip packing that we
will use as subroutines for our rectangle packing algorithm:
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the algorithm of Steinberg and NEXT FIT DECREASING
HEIGHT. We show that Steinberg’s algorithm (Steinberg
1997) yields an absolute 2-approximation for strip packing
with rotations and an absolute 4-approximation for rectangle
packing with rotations. After that, we show in Sect. 2.2 that
a first approach based on an algorithm of Jansen and Solis-
Oba (2007) does not lead to the desired approximation ratio.
Our main result is presented in Sect. 2.3. The algorithm is
based on our main lemma that we prove in Sect. 2.4.

2.1 Steinberg’s algorithm and next fit decreasing height

We assume that all items are rotated such that w; > h;. De-
note the total area of a given set T of items by A(T) =
ZieT wih; and let wmax = max,er w; and hmax =
max,,er h;. Steinberg (1997) showed the following theo-
rem.

Theorem 1 (Steinberg’s algorithm, Steinberg 1997) If the
following inequalities hold,

Wmax = 4, hmax < b,
2A(T) <ab — Qwmax — @)+ (2hmax — b)+

where x4 = max(x, 0), then it is possible to pack all items
from T into R = (a, b) in time O((n logzn)/loglogn).

In our algorithm, we will repeatedly use the following
direct corollary of this theorem.

Corollary 1 If wmax < a/2, hmax < b and A(T) < ab/2,
then it is possible to pack all items from T into R = (a, b) in
time O((nlog*n)/loglogn).

The following theorem was already mentioned in (Jansen
and Solis-Oba 2007).

Theorem 2 Steinberg’s algorithm gives an absolute 2-ap-
proximation for strip packing with rotations.

Proof Rotate all items r; € I such that w; > h; and let
b := max(2hmax, 2.A(1)). Use Steinberg’s algorithm to pack
I into the rectangle (1, b). This is possible since 24(1) <b
and (2hmax — b)+ = 0. The claim on the approximation ratio
follows from OPT > max(hyax, A(1)) = b/2. O

It is well-known that a strip packing algorithm with an
approximation ratio of § directly yields a rectangle packing
algorithm with an approximation ratio of 2. To see this, cut
the strip packing of height % into slices of height 1 so as to
get [h] bins of the required size. The rectangles that are split
between two bins can be packed into |4] additional bins.
The strip packing gives a lower bound for rectangle pack-
ing. Thus, if 7 < 8 OPTgyjp, then [h] + [A] < 25 OPTyy.
Accordingly, we get the following theorem.
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Theorem 3 Steinberg’s algorithm yields an absolute 4-
approximation algorithm for rectangle packing with rota-
tions.

Jansen and Zhang (2007) showed a corollary of Stein-
berg’s theorem, which reads as follows if w; > h; for all
items.

Corollary 2 (Jansen and Zhang 2007) If the total area of a
set T of items is at most 1/2 and there is at most one item
of height h; > 1/2, then the items of T can be packed into a
bin of unit size in time O((n log2 n)/loglogn).

The NEXT FIT DECREASING HEIGHT (NFDH) algo-
rithm was introduced for squares by Meir and Moser (1968)
and generalized to rectangles by Coffman et al. (1980). It is
given as follows. Sort the items by non-increasing order of
height. Pack the items one by one into layers. The height of a
layer is defined by its first item, further items are added left-
aligned until an item does not fit. In this case this item opens
a new layer. The algorithm stops if it runs out of items or a
new layer does not fit into the designated area. The running
time of the algorithm is O(n logn). The following lemma is
an easy generalization of the result from Meir and Moser.

Lemma 1 [fa given set T of items is packed into a rectangle
R = (a,b) by NFDH, then either a total area of at least
(@ — Wmax) (b — hmax) s packed or the algorithm runs out of
items, i.e., all items are packed.

2.2 First approach

We started our investigation on the problem with rotations
with an algorithm of Jansen and Solis-Oba (2007) that
finds a packing of profit (1 — ) OPT(/) into a bin of size
(1,14 6), where OPT(/) denotes the optimum for packing
into a unit bin. Using the area of the items as their profit
gives an algorithm that packs almost everything into an
§-augmented bin. The algorithm can easily be generalized
to a constant number of bins.

An immediate idea to transform such a packing to a pack-
ing into 2 OPT(7) bins is to remove all items that intersect
a strip of height § at the top or bottom of each bin. These
items and the items that were not packed by the algorithm
would have to be packed separately. In Fig. 1, we present an
instance where it is not immediately clear how the removed
items can be packed separately. Let A¢op be the set of items
that intersect y = 1, Apottom be the set of items that inter-
sect y =4, and R be the set of remaining items. As shown
in Fig. 1, the sets Ayop and Apotom can both have total area
arbitrary close to or even larger than 1/2 (as both sets are
not necessarily disjoint). Thus, adding the additional items
R and packing everything with Steinberg’s algorithm (see

1406

AtOP Abottom R

i — e __—y=296

Fig. 1 Packing of Jansen and Solis-Oba’s algorithm where it is not
immediately clear how to derive a packing into 2 unit bins. The blocks
in the packing might consist of several items and might contain small
free spaces or items that are not in Ay, or Apotom- Furthermore, there
might be items (printed in dark grey) that are in Ap and in Apottom

Theorem 1) is not necessarily possible. Furthermore, it is
not obvious how to rearrange Ap Or Apotom Such that there
is suitable free space to pack R and the items that are above
Aqop or below Apottom-

2.3 Our algorithm: overview

As the asymptotic approximation ratio of the algorithm from
Bansal et al. (2006a) is less than 2, there exists a constant k
such that for any instance with optimal value larger than k
the asymptotic algorithm gives a solution of value at most
20PT(I). We address the problem of approximating rec-
tangle packing with rotations within an absolute factor of
2, provided that the optimal value of the given instance is
less than k. Combined with the algorithm from Bansal et
al. (2006a) we get an overall algorithm with an absolute ap-
proximation ratio of 2.

We begin by applying the asymptotic algorithm from
Bansal et al. (2006a). Since we do not know whether
OPT(I) > k, we apply a second algorithm that is described
in the remainder of this section. If OPT(/) > k, then this
algorithm might fail as the asymptotic algorithm outputs a
solution of value k' <2 OPT(I).

Let ¢ := 1/68. We separate the given input according to
the area of the items, so we get a set of large items L =
{ri € I | wih; > €} and a set of small items S = {r; € I |
wih; < e} If A(L) > k then OPT(/) > k and the algorithm
halts. Otherwise, we can enumerate all possible packings of
the large items since the number of large items in each bin
is bounded by 1/¢ and their total area is at most k. Take an
arbitrary packing of the large items into a minimum number
£ < k of bins. If no such packing exists then the asymptotic
algorithm from Bansal et al. (2006a) finds a suitable solution
and our algorithm halts.

If there are bins that contain items with a total area less
than 1/2 — ¢, we greedily add small items such that the total
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area of items assigned to each of these bins is in (1/2 — ¢,
1/2]. We use the method of Jansen and Zhang (2007) to
repack these bins including the newly assigned small items.
This is possible by Corollary 2. There is at most one item of
height h; > 1/2 since otherwise the total area exceeds 1/2,
because w; > h;. If we ran out of items in this step, we found
an optimal solution. Assume that there are still small items
left and each bin used so far contains items of a total area of
at least 1/2 — ¢. The following crucial lemma shows that we
can pack the remaining small items well enough to achieve
an absolute approximation ratio of 2.

Lemma2 Let 0 <e <1/68 and let T be a set of items that
all have area at most € such that for all r € T the total area
of T \ {r} is less than 1/2 4 ¢. We can find a packing of T
into a unit bin in time O((n log2 n)/loglogn).

The lemma is proved in the next section. To apply
Lemma 2 we consider the following partition of the remain-
ing items.

Letry, ..., ry be the list of remaining small items, sorted
by non-increasing order of size. Partition these small items
into sets S| = {ry,....,7-1}, 52 = {re, ..oy Fiy—1}, - -+,
Ss ={ry;s... 11 —1} with 1 = 1 and #;,41 =m + 1 such
that

1 1
A(Sj\{rzj+1—l})<§+8 and A(Sj)3§+g

for j =1,...,5s — 1. Obviously, each set S; satisfies the
precondition of Lemma 2 and can therefore be packed into
a single bin. Only S; might have a total area of less than
1/2 + ¢. The overall algorithm is given in Algorithm 1.

Note that if no packing of L into at most k bins exists,
then OPT(/) > k and thus k' < 2OPT(I) by definition of k.

2.4 Packing sets of small items

In this section, we prove Lemma 2. We will use the follow-
ing partition of a set T of items of area at most ¢ in the
remainder of this section. Let

Ty :={ri €T |2/3 <w},
Tyi=1{r €T |1/2<w; <2/3),
TI3:={rieT|1/3<w; <1/2},
Ty=1{reT |w <1/3).

Since w;h; < e and w; > h;, the heights of the items in each
set are bounded as follows.

h; <3/2-¢ forr; €Ty,
hi<2-¢ forr; € T,
hi<3-¢ forr; € T3,
hi <./¢ for r; € Ty.

It turns out that packing the items in 73 involves the most
difficulties. We will therefore consider different cases for
packing items in 7>, according to the total height of these
items. For all the cases, we need to pack 77 U T3 U Ty after-
wards, using the following lemma.

Lemma 3 Let R be a rectangle of size (1, H) and let T be
a set of items that all have area at most ¢ such that T, = .

Algorithm 1 Approximate rectangle packing with rotations

apply the asymptotic algorithm from (Bansal et al. 2006a) to derive a packing P’ into k’ bins

let e :=1/68

partition / into L ={r; € I | w;h; > e} and S={r; € I | wih; < ¢}

if A(L) > k or L cannot be packed in k or less bins then

else

find a packing of L into £ < k bins, where £ is minimal.
while there exists a bin containing items of total area < 1/2 — ¢ do

1:
2:
3:
4:
5: return P’
6:
7
8
9

: assign small items to this bin until the total area exceeds 1/2 — ¢
10: use Steinberg’s algorithm (Corollary 2) to repack the bin
11: order the remaining small items by non-increasing size

12: greedily partition the remaining items into sets Si, ..

., S such that

1 1 .
A(Sj\{rt./.+l_1})<§+8 and A(Sj)2§+£ forj=1,...,5s—1

13: use the method described in the proof of Lemma 2 to pack each set S; into a bin

14: let P be the resulting packing into £ + s bins

15: return the packing from P, P’ that uses the least amount of bins
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H 1 1 1
| | |
H Ty ~NFDH
l 1 1 D
| | |
| | |
H, T5 | 1 T3
l : l
| L 1
I I I
H, T : : :
| | |
T 1 2
3 2 3

Fig. 2 Packing the sets 71, 73 and 74 into a bin of width 1 and
height H. The difference in height between the stacks of 73 is denoted
by D

We can find a packing of a selection T' C T into R in time
O(nlogn) suchthat T' =T or

AT = %(H —e) —e.

Proof See Fig. 2 for an illustration of the following packing.
Stack the items of 7 left-justified into the lower left corner
of R. Stop if there is not sufficient space to accommodate
the next item. In this case, a total area of at least A(Tl’ ) >
2/3(H —3/2-¢) is packed since w; >2/3and h; <3/2-¢
for items in 7T7.

Thus, assume all items from 77 are packed. Denote the
height of the stack by H;. Obviously, A(T;) >2/3 - H].

Create two stacks of items from 73 next to each other
directly above the stack for 77 by repeatedly assigning each
item to the lower stack. Stop if an item does not fit into the
rectangle. In this case, both stacks have a height of at least
H — H; — 3¢ as otherwise a further item could be packed.
Therefore, A(T} U T3) > 2/3(H —3¢) >2/3 - (H — \/¢)
since 3¢ < \/e.

Otherwise, denote the height of the higher stack by H3
and the height difference by D. The total area of T3 is at
least A(T3) >2/3(H3—D)+1/3-D >2/3-H3—1/3-D >
2/3- H3 — ¢ since w; > 1/3 and h; <3¢ forr; € T3.

Finally, let Hy := H — H; — H3 and add the items of
T4 by NFDH into the remaining rectangle of size (1, Hy).
Lemma 1 yields that either all items are packed, i.e., T' =T,
or items 7, C Ty of total area at least A(T,) > 2/3(Hy —
J/€) are packed. Thus, the total area of the packed items
Tis A(T")>2/3-H +2/3-Hs—¢e+2/3(Hy — \J/¢) >

2/3(H — \/¢) —&.
The running time is dominated by the application of
NFDH. O

If T4 = @ then the last packing step is obsolete and the
analysis above yields the following corollary.

Corollary 3 Let R be a rectangle of size (1, H) and let T
be a set of items that all have area at most ¢ such that T, U
T4 = @. We can find a packing of a selection T' C T into R
in time O(n) such that T' =T or

AT > %H —2e.

The above packings are very efficient if there are no
items of width within 1/2 and 2/3 as they essentially yield
a width guarantee of 2/3 for the whole height, except for
some wasted height that is suitably bounded. In order to
pack items of 7>, we have to consider both possible orienta-
tions to achieve a total area of more than 1/2 in a packing.
We are now ready to prove Lemma 2 that we already pre-
sented in the previous section. It shows how sets of items
including items of width within 1/2 and 2/3 are processed.

Proof of Lemma 2 Let H> be the total height of items in 7>.
We present three methods for packing T depending on H>.
For each method we give a lower bound on the total area of
items that are packed. Afterwards we show that there cannot
be any item that remains unpacked. Throughout the proof,
we assume that we do not run out of items while packing
the items in 7. This will eventually lead to a contradiction
in all three cases. Let A be the area of the packed items for
which we want to derive lower bounds.

Case 1: H, < 1/3. Stack the items of T left-justified into
the lower left corner of the bin. Use Lemma 3 to pack 77 U
T3 U Ty into the rectangle (1, 1 — H>) above the stack—see
Fig. 3. We get an overall packed area of

H. 2
Az T+ S0~ Hy—e) —e

2 H, 2
376 T 3V®

11 2 1
zﬁ—e—gﬁ (sinceHzgg)

Case 2: H, € (1/3,2/3]. Stack the items of T, left-
justified into the lower left corner of the bin. Let B =
(1/3, H») be the free space to the right of the stack. We are
going to pack items from X = {r; € T3 U T4 | w; < H>} into
B. Take an item from X and add it to an initially empty set
X’ as long as X is non-empty and A(X’) < H,/6 —¢. Rotate
the items in X’ and use Steinberg’s algorithm (Corollary 1)
to pack them into B. This is possible since the area of B
is Hy/3, A(X") < Hy/6, and h; < Hy and w; < /e <1/6
for r; € X’ (w; and h; are the rotated lengths of r;). Use
Lemma 3 to pack (T} U T3 U Ty) \ X’ into the rectangle
(1,1 — Hy) above the stack—see Fig. 3. We distinguish two
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Fig. 3 Packing in Case 1
(H, < 1/3) and Case 2
(1/3 < Hy <2/3)

(T1UT3UT4)\XI

N 2 2
3 3
TLUT3UT, Hy |
N e f E 1
" 3 T X’ 3
2 LL\—_ 2
T
empt
| e .
cases. If A(X") > H/6 — ¢, then
: HX’ . (MUT3UTH\X . T, U T; U Ty
A> 242 o4 S —Hy— o) —¢ N
2 6 3 el B ——— - - ———— 2
2 2 H WA ’
== —2c— =./e. Ve r’
3 3 W / _’_I—’_
Otherwise, A(X") < H,/6 — ¢, and since no further item
was added to X’ we have X' = X. As Hy > 1/3, wehave | _____________ IR 1
3
T4 € X and we can apply Corollary 3 to get a total area of bl be
a2 20 )2
— 4+ -(1- —2¢
) 3 2
2 H
_2_ M, p
3 6 3
5 ) 2 - — / . /
> - —2¢ since Hy < — ). Fig. 4 Packing in Case 3 (2/3 < Hy <1 + 4¢). Item r’ of height &
9 3 is depicted larger than ¢ < 1/68 for the sake of visibility. The diagonal

Case 3: Hy € (2/3, 1 + 4¢]. See Fig. 4 for an illustration
of the following packing and the notations. Order the items
of T in non-increasing order of width. Stack the items left-
justified into the lower left corner of the bin while the current
height H is less or equal to the width of the last item that was
packed. In other words, the top right corner of the last item
of this stack is above the line from (1/2, 1/2) to (2/3,2/3),
whereas the top right corners of all other items in the stack
are below this line. Denote the height of the stack by H and
the set of items that is packed into this stack by X;. Let
r’ = (w’, h’) be the last item on the stack. Clearly, w; < H
for all items r; € 75 \ X1.

Consider the free space B = (1/3, H) to the right of the
stack. Rotate the items in 7 \ X and stack them horizon-
tally, bottom-aligned into B. Stop if an item does not fit.
We denote the items that are packed into B by X;. Rotate
the remaining items 73 \ (X1 U X») back into their original
orientation and stack them on top of the first stack X;. Let
this set of items be X3 and let the total height of the stack

@ Springer

line ¢ shows the threshold at which the stack X is discontinued

X1 UXj3 be H. Use Lemma 3 to pack T1 U T3 U Ty into the
rectangle (1,1 — ﬁ) above the stack X U X3.

Since w; > H — I’ for r; € X1 \ {r'}, we have A(X) >
(H — W)? + KW' /2. Again we distinguish two cases for
the analysis. If X3 = @ (or, equivalently, H = H), then
A(X») > (H, — H)/2, and therefore

X X, T\UT3UTy
r— — e e
W Hy—H 2
Az (H-W)Y+ 5+ (- H— o) —e
2 2 3
o1 h 2
H-Wl?+ - 420 -H—Je)—e=:A
> ( Y+ T3 53¢ Ve)—e 1

(s 2 5)
since Hp > 5 .

To find a lower bound for the total packed area we consider
the partial derivative of A to i/, which is aa% =2h"—-2H +
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1/2. Since 21" —2H +1/2 <0 for b’ <2¢ and H > 1/2,
the total packed area is minimized for the maximal value
h' = 2¢ for any H in the domain. After inserting this value
for i’ we get Ay = (h — 26)2 +e+1/3—h/2+2/3(1 —
h—\/¢) — ¢ and % =2H —7/6 — 4¢. Thus, the minimum
is acquired for H =7/12 + 2¢. We get

A > l 2+ +l ! +2 > 2 — A€
'=\12) "fT3 Tt s\ Ve e
95 7 2
=— ——cg—=./¢
144 3°73

Otherwise, X3 # (} (or, equivalently, H>H ) and thus
A(X2) > 1/2(1/3 — 2¢) as the stack X, leaves at most a
width of 2¢ of B unpacked. Furthermore, H <2/3 + 6¢
since Hy < 1+ 4¢ and a width of at least 1/3 — 2¢ is packed
into B. Since A(X3) > (H — H)/2 and H <2/3 + 6¢, we
get

X1 X

Wo1/1
A>H-WY+~+-(>-2
> ( )+2+2<3 8)

X3 TIUT3UTy
—_—
H—-H
2

o h 11
>(H =K+ 4|52

1 H
___8__
9 2

2 .
+ +3 (1 =H— o) —e

2
+§(l—ﬁ)—8:=A2.

With a similar analysis as before we see that A; is mini-
mal for H =1/2 and h’ = 2¢. We get

A>122+ Ll 1
2_2 e e ; e 9 e
12

—Z+§(1—\/g)—8

13 2
2§+482—48—§\/§.

If Hy > 14 4e then A(T>) > 1/2- Hy > 1/2 + 2¢, which is
a contradiction to the assumption of the lemma. Therefore,
the three cases cover all possibilities.

It is easy to verify that for 0 < ¢ < 1/68 the following
inequalities hold:

11/18 —e —2/3/e>1/2 +¢,

2/3 -2 —2/3/e>1/2+¢,
5/9—26>1/2+¢,
95/144 — /3¢ —2/3 > 1/2 + ¢,

13/18 +4e*> —4e —2/3/e > 1/2 +¢.

Now let us assume that we do not run out of items while
packing a set T with the appropriate method above. Then
the packed area is at least 1/2 + ¢ as the inequalities above
show. The contradiction follows from the precondition that
removing an arbitrary item from 7 yields a remaining total
area of less than 1/2 4 ¢. Thus, all items are packed.

The running time is dominated by the application of
Steinberg’s algorithm (Steinberg 1997). (I

2.5 The approximation ratio

Theorem 4 Our algorithm is an approximation algorithm
for rectangle packing with rotations with an absolute worst
case ratio of 2.

Proof Recall that we denote the number of bins used for
an optimal packing of the large items by £. Obviously,
£ < OPT(I). Let s be the number of bins used for pack-
ing only small items. If s < £, then the total number of bins
is€+s<2¢ <20PT(). If s > £, then at least one bin is
used for small items and thus all bins for large items contain
items with a total area of at least 1/2 — ¢. According to the
partition of the remaining small items, all but the last bin
for the small items contain items with a total area of at least
1/2 4+ ¢. Let f > 0 be the area of the items contained in the
last bin. Then

OPT(I)zA(I)z£~<%—5>+(s—1)-<%+8>+f
£—1 !
>(S+ — )E

Thus, s + € <20PT(/) + 1, and we get s + £ <20PT(J),
which proves the theorem. O

3 The approximation ratio of hybrid first fit is 3

In this section, we prove Zhang’s conjecture (Zhang 2005)
on the absolute approximation ratio of the HYBRID FIRST
F1T (HFF) algorithm by showing that this ratio is 3.

We start our presentation in Sect. 3.1 with a description
of the HFF algorithm (Chung et al. 1982). A lower bound on
the approximation ratio is presented in Sect. 3.2. Note that
the instance that we give in this section also holds as a lower
bound for Zhang’s algorithm (Zhang 2005) and for HYBRID
FIRST FIT BY WIDTH that we describe in Sect. 3.1. Thus,
it does not suffice to combine all three algorithms in order
to derive a better approximation ratio. Finally, we give the
proof of the upper bound in Sect. 3.3.
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3.1 The hybrid first fit algorithm

HFF is based on the one-dimensional FIRST FIT DECREAS-
ING (FFD) bin packing algorithm and on the FIRST FIT
DECREASING HEIGHT (FFDH) strip packing algorithm.
The latter algorithm is a layer-based strip packing algorithm
similar to NFDH that we introduced in Sect. 2.1. It was con-
sidered for the first time by Coffman et al. (1980) and is
given as follows. Sort the items by non-increasing order of
height. Pack the items one by one into layers. The height of
a layer is defined by its first item, further items are added
left-aligned into the lowest layer with sufficient space. If an
item does not fit into any layer opened so far this item opens
anew layer. HFF now considers the layers of a FFDH pack-
ing one after the other and packs each layer into the first bin
with sufficient space. Since the layers are ordered by non-
increasing height, this corresponds to a one-dimensional
FFD packing. See Fig. 5 for an illustration of HFF.

A simple variant of HFF, that we denote as HYBRID
FIRST FIT BY WIDTH packs the strip in the direction of
the width. This means that the items are ordered by non-
increasing width for the strip packing and FFD is later ap-

Fig. 5 The HYBRID FIRST FIT
algorithm. The layers of a strip
packing with FFDH are packed
into bins with FFD. Items that
are placed into a layer after a
new layer was opened are
shown in light grey

plied on the width of the resulting layers. This algorithm can
also be seen as HFF applied on the instance J = {(h;, w;) |
(wj, h;) € 1}, where each item of [ is rotated by 90 degrees.
Afterwards the packing is rotated back.

Using an appropriate data structure from (Johnson 1973)
the running time of HFF is O(nlogn). This is slightly
faster than the running time of Zhang’s algorithm (Zhang
2005), which is dominated by Steinbergs’ algorithm (Stein-
berg 1997) and thus runs in O((n log2 n)/loglogn)—see
Theorem 1.

We denote the layers from FFDH by Li,..., L, with
heights H| > Hp > --- > H,, and total widths Wy, ..., W,,.
Note that there is no particular order on the widths of the
layers. For the sake of simplicity, we refer to both the layer
and the set of items in the layer by L;. We again denote the
total area of a set I of items by A(I) =}, ; wih;.

3.2 Lower bound
Let 0 < 6 < 1/34, such that 1/§ is integer, and consider the

instance I = A1 U A U B; U B, U C1 U C; consisting of the
following sets (see Table 1).
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In Fig. 6, we show that OPT(/) = 1 and we give the
FFDH packing of 1. We assume that the item in A, comes
before the items in B; in the non-increasing order of height.
Then FFD packs the item in A; together with the first layer
into a bin. Since § < ﬁ, the total height of all remaining
layers is

Cy B
H—1+18+T68—7 178 1
6 3 8 6

Table 1 A lower bound instance for HFF

Thus, 3 bins are needed to pack the resulting layers with
FFD.

Note that the instance that we describe does not change
under rotation by 90 degrees. Thus HYBRID FIRST FIT BY
WIDTH outputs the same packing. We refer the reader to
Zhang (2005) to verify that Zhang’s algorithm uses 3 bins
as well since the total area of all high and small items is
AAUBIUCUCy) > 1/2for s > 0.

3.3 Upper bound

Before we start with the main proof of the upper bound, we
introduce the following important lemma.

Set High items
Lemma4 Let L;, L; be two layers with i < j. Then
Aq 1 item of size (§, 1 — §)
B % — 6 items of size (8, % +6) A(L; U LJ) - H] + Wi+ W] Dhmin.
C 3 item of size (28, § + 14) where hyin = ming er,uL; hi is the smallest height of the
items in L; UL;.
Set Wide items
See Fig. 7 for an illustration of the following proof.
Ap 1 item of size (1 — 8, §)
B L —6items of size (J +6,8)  Proof First consider all items that are packed up to and in-
C 3items of size (1 + 15, 2) cluding the firstitem in layer L ; (dark items in Fig. 7). These
Fig. 6 A lower bound instance
for HFF. The left side shows o |
that OPT(/) = 1, whereas the
right side shows the FFDH
packing. FFD packs A» By
together with the first layer into
a bin. The remaining layers have
total height greater than 1 and
thus do not fit into a second bin
By
Az
Cy
; 1 [ G ] I RREEEEEEEEEEEE
B B
7 —
1/2 - - i e i el kol sheletuetutulutulebutututulutulat sl
e 3
By HE By B B
Al ‘; e
A : Af) ﬂ
1,"2

j
1/2
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Fig.7 Deriving a bound for the
volume in two layers. All items
that are packed up to and
including the first item in L ; are
dark and have a height of at least
H;. The total width of these
items is greater than 1. All other
items have height at least /iy

items all have height at least H;. Let W' be the total width of
these items. We have W’ > 1 since the first item of layer L ;
did not fit into layer L;. Thus, we get a total area of at least
W’'H; for these items. Since all items in both layers have
height at least /i, the remaining width of W; + W; — W’
makes up an additional area of at least (W; + W; — W) hmin.
Thus, the total area is

AL;ULj) =W Hj+ (Wi +W; — W)hpin
> Hj + W + Wj - 1)hmin-

Note that W; + W; — 1 > 0 since otherwise the first item
of L; fitsinto L;. O

With the previous lemma we are able to derive bounds
for the total area of the items that are packed. In addition to
the most intuitive lower bound

OPT(I) = A(l), (1)

we use the following two bounds. Let S be the set of layers
that contain exactly one item. Since it is not possible to pack
two of these items next to each other (otherwise, it would
have been done by the algorithm) the total height of these
layers form the lower bound

OPT(I)> > H;. )

L;eS

Finally, the set T = {r; = (w;, h;) | h;i > 1/2} of items of
height greater than 1/2 provides the last lower bound

OPT(I) > Z w; 3)

rieT

that we use.

Assume for the sake of contradiction that HFF uses more
than 3 OPT bins. Let Ly be the first layer from FFDH that
is packed into bin number 3 OPT + 1 and let r* = (w*, h™*)
be the first item in Lj. Discard all items that are consid-
ered after r* by FFDH. Note that the packing that re-
mains is exactly the packing that HFF produces on I’ =

@ Springer

> hmin

I\ Uizk L;) U {r*}, i.e., the reduced set of items. There-
fore, we argue about this reduced instance in the remainder
of this section.

Lemma 5 We have h* < 1/3.

Proof Suppose that h* > 1/3. Then all bins contain either
one or two layers and are filled up to a height of more than
1 — h*. Layers that are alone in a bin have height greater
than 1 — A*. Thus, if Lemma 4 is applied on two such layers,
say L;, L; (i < j), we get a combined area of at least H; >
1 — h*. Applied on both layers of a bin that contains two
layers we get a combined area of at least 2* ,which is a lower
bound for the height of the smaller layer in the bin.

Let m be the number of bins that contain exactly one
layer (except the bin that contains r*). These are layers
Ly,...,L,. Then the other 30OPT — m bins contain two
layers each. Note that H| > --- > H,, > 1/2 as otherwise
a second layer would fit into the bin. Let W be the width
of items of height > 1/2 in layer L;. Thus, with the lower
bound (3) we get

m Lm/2]

OPT() = W/ = 3 Wy, +Wh) > EJ (4)
i=1

i=1
since any two layers have cumulative width W/ + WJ/. > 1.

If m is even, we get

bins with one layer
p—

A > %(1 —1*) +(30PT(I") — m)h*

bins with two layers

3

3
= — 30PT(') — =m |h*
> +( " 2m>

> 2 L opT() — % using #* > 1/3 and (4)

| 3

= OPT(I).

For odd values of m, say m = 2n+ 1, we can apply Lemma 4
on the first 2n layers as before and on layer L,, together with
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layer Ly consisting of r*. This given another area of »* and  and thus
we get L(k=1)/2] B
bins with one ]ayer bins with two layers Z HZi Z from (7)
i=1
A" =n(1 —h*)+h*+ (3, OPT(I") — 2n + 1))h* BOPT(I') — 1)(1 — h*)
=n+ (30PT(I') — 3n)i* g 2 from (5)
>n+ OPT(I')—n using h* > 1/3 and (4) > OPT(I)(1 - h*) + OPT(I) — 1 (1—h*)
- 2
= OPT("). OPT(I") — 1
> OPT(I') — OPT(I")h* + ——————2h*
In both cases, we get a contradiction, and thus 2* < 1/3. O 2
ash* <1/3
In the following step, we will use Lemma 4 on pairs of > OPT(I') — h*. ®)

consecutive layers in order to derive a lower bound on the
total area of the items.

As r* is packed into a new bin, all previous bins contain
layers of total height greater than 1 — &*. Thus, we get the
following bound for the total height H of the first k — 1
layers:

k—1
H= ZH,- >30PT(I')(1 — h*).
i=1

We need a slightly different bound which follows immedi-
ately since the first bin contains at least layer L of height
Hj and all other bins contain layers of total height greater
than 1 — h*:

k—1

H:ZHi > (30PT(I") — 1)(1 — h*) + Hi. 5)

i=1

Applying Lemma 4 on pairs of consecutive layers Ly;_1, Ly;
and adding the area of r*, we get

L(k—1)/2]
A= Y7 ALai1ULy) +w*h*
i=1
Lte=1)/2)
> Z (Hai + (Wai—1 + Wi — DR*) + w*n*
i=1
by Lemma 4

[(k—1)/2] k—1 1
= ), Hi+ Z(Wi - 5)11* +w'h*.(6)
i=1 i=1
We first derive a lower bound for the first part of the previous
inequality. With hy; > hyj 1 we get

Lk—1)/2] k—1
2 ) Hyz) Hj=H-H, ™
i=1 i=2

To simplify the presentation let A = Zi‘:—ll (wW; — %)h* +
w*h*. Inequalities (6) and (8) lead to the lower bound

A(I'y > OPT(I') — h* + A.

We need the following observation before we can derive
a contradiction.

Observation 1 There are at least 6 layers, and if
OPT(I') = 1 then the three largest layers are packed into
the first two bins.

The observation is obvious for OPT(I’) > 1 as we as-
sume that 3OPT(I’) + 1 bins are used. If OPT(I’) = 1 then
the height of layer L, cannot be greater than 1/2 as other-
wise in contradiction to (3):

> wi>1=O0PT(I).
ri=(w;,h;)
hi>1/2
Thus, the three largest layers are packed into the first two
bins, and each but the first bin contains at least 2 layers. We
are now ready to prove Theorem 5.

Theorem S The approximation ratio of HYBRID FIRST
FIT is 3.

Proof The lower bound was already given in Sect. 3.2. We
consider two different cases to derive a contradiction. In the
first case, we show that A > h*, which leads to A(I') >
OPT(I’) as a contradiction to the lower bound (1). The
tricky part in this case is to consider that there might be a
layer of width W; < 1/2 which would result in a negative
term in the sum of A. But there can be at most one such
layer as otherwise both layers would fit together. In the sec-
ond case, we use the lower bound (2) that is given by the
total height of layers that consist of exactly one item.

Case 1. Assume that there are 3 or more layers with width
atleast2/3. Let L,, L, L,, be the layers with greatest total
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width, and let L; be the layer with the smallest total width.
Since there are more than 4 layers, we can assume w.l.o.g.
that t # {u, v, w}. Then

k—1

1
A= Z(Wi - §>h* +w*h*

i=1

2 1 gl 1 1
Y e Wi — =\ + (w, — = |n*
=355 T (weg)re(wes)

o=l
i#t,u,v,w

1 1
Wi — = \h* + =k,
(w23

The last step is due to W, > 1 — w* as otherwise r* fits
into layer L,. Since there is at most one layer with width
W; < 1/2 (and this would be L,), the sum in the middle in
non-negative. Thus, A > h*, which gives a contradiction to
the lower bound (1).

Case 2. Now assume that there are less than 3 layers with
width at least 2/3. Let L, be the first layer (lowest indexed
layer) with width W, < 2/3. Consider anitemr; = (w;, h;)
inlayer L; withi > £. Then w; > 1/3 since otherwise 7; fits
into layer L;. Thus, W; > 2/3 or L; contains exactly one
item. Let S be the set of layers that contain exactly one item
and consider the lower bound (2):

+ w*h*

1 k—1
k
> El’l + ._g 1
i;étl,;,v,w

OPT(I) > > H;
L;eS
k
> ZHi — (H1 + Hy + H3),

i=1

as there are at most three layers that contain more than
one item and these three layers have total height at most
H\ + Hp + H3. For OPT(I") = 1, Observation 1 implies the
contradiction

k
OPT(I') > Z H; — (H, + H» + H3) > 1.

i=1

For OPT(I’) > 2, at most 3 bins contain layers with more
than one item. Thus, we get

OPT(I')> Y H
L,'ES
> (30PT(") —3)(1 — h*) + h*
> OPT(I").

The last step follows from (30PT(I") — 3)(1 — h*) + h* >
20PT(I") — 2 since h* < 1/3. O

@ Springer

4 Conclusion and future work

The algorithm we presented in Sect. 2 depends on the
asymptotic approximation algorithm from Bansal et al.
(2006a), in particular, the constant k that follows from this
algorithm. It would be interesting to design an approxima-
tion algorithm for rectangle packing with rotations with as-
ymptotic approximation ratio strictly less than 2 and small
additive term. This could also improve the efficiency of our
algorithm.

We conjecture that every set of items of height at most
1/2 and total area at most 5/9 can be packed into a unit bin
using rotations. This would again improve the efficiency of
our algorithm and might be useful for other packing prob-
lems as well. Other interesting open questions for further
investigation include the following.

1. Does there exist an approximation algorithm for rectan-
gle packing without rotations with an absolute worst case
ratio of 27

2. Does there exist an approximation algorithm for strip
packing with or without rotations with an absolute worst
case ratio less than 2? An answer to this question for
strip packing without rotations would narrow the gap be-
tween the lower bound of 3/2 (as strip packing without
rotations is a generalization of one-dimensional bin pack-
ing) and the upper bound of 2 from Steinberg’s algorithm
(Steinberg 1997) and Schiermeyer’s REVERSE FIT algo-
rithm (Schiermeyer 1994).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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