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Abstract We have taken into consideration the Eliashberg
equations based on the electron-phonon and the electron-
electron-phonon interaction. It has been shown that the
Eliashberg equations set generalizes the model based on
the canonical transformation, which for the cuprates quan-
titatively associates with each other the critical temperature
(T¢), the Nernst temperature (7**), and the energy gap at
0 K. Next, we have derived the analytical formulas for the
basic thermodynamic parameters. The conducted analysis
allowed to designate the T¢-T** diagram. Finally, we found
the limitation from below for the value of 7**, occurring for
the critical temperature higher than 150 K.

Keywords High-T¢ superconductors - Electron-phonon
interactions - Nernst temperature

1 Introduction

The description of the high-temperature superconductors
based on copper (cuprates) [1-3] is the very complicated
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issue. The main problem is associated with the correct
determination of the pairing mechanism responsible for the
condensation of the electrons into the Cooper pairs. The lit-
erature is dominated by the view that the main role is played
by the strong electron correlations modeled by the Emeri
Hamiltonian [4], or in the simpler manner in the framework
of the Hubbard [5, 6], or t — J [7] theory. On the other hand,
many experimental data also indicate the importance of the
electron-phonon interactions (EPh). At this point, it is worth
to mention the results of the ARPES method, which clearly
indicate the existence of the kink in the energy spectrum
near the phonon energy [8, 9], the data related to the isotope
effect for the critical temperature in the undoped area [10],
or the results obtained from the penetration depth measurements
[11], and the Raman experiments [12]. The direct observation
of the phonons by using the scanning tunneling microscopy
[13] is even possible. Hence, it can be supposed that the full
pairing mechanism in cuprates consists of the components,
which are connected with the strong electron correlations
and the interaction of the electrons with the phonons.

The full analysis of the pairing mechanism in cuprates is
practically impossible from the mathematical side, which is
caused by the need to take into account all the contributions
to the self-energy coming from the strong electron correla-
tions. Let us notice that the matter also is not so simple in
the case of the electron-phonon interaction, because of the
existence of the vertex corrections [14—16] (the value of the
Fermi energy (¢f) is low and equal to about 0.1-0.3 eV).
Accordingly to the above, the partial solution appears to
base the analysis on the effective model, which allows to
understand the significant number of the experimental data,
and at the same time it is at least approximately solvable
using mathematical and computer tools.

The model, which satisfies the above conditions, is based
on the Hamilton for two-dimensional (2D) system with
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the interaction term of the electron-phonon and electron-
electron-phonon (EEPh) type [17-19]. In particular, two-
dimensionality of the system ensures the existence of the
van Hove singularity in the electron density of states at
the Fermi level, which is responsible for the high values
of the critical temperature (7¢), and the low values of the
isotope coefficient [20-22]. Let us note that the van Hove
singularity in cuprates is observed due to the quasi two-
dimensional nature of the copper-oxygen planes. For exam-
ple, the singularity in YBa;CusOg compound is located
about 19 meV below &F at the Y point in the Brillouin zone
[23]. The special attention is demanded to be paid on the
term of the interaction of the electron-electron-phonon type.
It was introduced into the model due to the experimentally
observed half-value of the magnetic flux [24]. This result
proves that the electron quartets form also in the super-
conducting state. In the simplest case, the existence of the
electron correlations of such type can be reproduced with
the help of the EEPh interaction (as a result of the canonical
transformation eliminating the phonon degrees of freedom,
the EEPh interaction transforms directly into the effective
four-fermion interaction [17, 18]). Let us notice that the
presented way of concluding is not new and was at first
adapted by Rickayzen in the classical BCS theory in the
context of the description of the alpha particle, which rep-
resents the stable system of four fermions [25]. Nowadays,
the four-fermion interaction is also considered in the works
[26-28], where there is suggested its significant meaning
in the description of the high-temperature superconducting

state. In relation to the classical electron-phonon interaction
taking into account the additional term of the EEPh type
causes that it is possible to explain the anomalously high
values of the energy gap, the weak dependence of the energy
gap on the temperature, and the existence of the Nernst
temperature (7**) [17-19, 29-35].

Recently, the EPh and EEPh interactions were analyzed
beyond the mean-field approximation in the framework of the
Eliashberg formalism [36]. It was shown that for the relevantly
large values of the EEPh potential the dependence of the
order parameter on the doping has the analogous course like
in cuprates (visible is even the characteristic plateau [3]), the
electron density of states is asymmetric which also agrees
qualitatively with the experimental data [37], and above the
critical temperature exists the pseudogap, which turns out to
be induced by the many-body and strong-coupling effects.

In the presented paper, we will show that beginning
from the Eliashberg equations, presented in [36], one can
get the generalized mean-field model. Next, we will derive
the analytical formulas for the most important thermody-
namic parameters of the superconducting state. In the last
step, we will determine the critical temperature—Nernst
temperature diagram, and we will compare the results with
the experimental data for cuprates.

2 Formalism

The Eliashberg equations possess the form [36]:
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where Zk (iwy,) denotes the wave function renormaliza-
tion factor, and ¢k (iw,) is the order parameter function;
k and w, represent respectively the electron momentum
and the Matsubara energy: w, = (w/8) 2n — 1), where
B = (kgT)~! (kp is the Boltzmann constant); by v; and v,
are given the EPh and EEPh potentials. The phonon propa-
gator (Pq (iw;)) can be simplified according to the formula
below:
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where wy is the maximum phonon frequency, and Fg (2) —
F (2) denotes the phonon density of states. Finally,
D (iw,) = (w0, Zxk (ia),,))2 + Sl% + (p]% (iwy). We assume
the electron band energy for the square lattice with the hop-
ping integral 7. In the considered case: ¢y = —ty (k), where
y (k) = 2[cos (k) + cos (ky)]. The Eliashberg equations
set is complicated and cannot be solved in the exact analyt-
ical manner. For this reason, we simplified its form, so that
one can get the formulas for the thermodynamic parameters.
In the first step, we assume Zx (iwy,) = 1. From the physical
point of view, this means that the renormalization of the
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electron band mass by the EPh and the EEPh interaction was
omitted. Next approximation is based on the assumption
that the order parameter is real, and it is independent of the
wave vector and the Matsubara frequency (¢k (iw,) — ).
In addition, it is convenient to introduce the designations:
El = &2 + ¢% vir = v/+/N, and 2v2% = u/+/N. The
simple transformations lead us to the equation for the order
parameter:

k

N 2Fx N . 2Ex
4

For the 2D band relation, the density of states has the form
[21, 38-40]: p(¢) = b In |;—2|, where: b} = —0.04687 1!
and by = 21.17796 ¢. Hence,

w0
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The expression (5) represents the complicated integral equa-
tion that cannot be solved analytically for any temperature.
Therefore, the numerical methods were used, whereby the
following was taken into account: v = 25meV'/? and
selected u. Additionally, it was assumed that the half-width
of the electron band is equal to 1 eV, which means that
the hopping integral equals 250 meV [41]. In the case of
the maximum phonon frequency, it was adopted that wg =
75 meV [42].

The obtained results are plotted in the Fig. 1. It has been
found that for the relatively low value of u (Fig. 1a) the
superconducting state characterizes with the moderate value
of the critical temperature (Tc = 3.1 K). Nonetheless, the
twofold increase of u causes approximately tenfold increase
of the critical temperature: 7¢ = 32.1 K (Fig. 1b). For
U=uc = 3.56eV1/2, the critical temperature increases to
75.7 K (Fig. 1c). It should be further noted that the curve
describing the dependence of the order parameter on the
temperature clearly differs from the curve predicted by the
BCS theory. In particular, the attention is drawn to the weak
dependence of the order parameter on the temperature in the
range from 0 to about 50 K, followed by the sharp decline of
¢. For u > uc, the order parameter totally does not resem-
ble the prediction of the BCS theory (Fig. 1d). The weak
influence of the temperature on the order parameter is vis-
ible in the range of the temperatures from 0 to T¢. Above
Tc, the values of ¢ (T) are declining much faster, while for

&)

T = 183.5 K, we observe the first order phase transition
instead of the second order phase transition. Note that the
change in the nature of the phase transition is induced by the
applied approximations—the correct type of the phase tran-
sition is predicted on the Eliashberg equations level [36].
Interestingly, the value of the temperature, at which the tran-
sition occurs, is well defined and can be properly interpreted
physically as will be discussed in the next section. In addi-
tion, we note that for T > T¢ and u > uc, the equation
(5) really has two solutions, the so-called upper and lower
branch of the order parameter. Wherein only the upper
branch (shown in Fig. 1d) minimizes the thermodynamic
potential which means that this is the physical solution. The
curves presented in the Fig. 1 well reproduce the results
contained in the publications [17-19], where the thermody-
namic properties of the superconducting state, induced by
the EPh and the EEPh interactions, were analyzed with the
use of the canonical transformation. In order to quantita-
tively link both models, the equations, by which the order
parameter was determined, have to be compared. This issue
is discussed in the next section.

2.1 Presented Approach vs. Canonical Transformation
Result

The equation for the order parameter derived in the papers
[17-19] has the form (in original notation):

P tanh (gE)
1 =YV, f dep () ————=,
tot oo 2F

where: E = ([e2+ A2, Ayt = Vigr|lA|, and V,; =

V + YU|AI% Additionally, A = & 3¢ {c_kjci—1), where
cko represents the electron annihilation operator (o is the
spin). It has been shown that the formula (6) represents the

(6)
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Fig. 1 The dependence of the order parameter on the temperature for
the selected values of u

@ Springer



22

J Supercond Nov Magn (2018) 31:19-28

simplified form of the (5). For this purpose, the designations

have to be introduced: A,y — ¢, V — v%, and 5/6 — u?.

Hence, the (6) can be rewritten in the following manner:
t=[v2+u2IaR] 1 @), )

where:
tanh (—ﬂ v 822 Wz)

22 + ¢? ©

o
I(p) = / dep (¢)
o

Let us notice that |A| = m' On this basis, the
expression (7) was transformed to the form containing the
continued fraction:

2
2 ue

2
2 ug
vt [v2+[,..12]

On the other hand, the expression (5) gives:

1(g). (€))

| = (v2 T vu+ (up)? 12 (w)) (). (10)
Hence,

1
I(p) = (11

v2 + vu + (ug)’ 12 (p)

Using the formula (11), we can easily obtain the connection
of the integral I (¢) with the continued fraction:

1
1(p) = 5 (12)
v2 4 vu + |: ug 2:|

Pt

The last step is to insert (12) into (10), thus obtaining:
2

1= | v+ ou+ ue S 1.

2 ugp

vt vu+ |:v2+vu+[..‘]2:|
(13)

Comparing with each other (13) and (9), it can be seen
that the equation determining the thermodynamic properties
of the superconducting state from [17-19] can be obtained
from the expression (5), whereas the product vu has to be
omitted. Let us note that the lack of the term vu in the (9)
results from the way of conducting the canonical transfor-
mation, which eliminates the phonon degrees of freedom.
Namely, it was separately applied to the EPh and the EEPh

@ Springer

interaction. In addition, note the fact that the exact value of
continued fraction present in the (12) is equal to:

1 2173 (v 4 vu)

1/3
|:27v<p + /108 (2 + vu)’ + 729v2¢2]

1/3
|:27v<p+\/108 (v2 + vu)3+729v2g02i|

1
3 173 .(14)

The derivation of the formula (14) is simple. It suffices to
rewrite the expression (10) in following form: (mp)2 I3 (o) +
(v2 + vu) I (¢) — 1 = 0. The resulting equation must then
be solved for I (¢). The result is two complex coupled roots
and one real root, which determines the value of continued
fraction in question.

The results presented above show that all of the results
obtained in [17-19] can be easily reproduced by using the
(5). To do this, one only needs to properly rescale the pre-
viously accepted values of the potentials v and u due to the
existence of an additional pairing potential vu. From the
physical standpoint, this means that the value of the temper-
ature, wherein there is the phase transition of the first order,
should be identified with the Nernst temperature. We under-
line that the (5) correctly binds together the experimental
values of the critical temperature, the Nernst temperature,
and the order parameter for 7 = 0 K. For the selected val-
ues of the temperature, and using the (5), one can derive the
formulas, which allow to calculate the interesting thermo-
dynamic parameters with the very good accuracy. This issue
will be discussed in the following sections.

2.2 The Critical Temperature

The formula for the critical temperature is determined by
adopting ¢ = 0. In the considered case:

| = <v2 + vu) /Owo dep () w (15)

The integral appearing in the expression (15) can be calcu-
lated analytically:
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where a = %eV =~ 1.13, and y is the Euler constant (y =~

0.577). The (16) was solved with respect to kpT¢:
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When analyzing the formula for the critical temperature, it
can be easily noticed that the role of the effective pairing
potential is played by the expression v + vu. The obtained
result indicates that the high value of critical temperature
does not have to be associated with the high value of the
potential modeling the EPh interaction. In the considered
model, the high value of T¢ can also induce the sufficiently
high potential u. Figure 2 presents the course of the critical
temperature in the dependence on u for selected v and three
representative values of the maximum phonon frequency.
The obtained results prove that the model predicts the suf-
ficiently high T¢ to explain the experimentally observed
values of the critical temperature in the cuprates.

2.3 Order Parameter for T = 0 K
The second fundamental quantity beyond the critical

temperature—describing the thermodynamic properties of
the superconducting state, is the order parameter at the
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temperature of zero Kelvin. In the considered case, the (5)
can be written as:

w( 1
dep (8) ————,
/o P Ve2 + ¢ (0)?

where the theorem presented in the Appendix was addi-
tionally used. The integral given in the (18) was calculated
analytically:
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while Li, (z) denotes the polylogarithm given by Li, (z) =
Z,‘:j’ ZX/k" and Lis (1) = 72 /6. Then, some simple trans-
formations need to be carried out, as the result comes the
expression for the order parameter at the temperature of zero
Kelvin:
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The influence of the EEPh potential on the order param-
eter at the temperature of zero Kelvin is presented in the
Fig. 3a—c. The selected values of v were adopted and the
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three phonon frequencies were taken into account. The
obtained results prove that the high value of the order
parameter is mainly due to the high value of u. However, the
phonon frequency is also important. Let us note that ¢ (0) is
most conveniently interpreted in the relation to the energy
associated with the critical temperature. For this purpose,
the dimensionless ratio is defined: R, = 2¢ (0) /kpTc.
Figure 3d—f shows the plot of R, in the dependence on the
potential u. It has been found that the ratio R, can take
the values significantly higher than the values predicted by
the BCS theory (R, = 3.53) [43, 44]. This effect is often
observed in the cuprates.

2.4 Temperature Dependence of Order Parameter:
u=uc

With respect to the order parameter one should also note the
possibility of derivation of the formula near the critical tem-
perature. For this purpose, the (5) was written in the form,
which is using the continued fraction (see also Appendix):

tanh ('B—W)
Vet +¢?

1= Ilim
n——+00

JE / " dep (o) @1)
0

For T — T, the order parameter is the quantity of small
order, so it can be assumed:

tanh(ﬁi@%) . .
— Z ~ 1 )9 _
2,/52+§02 — +€2+(P ﬂm oo m+€2
+0o0 2
1
_ —r (22)
L (w3, +82)

We insert the expression (22) into the (21) and we use the
equation for T¢. As a result we get:
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where, it was adopted: lim,_, 1o fI"H ~ v? + vu +

2
(Uzivu) ¢>. Then, the value of the integral was estimated:
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The simple transformations lead us to the final result:

—In|by|—1].

(24)
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=1 (102 (52) — w2 (2) — 0% Qo) + 2] + 0 [in (2L 4 B ] |
(v24vu)’ aby QrkpT)? HE)

where ¢ (z)Z denotes the Riemann zeta function ¢ (z) =

52 () nd w2 = B0 .
account the results obtained above, the question arises
whether one can derive the formula for the dependence of
the order parameter on the temperature over the whole range
from 0 K to T¢. It turns out that the answer is negative.
However, such formula was able to be guessed basing on
the performed numerical calculations. In the first step, let us
note that the dependence of the order parameter on the tem-

perature in the classical BCS theory is well reproduced by
[45]:

Taking into

@ (T) = ¢(0) (26)
In the case of the high-temperature superconductors, the
formula (26) should be generalized to:

@ (T) = ¢ (0) 27
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Figure 4 presents the curves of the order parameter deter-
mined numerically in the range of the temperatures from
0 K to T¢. It was adopted: v = 25 meV%/2, wo = 75 meV,
and the selected values of u. In addition, the results obtained
using the formulas (25) and (27) are also plotted. It can be
easily seen that the analytical expressions reproduce the
numerical results in the correct way.

2.5 The Nernst Temperature

The dependence of the order parameter on the temperature
for u > uc differs greatly from ¢ (T') described by the for-
mula (27). In the considered case, using the (5), it is possible
to derive the formula, which allows to calculate the value of
the Nernst temperature. For this purpose it should be noted
that for T = T**, the derivative ‘Z(TT) is undefined. Next,
we consider the (5), which was differentiated at the both

sides due to the temperature:

— [v2 + oo+ 36 (T) I (¢ (T) T)] W
T
= 229 (T) I* (¢ (T) . T) (Z(T ) (28)
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Hence,

do (T) _

[v* + vu + 369> (T) I? (9 (7). T)] gz Je (0 (1), T)

AT [0+ vu 436202 (1) 120 (1) D] [ gl Ja (0 (1) T) = Jp (0 (1), T + 2621 (0 (1), T} 0 (7).

(34)

As it was already mentioned, 7** denotes the value of
the temperature, for which the denominator in the formula
(34) equals zero. In addition, the integrals 7, J4, and Jp can
be approximated as follows: I (¢ (T),T) ~ I (¢ (0), T¢),
Jalp(T),T) = Ja(p(0),Tc), and Jp(p(T),T) =~
Jp (¢ (0), Tc). The critical temperature can be calculated
from (17), while ¢ (0) should be obtained from the simplest
version of the formula (20):

_ (- ()2 7
(p(O)_Zwoexp|: ln(b2> \/ln <b2) b (v2+uv) 6 i| (35)

Transforming the denominator of the expression (34), the
final result can be obtained:

A
kpT™ = 2u? 13 (9(0),Tc) - (30

I (9 (0). Tc) — Vrou+3u22(0)12((0), Tc)

Figure 5 shows the plot of the course of the Nernst tem-
perature in the dependence on the parameter u. It may be
noted that the physical values of the Nernst temperature
(T* > T¢) exist only for the sufficiently large values of u
in the relation to v. At the same time, not without signifi-
cance is the maximum phonon frequency, which can decide,
whether the Nernst phase exists or not. For example, for
wp equal to 25 and 50 meV, the Nernst phase has not been

200}
150+ .o
< A
£ 100}
Theory
O YBCO
[m] YBCOe
50+ A Zn-YBCO
o Pr-YBCO
% Ni-NdBCO
0 50 100 150 200

T, K]

Fig. 6 The T¢c-T** diagram. The orange points represent the theoretical
data. The increase of T¢ and T** is connected both with the increase of v
and u
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observed. It should be also noted that, in the extreme case
u/v — oo, the (36) simplifies to the relationship that
binds together the parameters 7**, ¢ (0), and T¢ without
overt presence of the potentials v and u:

- _ Ja(p (0),Tc)
kpT™ = 51 .
Tp (@ (0),Tc) = 5 251 (9 (0), To)

(37

2.6 The General Form of the Diagram T¢-T**

Figure 6 presents the form of the diagram T¢-T**. The
values of the critical temperature and the Nernst temperature
were determined for v € (2.5,25)meVY/2, u e (5,10)
eV1/2, and wp = 60 meV. In addition, Fig. 6 shows the
experimental data obtained for the selected superconduc-
tors, for which the results are also summarized in Table 1.
Basing on the obtained results, we can discussed the exper-
imental values of v and u. In particular, the maximum value
of v is equal to 19.71 meV!/2, which corresponds to the
order of the value of the electron-phonon pairing potential
given in the literature [52] (~ 10 meV'/2). The maximum
value of u is much higher ([u].x = 9.42 eVl/z). From the
physical point of view, this means the large change of the
on-site Coulomb repulsion (U) caused by the small changes
of the interatomic distance (R;;), since in the Wannier rep-
resentation u ~ SU/§Rij. In our opinion, this value is to
high, which may be due to the assumed approximations (the
mean-field approximation, omitting the impact of the elec-
tron correlation, and taking into account only the s-wave
symmetry). For this reason, the presented model is too sim-
plistic to determine the physical values of the potentials v
and u. Let us notice that the calculation of u directly from
the fundamental microscopic models is extremely difficult.
The preliminary considerations of this problem the reader
can find in [53], where the all electronic one- and two-
body terms for Hubbard dimer were taken into account.
Additionally, let us note that if the hole density decreases
(np. YBCO) the superconducting phase disappears and the
Nernst region strongly expands. In this case, v generally
decreases and u increases. The similar effect is observed
for the remaining compounds—the increase of 7¢ usually
causes the increase of v and the increase of 7** is connected
with the increase of u (see in the Table 1 the case of the
disorder induced by the electron irradiation or the in-plane
and out-of-plane disorder). Of course, there are slight devi-
ations from the above rule due to the complex structure of
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Table 1 The experimental values of T¢ and 7** and the calculated values of v and u for the selected high-temperature superconductors. The

symbol p denotes the hole density (holes/Cu)

Material Type vmeV!/2 ueV1/2 Tc [K] T* [K] Ref.
YBa;Cuz07_y p = 0.062 5.76 9.42 18.6 150.2 [46]
(YBCO) p =0.079 10.50 7.24 45 128.3
p =0.107 14.21 2.46 60.5 91.8
p=0.116 15.52 6.05 64.1 84.9
p =0.120 15.52 5.81 66.5 87.4
p=0.138 17.22 5.71 80.6 104.4
p =0.150 19.01 5.52 90 105
p =0.176 19.27 5.52 92 107 [47]
[YBaQCu3O7,y]e p =0.098 13.99 6.00 57 85 [48]
(the disorder induced p =0.098 11.49 6.55 45.1 83.1
by the electron irradiation) p = 0.098 7.24 8.18 24.2 75
p =0.157 19.71 5.34 92.6 103
p =0.157 17.47 5.57 79.5 97.1
p=0.157 12.25 6.35 48.6 82.5
YBay (Cuy_yZny); O7—y x = 0.000 19.27 5.43 90 104 +5 [49]
x = 0.005 18.77 5.38 84 9% £ 5
x =0.010 18.77 5.24 79 875
x = 0.020 17.22 5.24 67 75+5
Y1-xPrxBayCu3 07y x=0.0 19.01 5.47 89.7 104.8 +5 [50]
x=0.1 18.23 5.52 83.8 99.9+5
x=0.2 15.52 5.86 68.2 95+£5
x=0.3 12.53 6.30 50.2 84.8+5
x=0.4 10.76 6.76 40.7 799+5
NdBa; (Cuj—xNix); O7-y x=0.00, y=0.0 19.01 5.66 95 115+20 [51]
x=0.03, y=0.0 14.75 5.76 59 80 £ 20
x=0.06, y=0.0 12.53 6.05 45 65 £ 20
x=0.00, y=0.2 13.76 5.90 53 75+£5
x=0.03, y=0.2 6.50 8.70 20 80+ 10

the effective potential which depends not only on v? and u?
but also on the product vu.

The presented model also suggests that, with the increas-
ing critical temperature, above 150 K, the values of the
Nernst temperature increasingly will recede from the val-
ues of the critical temperature (the red lined area in Table
1). It is possible that this interesting behavior of the Nernst
temperature was able to be observed experimentally for the
superconductors with the extremely high value of T¢. In
our opinion, the best candidate would be the compound
HgBa;Ca;Cu3Ogyy, which under the pressure at 31 GPa
has the critical temperature equal to 164 K [54].

3 Summary

We have explained some anomalous properties of the high-
temperature superconducting state in the cuprates. The con-
siderations have been based on the Hamiltonian modeling
the electron-phonon and the electron-electron-phonon inter-
action. It has been shown that the simplified form of the
Eliashberg equations, boiling down to the integral equation
for the order parameter, generalize the results, which can be

obtained using the canonical transformation. Hence comes
the immediate conclusion that the resulting model correctly
associates with each other the experimental values of the
critical temperature, the Nernst temperature, and the order
parameter at the temperature of zero Kelvin. The equation
for the order parameter resulting from the Eliashberg equa-
tions is significant, because it allows the derivation of the
analytical formulas for the basic thermodynamic parame-
ters of the superconducting state. In particular, on the basis
of the formulas for the critical temperature, the Nernst tem-
perature, and the order parameter at the temperature of zero
Kelvin, the diagram binding T¢ and T** was determined.
It was shown that the existing experimental data confirm
its form. Additionally, on the basis of the diagram, the
limitation from below for T** was set—occurring for the
critical temperature higher than 150 K.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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Appendix: The Theorem on the Upper
and the Lower Branch of the Order Parameter

Assumption: Let be the function f (x) = v+ vu + [’;—“’]2,
and the number xg = v2 +vu. We define the function series:

M= o), fP = £ (f x0)), B = fF(f (f G0)))s oo

Argument: The equations:

1= lim 7 (), (A1)
n——+o00

and

1= lim s (p), (A2)
n——+oo

determine respectively the upper and the lower branch of
the order parameter. Thus, we get immediate conclusion that
for u > uc, the (Al) determines the physical value of the
order parameter. Let us note that the discussed theorem was
numerically checked with the precision up to n = 100.
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