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Abstract Locating the seismic event hypocenter
is the very first issue undertaken when studying
any seismological problem. Thus, the accuracy of
the obtained solution can significantly influence
consecutive stages of an analysis, so there is a
continuous demand for new, more efficient, and
accurate location algorithms. It is well recognized
that there exists no single universal location al-
gorithm which performs equally well in all situ-
ations. Seismic activity and its spatial variability
over time, seismic network geometry, and the
controlled area’s geological complexity are fac-
tors influencing the performance of location algo-
rithms. For example, in the case of mining appli-
cations, the planarity of the seismic network usu-
ally operated at the exploitation level becomes an
important issue limiting the accuracy of location
of the hypocenter depths. In this paper, we push
forward the discussion on the performance of the
newly proposed location algorithm called the ex-
tended double difference (EDD), concentrating
on the reliability of source depth estimation for
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mining-induced seismic events. We demonstrate
that the EDD algorithm very efficiently uses in-
formation originating from the nonplanarity of
the seismic network, improving the hypocenter
depth estimates with respect to the classical dou-
ble difference technique. Methodological consid-
erations are illustrated by real data analysis of
selected events from the Rudna copper mine
(Poland).
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1 Introduction

The main goal of seismic networks operating in
mines is continuous monitoring of seismicity in the
mining area (Gibowicz and Kijko 1994; Gibowicz
and Lasocki 2001; Mendecki and Sciocatti 1997).
This comprises detection of seismic events followed
by location of hypocenters, energy and seismic
moment estimation, and, possibly further, more
advanced analysis. The growing demand for more
and more precise monitoring of induced seismic
activity, for increasing the accuracy and reliability
of data analysis as well as the necessity of an-
alyzing very small seismic events requires many
improvements in seismic data analysis procedures.
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In this paper, we concentrate on the second step
of mining (seismic) data analysis, namely, the
hypocenter location task.

The possibility of achieving high location accu-
racy crucially depends on a few elements, namely,
data quality, seismometer network geometry, and
knowledge of the seismic velocity spatial distri-
bution (Lomax et al. 2000; Wiejacz and Debski
2001). None of these elements are usually suffi-
ciently known for the location problem. Some
of them, like the optimum network configuration
(Kijko and Sciocatti 1995) or data quality, are
strongly connected to the mining process and
cannot be easily changed or improved. Another
factor, the velocity spatial distribution, is subject
to many simplifications and is usually very poorly
known (Lomax et al. 2000). Moreover, in a mining
environment, the velocity also changes with time
due to the dynamic response of the rock mass to
excavation, and the changes can reach up to 10-
20 % of the background velocity (Gibowicz and
Lasocki 2001). As a consequence, the velocity dis-
tribution is usually poorly known and actually is
the most significant factor limiting location accu-
racy (Lomax et al. 2000; Husen et al. 1999; Debski
et al. 1997). Therefore, there is a need in mining
practice to use new location algorithms which are
as independent as possible of the velocity struc-
ture. An example of an algorithm which meets this
criterion is the double difference (DD) technique
proposed by Waldhauser and Ellsworth (2000).

The main idea behind this algorithm is to locate
a group (spatial cluster) of events simultaneously
rather than process seismic data for each event
separately. As observational data, the method
uses differential travel times—the differences be-
tween travel times of seismic waves coming from
different events recorded at the same stations—
instead of absolute travel time onsets for each
event separately. This significantly reduces the
dependence of location results on velocity models
(Waldhauser and Ellsworth 2000). Moreover, it
allows to achieve sub-sampling data accuracy and
also automate data pre-processing (Waldhauser
2009) by using any of the signal cross-correlation
techniques (Waldhauser and Schaff 2008). The
DD algorithm has proved its outstanding perfor-
mance in locating clusters and swarms of seis-
mic events, significantly contributing to the better
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characterization of large earthquake source areas
(see, e.g., Enescu et al. 2005), and thus, in previous
papers (Rudzinski and Debski 2008), we have
analyzed its application in a mining environment.
We have concluded that the direct application of
the DD approach for mining-induced seismicity
analysis is quite limited. The reason for this is
the algorithm’s stability. Achieving it requires the
seismic signals from events located together to be
recorded by most (ideally all) of the stations used
for the DD location. Unfortunately, this condition
can hardly be met in mining practice. Firstly, this
is because the located events are usually quite
small and they are recorded by nearby stations
only—usually different for different events due
to mining noise. Secondly, mining progress re-
quires almost continuous updating of the seismic
monitoring network. Again, this results in rejecting
a number of events from the DD analysis because
the events recorded before and after a network
update cannot be located together due to diffe-
rences in network configuration. Having iden-
tified the problems with using the DD algorithm,
we have proposed its extension and call it the
extended double difference (EDD) (Rudzinski
and Debski 2011). In the cited paper, we already
noticed an improvement of the depth estimation
achieved by the EDD algorithm with respect to
the DD one. This is a very important point be-
cause while the DD algorithm significantly re-
duces the influence of the velocity structure on
location results, the problem of precise estimation
of hypocenter depth still remains if the seismic
network is almost planar and located at the same
depth at which most seismic events occur. This
is usually the case in underground deep mines
where the seismic network being located at ex-
ploitation level is almost planar. This inherently
limits location accuracy because for such a net-
work and event configuration, there is no natural
depth variability scale which could help determine
the depth of events. It needs noting that in the case
of horizontal spatial (epicentral) coordinates, such
a length scale is provided by horizontal spread-
ing of the network. Thus, any improvement in
hypocenter depth estimation calls for algorithms
which can efficiently “enhance” the information
on network and source nonplanarity. The EDD
algorithm seems to fulfill this requirement.
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In this paper, we push forward the previous
analysis (Rudzinski and Debski 2011) of the per-
formance of the DD and EDD algorithms, con-
centrating this time on the resolution of the
hypocenter depth and using real mining rockburst
data as a case study.

The paper is organized as follows: first, we
briefly describe the basic elements of the DD
and EDD techniques; next, some elements of the
probabilistic inverse theory are briefly outlined.
This theoretical part is followed by an analysis of
10 events from the Rudna copper mine (Poland)
and the obtained results are discussed.

2 Mathematics of the DD and EDD location
algorithms

Let m' = (X', Y', Z!, T') be the set of parameters
describing the hypocenter spatial coordinates and
origin time of the ith seismic event. Let 7% denote
the generic wave onset time from the ith event
read at the kth station. From now on, we assume
that all arrival times correspond to the same seis-
mic phase. Solving the location problem requires
theoretical/numerical calculations of onset times
(hereafter, denoted as (Tm)j;) for comparing with
observed arrival times ((7°) (m)). Next, let us in-
troduce the generalized differential arrival times,
defined as the difference between arrival times
from different sources at different stations.

Ay = T, =T/ (1)
and the observed and modeled differential arrival
times will be denoted as (A°){, and (A™)}/,, respec-
tively.

Let us consider events forming a spatial clus-
ter and assume that the hypocenter separa-
tion between sources is small compared to the
hypocenter—station distance and to local velocity
heterogeneity sizes. Then, the ray paths between
the sources and a common station can be hypo-
thetically divided into two parts. The first part is
common for all rays and roughly speaking spans
from the station to the source cluster. The second
one takes into account differentiation of ray paths
in the neighborhood of and within the cluster. This
hypothetical splitting of ray paths demonstrates
that wave travel times from different sources have

a large common factor connected to the wave
traveling along the common part of all rays. The
remaining part of the travel times brings infor-
mation on the relative source location within the
cluster. By using the differential travel times, we
cancel (at least partially) the propagation time
contribution from the common ray part, thus di-
minishing the location result’s sensitivity to the
velocity model. Simultaneously, the differential
travel times preserve information on the relative
source distribution within the cluster (Evangelidis
et al. 2008).

In practice, the DD technique performs the
simultaneous location of all events forming a clus-
ter, assuming that most of the seismic phases com-
ing from all events in the cluster are recorded
by most of the stations. Then, it is possible to
form the differential residua (Waldhauser and
Ellsworth 2000):

= (A%, — (A™Y7 (m)), )

and the location solution is found by minimizing
the misfit function, which in the case of using the
[, norm reads

- - 2
Sopm) = Y [a)] - amjam]. 3)

ijk

Since the differential travel times (AO)Z can
be calculated automatically with very high accu-
racy from seismograms by means of the cross-
correlation technique, the approach is very suit-
able for automatic almost real-time event location
(Waldhauser and Ellsworth 2000).

The EDD algorithm extends the DD approach
by generalizing the differential residua formula
given by Eq. 2 as follows:
rig = (A% — (A™),(m)). 4)
and constructing the generalized misfit function

- - 2
Seop = Y[ - ™ 5)

ijkl

where again the subscripts in the symbols A° and
A™ are used to distinguish between differential
travel times calculated for observational and mod-
eled travel times, respectively. Contrary to the
DD approach, the sum is now taken over all
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sources and all stations; thus, we can use all ob-
servational information we have in hand. There
is no need anymore to reject events not recorded
by some stations or to exclude stations which
do not record signals from considered sources.
Moreover, considering all possible combinations
of source-station difference pairs, we include ad-
ditional information not available in the DD
method. To see this, let us rewrite Sgpp as follows:

r " . 2
> [ah = @™ + Son)
ijk
r . . 2
S [ - @i ]+ Sse)

Sepp(m) = /K,

- .. .. 2
So[aoh - @mjm] e
ijkl
k#l,

i%]

(6)

The first row on the right side of this formula
corresponds to the DD misfit function Spp as
defined in Eq. 3. The second term (referred to as
Ssg) describes the differential times calculated for
each seismic source and different stations which
recorded signals from that source. This term, ac-
cording to the reciprocity theorem, is equivalent
to the first one with exchanged source and re-
ceivers. Observe that this term is the sum over
all sources of the differential travel times between
different stations and thus can be interpreted
as the sum of the residual misfit functions SgE
defined as

) = > [(A%E — (A™E )]’ (7)

kl

for each event separately as if it was located
separately but using the differential data instead
of the absolute arrival times. Finally, the third
term (referred to as Sgp) brings all the remaining
combinations of sources and receivers which are
not included in the first two terms.

The question which should be asked at this
point is how each of the terms in Eq. 6 contributes
to the final solution. To analyze this problem, let
us rewrite Eq. 6 as

SEpD() = @4dSpD + Ase SSE + Aed SED (®)
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introducing three coefficients agq, ase, and deq
which allow to control the relative influence of
each term in Eq. 6 on the final location solu-
tion. Setting all these coefficients to 1 results in
the full EDD misfit function, while assuming a 0
value for a selected coefficient excludes a given
term from the inversion (location) algorithm. Ac-
tually, different choices of the agq, adse, and aeq
coefficients lead to different misfit functions and,
consequently, to different location algorithms.
Among the infinite number of algorithms gener-
ated in this way, the most interesting are those
which correspond to setting the a; coefficients to
0 or 1. They are listed in Table 1.

The question of the contribution of each of
the terms in Eq. 8 to the final location results
can now be reformulated as a task of comparing
different location algorithms (inversion schemata)
generated by the misfit functions listed in Table 1.
This comparison can be performed using various
numerical characteristics calculated for each of
the inversion schemata. For the current analysis,
we decided to use the Shannon information mea-
sure (Tarantola 1987) which reads

I — A[ In (;g) o (m)dm ©)

where w(-) stands for the reference distribution
(usually a noninformative probability distribu-
tion which accounts for the size of the model
space (Mosegaard and Tarantola 2002; Tarantola
2005)). We have chosen this parameter instead
of the more traditional measures, like the a pos-
teriori error or the RMS value of residua for
the optimum model found, because the Shannon

Table 1 Seven elementary misfit functions and the re-
sulting location algorithms generated from the generic
misfit function described in Eq. 8 by setting the weighting
coefficients a; to 0 or 1

No. agd dse ed S(m)

1 1 0 0 Spp

2 0 1 0 SsE

3 0 0 1 SED

4 0 1 1 Sse + SED

5 1 0 1 Spp + SEp

6 1 1 0 Spp + Ssg

7 1 1 1 Spp + Ssg + SEp
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measure takes into account not only the “goodness”
of the optimum best fitting model (RMS residua)
but also the shape of the a posteriori probability
distribution which determines the a posteriori er-
rors. The price for choosing this robust measure Ig
is the necessity of performing the full probabilistic
(Bayesian) inversion rather than the most pop-
ular optimization-based inversion (Debski 2010).
Since the probabilistic inverse theory is still not
commonly used, let us describe its very basic el-
ements in the next section. Readers interested in
the details of the probabilistic inverse theory are
referred to the basic textbooks and review papers,
for example, (Tarantola 1987, 2005; Debski 2010;
Mosegaard and Tarantola 2002; Mosegaard and
Sambridge 2002; Lomax et al. 2000; Matsu’ura
1984).

3 Inverse theory—probabilistic point of view

The primary goal of the most frequent inverse
tasks is determining the values of some para-
meters (m) which cannot be measured directly
(Tarantola 2005). In the case of the location prob-
lem, they are the hypocenter coordinates and rup-
ture origin time. To estimate the m parameters,
we choose some additional physical parameters
(d) which can be directly measured and which
are connected to the sought ones in a known
way (dat = G(m)). Then, we perform an inference
about m having the measured d°®.

There are basically three possible approaches
to carry out this inference (Debski 2010; Tarantola
2005).

The first approach, often called the back pro-
jection technique (Deans 1983; Jakka et al. 2010),
relies on a direct projection of the measured val-
ues onto the model space which allows a direct
“calculation” of the sought parameter values. This
approach corresponds to a direct solving of the
equation

dObS — G(mml) (10)

and thus has very limited application because it
can be carried out under very strong assumptions
imposed on the G(-) function.

The second approach relies on inspecting a
model space—the space of all possible values of

m—to find the model m™ for which the theoreti-
cal prediction best fits the measured one. In prac-
tice, this is achieved by solving the optimization
task which in a simplified form reads

m™ : [|Gm™) — d°®|| = min (11)

where || - || stands for a norm in data space. The
approach is very general and usually very fast but
offers a limited possibility of evaluating the uncer-
tainty of the solution found. This is a consequence
of searching for the optimum model only and
disregarding information from a part of the model
space containing suboptimal models contributing
to the final inversion uncertainties (Scales and
Tenorio 2001; Debski 2008; Scales 1996).

This additional information is efficiently ex-
plored by the third approach offered by the prob-
abilistic inverse theory (Tarantola and Valette
1982; Tarantola 1987, 2005). The method relies on
the evaluation of each model m and assigning to
it the probability of being the true one. In the
simplest case, this a posteriori probability reads
(Tarantola and Vallete 1982)

o(m) = f(m)exp (—S(m)) (12)

where f(-) stands for an arbitrary a priori prob-
ability function known from elsewhere and the
misfit function S(m) reads

S@m) = ||Gm™) — d°™||. (13)

Comparing Eq. 11 with Eqgs. 12 and 13, we can see
that in this simplified case, if only f(m) = cons.
(no significant a priori information), the m™ solu-
tion provided by the optimization approach max-
imizes the a posteriori probability density con-
structed within the framework of the probabilistic
inverse theory.

The advantage of the probabilistic approach is
that having the a posteriori probability density, we
can evaluate any characteristic of the final solu-
tion allowing for any exhaustive error, resolution,
trade-off, etc. analysis (Debski 2004; Wiejacz and
Debski 2001). We need this feature to evaluate
and compare the performance of the DD and
EDD location algorithms.

However, any practical use of the probabilistic
inverse technique requires an efficient method of
sampling of the a posteriori distribution, which
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is by no means trivial if the number of inverted
parameters is large (Curtis and Lomax 2001). The
most popular class of sampling algorithms used in
such situations is the Markov chain Monte Carlo
(MCMC) technique (see Gilks et al. 1995; Robert
and Casella 1999). This technique is able to per-
form the so-called importance sampling efficiently
in any multidimensional model space which relies
on sampling only that part of the model space
where the sampled function has its dominating
values. Since we were locating nine seismic events
simultaneously in the studied problem, which give
a total of 36 inverted parameters, the sampling
of the a posteriori distribution was carried out by
a very simple MCMC algorithm—the Metropolis
algorithm (Chib and Greenberg 1995).

4 Rudna copper mine case

In this section we present the results of comparing
the two techniques when applied to seismic data
from the Rudna copper mine (Poland). The mine
runs a digital seismic network composed of 32
vertical sensors located underground at depths
from 550 to 1150 m. The frequency band of the
recording/transmission system is from 0.5 to 150
Hz and the sampling period is df =2 ms. The
accuracy of routinely located events is better than
100 m, typically around 50 m for the epicentral
coordinates and much worse for hypocenter depth
(Fig. 1). For the comparison analysis, we have

2 3 4 5 © 7 8

Event
Fig. 1 Epicentral distances between the DD and EDD
solutions for the first eight well-resolved events weighted
by the doubled averaged a posteriori epicentral errors
gathered in Table 5
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Table 2 Seismic events recorded on mining panel XVII/1
used in the current analysis

Event Date Hour Energy (J)  Narrivals
1 2010.03.18 16:45:38 1.60E+4-07 28
2 2010.01.29 5:58:56  4.10E+06 27
3 2010.06.23 21:24:56 1.20E+07 28
4 2010.07.25 16:52:24 2.10E+05 26
5 2010.05.26 14:17:16 2.60E+05 21
6 2010.06.04  21:50:50 2.20E+05 27
7 2010.01.25 20:24:4 5.90E+05 18
8 2010.03.31 5:6:12 5.60E+04 16
9 2010.12.07 0:48:22  8.10E+04 11
10 2010.09.11 6:59:8 1.50E+03 8

The number of stations recording the P phase for each
event is shown in the last column

selected a cluster composed of 10 events from the
XVII/1 mining panel described in Table 2 and
shown in Fig. 2 where a sketch of the part of
the mine where the considered events occurred
is depicted. Event no. 1 was fixed as the master
event and has not been relocated by either the
DD or EDD algorithm but its location, well sup-
ported by mining observations, was provided by
the mine. The location procedures were based on
the P wave arrival times picked manually from
seismograms. We have decided not to use any
cross-correlation technique for observational data
preprocessing to avoid any numerical errors which
could influence the performance of the DD and
EDD algorithms in different ways. The location

Eoo OEDD | station
XV 32500

32000

X
31500

31000

A

7000 7500 8OO0 8500 9000 8500

Fig. 2 Sketch of a part of the Rudna copper mine with
marked mining panels and nearby seismic stations (trian-

gles). The DD and EDD epicentral solutions are marked

by squares and circles, respectively
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procedure was carried out within the probabilistic
(Bayesian) approach by sampling the a posteriori
probability functions defined for DD and EDD as

opp (m) = const. exp (—Spp(m)) (14)

O‘EDD(m) = const. exp (_SEDD (m)) (15)

using the Metropolis algorithm with settings as
in Rudzinski and Debski (2011). No a priori in-
formation was used. As the numerical estima-
tors of the hypocenter locations, the maximum
likelihood models for corresponding a posteriori
distributions were the ones we considered and the
location errors were estimated by the a posteriori
covariance matrix. The goodness of the depth
solutions was evaluated by means of the Shannon
information measure calculated for the marginal
1D probability distributions.

Let us begin the analysis of the location results
by noticing, according to Table 2, a significant
variation in the number of stations contributing
to the location of different events. It ranges from
8 for the smallest event (event no. 10) up to 28
(event no. 3), which means that almost all the
stations of the network contribute to the location
of this event. The consequence of this fact is that
the location errors for events no. 9 and 10 are
larger than for other events from the cluster, as
reported in Table 5.

The location results expressed by the maximum
likelihood solutions are gathered in Table 3 for
the EDD solutions and in Table 4 for the DD

Table 3 The EDD maximum likelihood solutions

Event XEDD YEDD ZEDD
1 31948 8775 —781
2 31886 8883 —834
3 31846 8887 —889
4 31898 8846 —868
5 31948 8812 —855
6 31897 8931 —-902
7 31970 8916 —840
8 31975 8727 —831
9 32185 8721 —882
10 32172 8743 —911

The event coordinates (in meters) refer to the local coordi-
nate system

89
Table 4 The DD maximum likelihood solutions
Event XpD Ypp ZpD
1 31948 8775 —781
2 31942 8762 -756
3 31894 8804 —694
4 31899 8769 —894
5 31951 8688 —1144
6 31899 8772 -935
7 31967 8747 —892
8 31875 8712 —835
9 31892 8807 —683
10 31976 8857 —755

The event coordinates (in meters) refer to the local coordi-
nate system

approach. Table 5 shows location errors estimated
by the a posteriori covariance matrix. A com-
parison of the epicentral solutions (X, Y) shows
that both solutions coincide quite well within 50—
100-m accuracy, as is also shown in Fig. 1 where
the epicentral distances weighted by the doubled
epicentral errors are shown.

Another conclusion which follows from Ta-
bles 3, 4, and 5 is that both DD and EDD resolve
the epicentral coordinates in a similar way. How-
ever, this is not the case with depth. The solutions
for Z not only differ between the two methods but
also the inversion errors for the DD solutions are
almost twice larger than for the EDD solutions.
This is a result of significant differences between
the a posteriori probability densities, as shown in
Fig. 3.

Now, after the general analysis of the location
results, let us return to the main question about
the role of the Spp, Ssg, and Sgp terms in the

Table 5 The EDD and DD location errors (in meters)
estimated by the a posteriori covariance matrix

Event EDD DD

AX AY AZ AX AY ANZ
2 17 22 47 28 27 103
3 17 22 50 27 27 106
4 17 22 43 28 28 153
5 21 23 47 29 27 108
6 17 21 43 29 28 166
7 21 25 51 29 28 170
8 21 27 53 28 26 153
9 28 30 84 27 27 118
10 35 36 100 27 28 137
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Fig. 3 1D marginal probability distributions for event no. 7 calculated using the DD and EDD techniques

EDD solutions. Let us begin this discussion by
analyzing the Shannon measure for depth solu-
tions generated by misfit functions with a different
choice of agq, ase, and aeq coefficients. The choice
of aqq = ase = a.qg = 1 corresponds to the EDD
solution while the choice aqgq =1, dse = deqg =0
corresponds to the standard DD technique. The
results for two events: well-resolved (event no.
6) and poorly resolved (event no. 9) events are
shown in Fig. 4.

The most remarkable feature visible in this
figure is that in the case of the well-resolved
events, I for the solution generated by the Spp
part of the misfit function alone (classical DD
solution) has a much smaller value than for solu-
tions obtained for the misfit function containing
the remaining combinations of the Spp, Ssg, and
Sep terms. This is especially true when comparing

Event 6

0.3

0.2 1

ls

0.1 1

0.0 -

Fig. 4 The Shannon measure for the Z coordinate and
different choices of the misfit function obtained by setting
the agq, ase, and aeq coefficients to 0 and 1 in all possible
combinations. The results are marked by those terms of
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the Is values for solutions generated by the Spp
and Ssg terms and by Sgp alone. In the case of the
poorly resolved event (right panel in Fig. 4), this
effect disappears. The value of the I factor is now
very low and similar for all choices of the misfit
function. It seems that in this case, the resolution
of all methods is similar and limited by insufficient
information in the input data. The conclusion
which we have drawn from these observations is
that algorithms built upon Sgp or Ssg combina-
tions explore information about event depth more
efficiently than the DD technique. To understand
the mechanism of this “depreciation” of the DD
method, let us examine the Shannon measure for
all nine located events and different choices of the
misfit function. The results are shown in Fig. 5.
There are two extremely striking features vis-
ible in Fig. 5. The first one is the much lower

Event 9

0.3

0.2 1 F

ls

0.1 1

0.0 -

the misfit function for which corresponding coefficients
were nonvanishing. The left panel corresponds to the well-
resolved event while the right one to the very weak event
localized by only a few nearby stations (see Table 2)



J Seismol (2013) 17:83-94

91

Fig. 5 The Shannon

Sep + Sge

measure for all located 0.3 —
events obtained for
different choices of misfit
function. The DD and
EDD solutions are shown
in the left and right panels
in the bottom line of the
figure

2 3 4 5 6 7 8 9 10
Event

SSE
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Event

Spp + Sep
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Event
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0.3 —

Event
Spp
0.3 .
0.2 d
-0
0.1 4 -
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Event

values of the Iy factor for the DD solutions with
respect to other choices of S(m) for all well-
resolved events. Moreover, the Ig values are al-
most the same for all events. The second charac-
teristic is an apparent progressive diminishing of
the Ig factor for all but one, Spp alone, of the
combinations of the Spp, Ssg, and Sgp terms with
successive models. Inspection of Table 2 indicates
that the varying number of seismic time onsets
recorded and used for locating events is the main
factor influencing Is. In fact, the dependence of

2 3 4 5 6 7 8 9 10
Event

Is on the number of used onsets plotted in Fig. 6
fully proves this expectation. A similar effect has
been reported for the DD technique by Bai et al.
(2006). An analysis of Fig. 6 suggests that for
a large number of onsets, Ig saturates for any
considered misfit functions. At the moment, we
are not sure if this is caused by exhaustion of all
the independent information contained in the data
or if it results from the inherent resolution ability
of the algorithms imposed by the structure of the
assumed misfit functions.
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Fig. 6 Correlation of the Iy factor with the number of
phase readings used for event location

5 Conclusions

The EDD location technique was originally pro-
posed in order to include the specific demands
of the mining seismic environment, such as event
clustering (Gibowicz and Lasocki 2001; Orlecka-
Sikora and Lasocki 2002) and continuous chang-
ing of the monitoring system (Mendecki and
Sciocatti 1997; Rudzinski and Debski 2011), in the
DD method. We expected the resulting algorithm
to have a large enough spatial resolution to enable
a detailed analysis of the structure of the spatial
seismic clusters. Through performing synthetic tests,
we have concluded (Rudzinski and Debski 2011)
that the performance of the EDD approach with
respect to the epicentral coordinates is essentially
the same as for the DD technique. The current ana-
lysis of real data further supports this conclusion.
However, the performance of the EDD approach
with respect to the hypocenter depth has been
found to be significantly better than that of DD.
The analysis performed in this paper clearly
shows that the DD algorithm does not fully exploit
the information contained in the input seismic
data. This is not the case with the EDD approach.
Using the same data set, the EDD algorithm leads
to more precise depth solutions (larger value of
the Shannon information measure). We believe
that this is because the additional terms intro-
duced into the misfit function by the EDD algo-
rithm bring additional constraints (information)
on the final solution with respect to the DD term.
To illustrate this point, let us assume that we

@ Springer

are locating N events using M stations and that
signals from all the events are recorded by all
stations. It is easy to show that in such a case,
the Spp term contains N x (N — 1) x M/2 travel
time difference factors, the Ssg term contains M x
(M — 1) x N/2 factors, and finally the Sgp term
consists of M x N x (N —1) x (M —1)/2 terms.
Assuming that each such factor represents some
constraint imposed on the final solution, it is
obvious that in typical conditions when M > N,
the Spp term has the lowest “resolving power.”
This analysis remains true provided that there are
no dominating factors in the Spp, Ssg, and Sep
terms. Otherwise, the dominating factors will de-
termine the structure and the most important fea-
tures of the misfit function. Consequently, adding
new factors to the misfit function S(m) by chang-
ing N or M does not change it significantly. The
consequence of this is stationarity of the a posteri-
ori probability distribution, which means that the
Shannon measure saturates when the number of
phase readings increases.

It is not easy to say when the misfit function can
be dominated by travel time difference factors.
From the physical point of view, by analogy to
phase transition processes, such a situation can
happen if there exists some natural temporal or
spatial scale for the analyzed (inverted) parame-
ters. This is the case, for example, with epicen-
tral coordinates for which the spatial extension of
the network provides such a characteristic length
scale. On the other hand, if such a scale length is
missing, we can expect that all factors in S(m) have
similar importance and thus the DD approach will
not be able to exploit all available information
efficiently. We believe that one example of this is
the planar seismic network and seismicity located
at the depth of the network.

Finally, to conclude our discussion about the
performance of the EDD algorithm, let us observe
that similar to the DD approach, the EDD algo-
rithm uses the differential travel times as input data.
However, contrary to the DD approach, it includes
all possible combinations of source-receiver pairs.
This means, however, that some of the input
differential times can hardly be calculated reliably
by means of cross-correlation techniques because
of a lack of similarity between the considered
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seismograms. One consequence of this fact is that
the algorithm needs careful and, in some part,
manual preprocessing of the input data. Its auto-
matic implementation may be problematic.
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