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Abstract Spatial dependence of the pairing potential across
the thickness of the superconducting CuO2 planes in high Tc

superconductors (HTSC) copper oxides is found by using
the Ginzburg-Landau-Gor’kov (GLG) theory. The potential
turned out to be significantly suppressed due to an effect
of non-superconducting layers, which separate the CuO2

planes. The effect leads also to the reduction of the criti-
cal temperature of these superconductors. The temperature
dependence of the effective energy gap was calculated in
this work.

Keywords High Tc superconductivity · Superconducting
layers · The pairing potential · Energy gap · The boundary
conditions · Ginzburg-Landau-Gor’kov theory

1 Introduction

High Tc superconductors (HTSC) are mainly layered cop-
per oxide superconductors with a weak interaction between
the superconducting CuO2 planes which leads to strong
anisotropy of their properties. For example, the homologous
series of the Bi-based superconductors can be expressed
by the formula Bi2Sr2Can−1CunO4+2n. The groups of the
n tightly spaced identical CuO2 planes form the supercon-
ducting layers. In the Lawrence-Doniach theory [1], which
is often used for theoretical studies of the layered super-
conductors, the two-dimensional Ginzburg-Landau (GL)
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equations [2] describe the properties of the superconducting
CuO2 layers, and the interaction between them is taken into
account by additional Josephson term in the free energy. It
will be noted that the Josephson term has little effect on
the order parameter in the superconducting layers. Thus,
the model describes the Ginzburg-Landau order parame-
ter as two-dimensional function in the CuO2 layers which
changes only in the plane of the layers and is zero between
the superconducting layers. The gradient term in the free
energy along normal to the layers direction is replaced by
a finite difference which defined by Josephson term. One
of the challenges in high-temperature superconductivity is
to understand the properties of the superconducting CuO2

planes that are within a short distance of each other in
unit cell and doped with a small concentration of holes.
This is confirmed by the experimental fact that in cuprate
HTSC, superconductivity persists in ultrathin slabs (one
half unit cell thick) and, for example, Tc of the similar
Bi2Sr2CaCu2O8 ultrathin slabs is equal to that of the high Tc

phase itself [3]. Therefore, the study of the properties of thin
superconducting plate in the framework of the GL theory is
relevant and important for understanding the properties of
HTSC.

Shapiro steps on I -V curves of Josephson junctions
made on high Tc superconductors [4] and flux quantization
experiments in these superconductors [5] demonstrate that
superconductivity in these materials involves the pairing
of electrons as in conventional Bardeen-Cooper-Schrieffer
(BCS) superconductors. It enables to use the results of the
microscopic theory of Gor’kov [6] in case of HTSC. But it
should be noted, in spite of the wealth of results, we still
do not have a consensus on the mechanism of the pairing
interaction leading to superconductivity in the cuprates. As
shown in the work [6], the GL equations can be obtained by
using the microscopic BCS theory [7], the role of the order
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parameter realizes the pairing potential �. In the absence of
fields and currents in bulk homogeneous superconductor the
pairing potential is equal to the BCS energy gap �m.

The boundary conditions turned out to depress the GL
order parameter and to decrease Tc of the thin layers com-
pared to the critical temperature of the massive supercon-
ductor (Tcm) [8–11]. For example, the origin of the effect in
the layered HTSCs is the depression of the superconduct-
ing order parameter in the tightly spaced superconducting
CuO2 planes by the neighboring insulating layers in the
unit cell. The critical temperature dependence of the HTSC
copper oxide superconductors as a function of the number
of identical superconducting CuO2 planes in the unit cell
was explained in [12, 13] by using this approach. Thus, the
GLG theory is important to study of the HTSCs. Here, we
have examined the spectrum of elementary excitations in
high Tc superconductors taking into account the boundary
conditions.

2 Statement of the Problem

Results of numerical study of the effect of the boundary
conditions on the GL equations were reported in [11] for
superconducting plates in a magnetic field. In the absence
of magnetic field, the GL equation describing the order
parameter can be written in the form:

∇2ψ + 1

ξ2

(
ψ − ψ3

)
= 0 (1)

where ξ is the coherence length. Here, the direction perpen-
dicular to the plane of the superconducting plate is denoted
by x, and the plate is located in the region −d/2 ≤ x ≤
d/2. The order parameter in the GL theory is written as
� = |�|eiθ , where |�| is the module and θ is the phase
of the order parameter. In (1), we use the normalized order
parameter ψ = �/�0, where �0 is the equilibrium value
of the order parameter in the bulk superconductor without
magnetic field. For numerical solution of (1), it is neces-
sary to define boundary conditions. The coherence length
ξ(0) = ξ(T = 0) is known to be short in HTSCs. Therefore,
the role of the surface member in the expression for the free
energy increases in these superconductors. As a result, the
boundary condition for the order parameter is shown in [14]
to be written in the form:

∂ψ/∂x = 1/�ψ |s (2)

where � is a phenomenological parameter, which was
called as extrapolation length in [14]. It is shown in [8, 14]
that the � is defined by the properties of the material to

witch the superconductor is bordered. The phenomenologi-
cal approach used in [14] gives the following relation for �:

� = ξ2(0)Tcm

l(Tcm − Tcs)
, (3)

where l is a lattice parameter and Tcs is the critical temper-
ature of the surface layer, whose thickness is of the order of
the lattice constant l.

Microscopic analysis of the extrapolation length was
given in the works [8, 9] in the framework of the BCS the-
ory. In case of dirty superconductors, Simonin [9] obtained
that

� = N(0)Vepξ
2(0)

a
(4)

where a is the Thomas Fermi screening length, which in
metals is of the order of the lattice parameter l, N(0) and
Vep are the bulk values of the density of states at the
Fermi energy and of electron-phonon interaction energy of
the electrons in the Cooper pares. The interaction potential
N(0)Vep defines the critical temperature in the BCS the-
ory. For classical low-temperature superconductors (LTSC)
N(0)Vep ≤ 0.3. Simonin showed that the relation (4) suc-
cessfully explains the decrease in the critical temperature
with decreasing of their thickness observed in thin films of
Nb, Pb and Bi.

It will be noted that the extrapolation length is very long
in the LTSC [8], this explains the validity of the commonly
used boundary condition in this case:

∂ψ/∂x = 0|s . (5)

The order parameter is equal to �0 on the boundary of the
LTSC with a large coherence length ξ(0) [8], and hence, the
energy gap in the spectrum of excitations is equal to �0 near
the boundary. In this case, the extrapolation length aspires
to infinity. It provides the ability to measure the energy gap
using conventional tunneling methods, in which only the
surface layer with thickness of the order of ξ (0) plays a main
role.

On the other hand, the order parameter is suppressed
at the boundary of the high Tc superconductor due to the
boundary conditions (2). Moreover, it is suppressed in thin
layers containing n tightly spaced identical superconducting
CuO2 planes, of which copper oxide superconductors are
composed. The pairing potential determined from (1) with
boundary conditions (2), will be space-dependent �(x),
which will behave as ψ(x). In our work, (1) with bound-
ary conditions (2) are solved by numerical methods. The
equation was transformed for the purpose as:

(∂ψ/∂x)2 = 1

ξ2

[
ψ(0)2 − ψ(x)2 − 0.5(ψ(0)4 − ψ(x)4)

]
,

(6)
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and the boundary conditions at x = ±d/2 can be written as:

ψ2(±d/2) = 1+(ξ/�)2−
[(

1 + (ξ/�)2
)2 − 2ψ2(0) + ψ4(0)

]0.5

,

(7)

where ψ is the normalized order parameter or the normal-
ized pairing potential ψ = �(x)/�m. In this case, �m is
the pairing potential of a hypothetical bulk superconductor
consisting only of the superconducting CuO2 planes and the
order parameter is not suppressed by neighboring nonsuper-
conducting layers. The pairing potential accepts this value
in the depths of such a superconductor at a great distance
from the surface.

The coherence length ξ depends on temperature, so (6) is
formally valid at any temperature T , where the order param-
eter is small ψ << 1. Therefore, we present some results of
the calculations for temperatures sufficiently remote from
the Tcm to analyze experimental results. For this purpose,
we use the empirical temperature dependence of ξ(T ):

ξ = ξ(0)√
1 −

(
T

Tcm

)2
. (8)

The dependence is based on the empirical temperature
dependence of the upper critical magnetic field:

Hc2 = Hc2(0)

[
1 −

(
T

Tcm

)2
]

, (9)

which fits well the experimental dependences. As a result,
the dependence (8) can be obtained by using the well known
expression for the upper critical magnetic field:

Hc2 = 	0

2πξ(T )2

where 	0 is the magnetic flux quantum. At high tempera-
tures T → Tcm, the dependence (5) is close to the usual GL
temperature dependence for ξ(T ):

ξ = ξ(0)√
1 − T

Tcm

,

In addition, the standard BCS expression is used to find the
temperature dependence of the energy gap in the limit of the
weak electron-phonon interaction

1

N(0)Vep
=

kB�D∫

0

dε√
ε2 + �2

m(T )
th

√
ε2 + �2

m(T )

2kBT
, (10)

where kB is the Boltzmann constant, �D is the Debye tem-
perature, and ε is the energy of the free electrons. In this

case, �m(T ) is the temperature dependence of the gap in
the spectrum of excitations of a hypothetical bulk supercon-
ductor consisting only of the CuO2 planes. Also, we assume
that usual BCS relation connecting �m and Tcm is valid:

2�m(0) = 3.52kBTcm. (11)

In the BCS theory, the Tcm is the mean-field critical tem-
perature of the hypothetical superconductor consisting only
of the CuO2 planes where n = ∞. The estimations, which
were made in the works [12, 13] by using the method,
demonstrated that the best agreement the theoretical and
experimental dependencies of the critical temperature as a
function of the number of superconducting CuO2 planes
was achieved for the Tcm = Tc(n = ∞) = 155 K. For this
reason, the value of Tcm is used in the present study.

3 Results of the Calculations

In thin superconducting layers, the boundary condition (2)
results in the order parameter depression compared to the
order parameter of the massive superconductor [9–11].
Figure 1 shows the dependence of the parameter in the cen-
ter of a layer obtained from (6) as a function of the thickness
of the layer at zero temperature T = 0 for different �. We
denote ψ(x = 0, T = 0) as ψ0. It will be noted that the
dependence ψ(x) reaches a maximum in the center of the
layer [11]. Since the GL theory is applicable only for small-
order parameters, it is usually believed, that the temperature
range of its applicability is restricted to the temperature
region close to the critical temperature. But Fig. 1 demon-
strates that there is a thickness range where 0 < ψ0 << 1
for different finite �. It is very important, because small
value of the order parameter is the main condition for the
validity of the GLG theory [6, 8]. In this case, (6) can
be used and the superconducting order parameter can be

Fig. 1 The dependences of the order parameter in the center of a layer
ψ(x = 0) at zero temperature and critical temperature Tc (dashed
lines) as a function of the layer thickness for different �
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interpreted as pairing potential. Thus, the pairing potential
of the thin superconducting layers is determined by the sim-
ple (6) not only near Tcm but in a wide temperature range in
this limit. The approach can be used in case of the cupper
oxide HTSC.

We also show in Fig. 1 the thickness dependence of the
critical temperature Tc for two � by using dashed lines.
Early works [9, 10, 14] had shown that the boundary condi-
tion (2) fixes the critical temperature of the superconducting
film through:

tan[d/2ξ(Tc)] = ξ(Tc)/� (12)

In case d << ξ(Tc), the relation can be written as

d� = 2ξ2(Tc). (13)

Using the empirical temperature dependence of ξ(T ) (8),
we can write

Tc(d) = Tcm

(
1 − 2ξ2(0)

d�

)0.5

(14)

Figure 1 shows the Tc(d)/Tcm dependences obtained from
the relation (12). It should be noted, the Tc(d)/Tcm are close
to the ψ0(d) dependences for different �.

Temperature dependence of the order parameter can be
obtained from the GL free energy to second order in the
ψ0, that is correct in the limit ψ0 << 1 [9]. Evidently, in
the case d << ξ(Tc), the ψ0(x) = const. Thus, in normal-
ized units, the superconducting GL free energy, in absence
of external magnetic field, reads as:

F ∼ ψ2
0

[
−d/ξ2(T ) + 2/�

]
(15)

Second term in the formula is added to take into account an
influence of the superconducting thin film surface. Taking
into account (13), we have

F ∼ dψ2
0

[
ξ−2(Tc) − ξ−2(T )

]
(16)

Using the formula (8) for the ξ(T ), we receive

F ∼ dψ2
0 T 2

c

ξ2
0 T 2

cm

[
1 − T 2

T 2
c

]
(17)

In case of the usual boundary condition (5), the GL theory
gives

F ∼ −dψ2
0

[
ξ−2(T )

]
. (18)

Thus, the additional term appears in (16) in comparison with
(18), and the ψ0 transforms into Tcψ0/Tcm, which explains
the correlation between Tc(d) and ψ0(d).

Since the main aim of my work is to study the effect of
the new boundary condition (2) on the properties of high Tc

copper oxides superconductors, the superconducting plate
is assumed to be formed by closely spaced CuO2 layers in
the calculations. The number (n) in each unit cell varies
from 1 to 3. The parameters Tc and � were taken close
to the values used in [12, 13] in which the Tc(n) depen-
dence was explained. Using the empirical formula (3) for
the determination of the extrapolation length and assuming
that Tcs = Tc(n = 1), we found that �/ξ(0) = 2 for
Bi-based superconductor Bi2Sr2CaCu2O8. On the hand, the
value Tc(n = 2) = 90 K using (12) leads to �/ξ(0) = 2.3.
The two values of the � determined by different methods
which are close enough indicates that the used approach is
enough reason for the study of cuprate superconductors. On
the other hand, the microscopic formula which works well
in the case of classical metallic superconductors, makes it
possible to define the interaction potential N(0)V in cuprate
superconductors. In the case of �/ξ(0) = 2.3 and a = l,
this formula gives N(0)Vep ≈ 1.4 that indicates the pres-
ence of a strong coupling interaction of the electrons in
Cooper pairs.

Figure 2a, b show examples of the distribution of the
order parameter on the thickness of the superconducting
layer, calculated by solving (6) with boundary conditions
(7). In the calculations, we use the parameters of Bi-based
superconductors. The origin of the abscissa axis corre-
sponds to the center of the plate. Figure 2a corresponds to
n = 1, and Fig. 2b to n = 2. As can be seen from the fig-
ures, new boundary conditions lead to the suppression of
the order parameter as well as pairing potential in vicinity
of the boundaries of the plate. The figures demonstrate the
thinner superconducting layers the stronger-order parameter
suppression, but the change of the order parameter across
the plate is more significant in the thicker plates with n = 2
and 3. The thickness of a single CuO2 layer is assumed to be
2.4 Å. Hence, the GLG approach for Bi-based superconduc-
tors with n = 1 is more acceptable than that one for these
superconductors with n = 2 and 3.

Fig. 2 a, b Typical space dependences of the pairing potential in the
superconducting layers. In this case, we use the parameters of Bi-based
superconductors like Bi2Sr2Can−1CunO4+2n. a The superconducting
layer with n = 1 (one CuO2 plane per unit cell), �/ξ(0) = 3.3, and b
n = 2, �/ξ(0) = 2.3
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Fig. 3 Temperature dependence of the thickness averaged pairing
potential < � > for Bi2Sr2CuO6 (scatter graph). The dashed curve
shows the temperature dependence of the BCS energy gap �(T )

Evidently, the effect of the boundaries on pairing remains
in the depth of the layered superconductors. This suggests
that the thickness averaged pairing potential plays the role of
the energy gap in these superconductors. Figure 3 shows an
example of the temperature dependences of pairing poten-
tial <�(x)> averaged across the plate. It follows from (10)
that the BCS dependence �m(T ) behaves as (Tcm − T )1/2

near the critical temperature. At finite values of �, the root
law of the temperature dependence of the thickness aver-
aged pairing potential < �(x) >∼ (Tc − T )1/2 is saved
according to the calculations. It is worthy to note that this
result is not trivial because the character of the dependence
is defined by the temperature dependency of the coherence
length ξ and the energy gap in the spectrum of excitations
of a hypothetical massive superconductor consisting only of
the CuO2 layers in the vicinity of the Tcm. The influence of
boundaries results in the decreasing critical temperature of
the plate, but in the vicinity of the transition temperature Tc,
ξ(T ), and �m(T ) are essentially constants due to the rela-
tions (8, 10). This temperature dependence of the averaged
pairing potential is explained with regard to the additional

Fig. 4 The upper curves in both figures show the temperature depen-
dences of the < � >2 to the superconducting layer with n = 1. The
lower curve show the temperature dependence of the �2(T ) obtained
in the BCS theory

surface term in the Ginzburg-Landau free energy functional,
which leads to the formula (17) which is derived under the
assumption that the plate thickness is much less than the
coherence length ξ . Hence, the GL order parameter as well
as the pairing potential has the root temperature dependence
near the Tc. Our numerical calculations show that the root
law of the dependence �(T ) is maintained in a wide temper-
ature range. For comparison, Fig. 3 shows the temperature
dependence of the BCS energy gap �(T ) obtained from the
relations (10, 11). At the same time, Tc(n) are used instead
of the Tcm. Figure 4 shows the temperature dependences
of the (< �(x) >)2 to demonstrate the root law tempera-
ture dependences more evidently. This figure corresponds to
n = 1. It would be noted, in vicinity of the transition tem-
perature, the BCS energy gap dependence for weak coupling
is:

�(T ) ≈ 3.2kBTc

(
Tc − T

Tc

)0.5

(19)

At low temperatures, the calculated ratio 2<�(x)>
kBTñ

is approx-
imately equal to 3.52, which is obtained in the BCS theory
for weak coupling. It will be noted that our calculations give
only the ratio of the �(T ) to �m(0); moreover, we believe
that usual BCS relation (11) for weak coupling is valid. In
case of strong coupling, the �(T ) should be increased with
increasing the �m(0).

4 Conclusions

We found the space dependence of the pairing potential
across the thickness of the superconducting CuO2 layers
in copper oxides HTSC. The approach proposed in this
paper is applicable also for the S–N–S structures with
weak Josephson interaction between superconducting lay-
ers made of classical low-temperature superconductors. It
is established that the pairing potential is significantly
depressed due to the influence of non-superconducting lay-
ers, which leads also to the reduction of the critical tempera-
ture of these superconductors. The temperature dependence
of the effective energy gap was calculated in the work by
using GLG approach. The gap appears to increase with
the number n of CuO2 planes per unit cell. Comparison
is performed of the obtained dependences with the similar
dependences following from the BCS theory. The bulk inter-
action potential in cuprate HTSC is estimated in this work
by using BCS theory. The value of N(0)Vep indicates the
presence of a strong coupling interaction of the electrons in
Cooper pairs.

Of course, the equation of the macroscopic GL the-
ory extends to a microscopic length range to analyze the
high-temperature cupper oxide superconductors in this work
which requires further study.
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