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Abstract Criminal career researchers and developmental criminologists have identified

describing individual trajectories of offending over time as a key research question. In

response, recently various statistical methods have been developed and used to describe

individual offending patterns over the life-course. Two approaches that are prominent in

the current literature are standard growth curve modeling (GCM) and group-based tra-

jectory models (GTM). The goal of this paper is to explore ways in which these different

models with different sets of assumptions, do in fact lead to different outcomes on indi-

vidual trajectories. Using a particularly rich dataset, the criminal career and life-course

study, we estimate a unique trajectory for each individual in the sample using the GCM and

GTM. We also estimate separate trajectories for each individual directly using the long

time series. We then compare these three separate trajectories for each individual. We find

that the average trajectories obtained from the different approaches match each other.

However, for any given individual, these approaches tell very different stories. For

example, each method identifies a rather different set of individuals as desistors. This

comparison highlights the strengths and weaknesses of each approach, and more broadly, it

reveals the uncertainty involved with measuring long term patterns of change in latent

propensity to commit crimes.
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Introduction

Criminal career researchers have long sought to describe the nature of the criminal career,

or path of offending over age. The criminal career paradigm (Blumstein and Cohen 1987;

Piquero et al. 2003) focused attention on estimating stochastic parameters that described

offending at different stages of individuals’ criminal careers. Developmental theorists seek

to describe and explain the average path or trajectory of offending over the life-course

(Gottfredson and Hirschi 1990; Sampson and Laub 1993; Thornberry 1987; Moffitt 1993).

Some of these theorists, most notably Moffitt (1993), advocated typologies, suggesting that

there were groups of people with fundamentally different paths. More recently, life course

criminology on the other hand started concentrating on within-individual developments in

crime over time and recognized that the causal factors influencing development may shift

as the individual progresses along his or her behavioral pathway. This in turn asks for the

temporal ordering of events and of the causal processes leading up to these events to be

made explicit. The developmental and life course researchers often differ on the extent to

which these trajectories are predetermined. Theories that attempt to more fully address

these developmental and life course aspects of criminal behavior have been advanced only

in the last 20 years (Thornberry 1997; Farrington 2005).

Until recently, however, two fundamental obstacles existed which prevented further

exploitation and testing of the main insight from the criminal career researchers that focus

on individual tracks or paths of offending over age.1 The two obstacles were lack of

longitudinal data at the individual level and lack of statistical methods which could provide

a more nuanced description of offending over the life-course (Hagan and Palloni 1988).2

Since that time, many more individual datasets have been constructed (for some highlights,

see Thornberry and Krohn 2003) and a number of statistical approaches have been

developed to better describe individual offending over time.

The two most commonly used statistical approaches to the study of offending over the

life-course in criminology are standard growth curve models (GCM) and group based

trajectory models (GTM). Although much of the discussion in the literature is about the

distribution of individual trajectories, these approaches do not estimate individual trajec-

tories. Rather, they make strong (and different) assumptions regarding the distribution of

the individual trajectories in the population. The GCM assumes that the population is

distributed continuously with individual random effects around each of the key parameters

of the growth curve following a known distribution. The key here is that the models assume

that the distribution of growth curves can be described by a known parametric distribution,

such as a jointly normal distribution. Once this distribution is assumed, the population

parameters (mean and variance) can be estimated using standard statistical techniques.

GTMs, in contrast, assume that the continuous distribution can be approximated by a

discrete number of fixed points. No assumptions about parametric distributions are

1 But see for example the following empirical work that uses empirical estimates of individual trajectories:
Laub et al. (1998), Sampson and Laub (2003, 2005), Nagin et al. (1995), Osgood (2005), Bushway et al.
(2003) and Barnett et al. (1989).
2 In the 1980s, researchers in the criminal career tradition were forced to assume stable rates of offending
for one or two groups of offenders. Sloped trajectories could be achieved through the estimation of a second
desistance parameter, which carried with it the unsatisfactory (for some) assumption that desistance was a
point in time event, rather than a process (Barnett et al. 1987).
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required. The standard growth model is more efficient (i.e. fewer parameters), but requires

stronger parametric assumptions than the group-based models.3

There has been a fairly long discussion in criminology about the merits of GTM, and by

comparison, GCM. Much of the controversy about the use of GTM involves concerns that

the retrospective trajectory groups, which are useful for exploring basic patterns in the

data, can then be reified and interpreted as existing prospectively. Critics fear that poli-

cymakers will interpret the existence of a chronic group of offenders to mean that there

exists a real, identifiably distinct group of offenders who are predetermined to be chronic

offenders. This possibility is real, but is not implicit in the method—in fact, the basic GTM

statistical model does not identify who is in each group, but rather provides an estimate of

the proportion of the population in each group. Bayesian methods are then required to

assign a person to a group. Although done less often, GCM can also use Bayesian methods

to identify retrospective trajectories or paths for each individual. Neither method says

anything about whether these paths are predetermined.

Perhaps part of the problem is that the GTM methods were used almost from the

beginning to test typological theories of crime (Nagin et al. 1995), and many of the papers

published using GTM focus on between-group variation. For example, the extent to which

GTM identifies different groups has been taken as evidence against Moffitt’s theory. In

reality, typological theories in criminology—like Moffitt’s—are not theories about the

nature of groups, but about the existence of qualitatively different patterns (and etiologies)

of offending over the life course. Therefore, it is vitally important that researchers

understand that the GTM’s use of groups is nothing more or less than a device by which the

underlying distribution of the population can be better explicated. Groups are not a the-

oretical requirement for this discussion, but rather a statistical device through which

parametric assumptions can be avoided.

Of course, since both approaches (GCM and GTM) make different assumptions on the

underlying distribution, it is important to understand the relative strengths and weaknesses

of each approach. Raudenbush (2001) attempted to lay out some ground rules for when the

additional complexity of group based models might be appropriate. His main argument was

that if all individuals do follow a similar basic growth pattern, the standard growth curve

model will have no difficultly fully capturing the behavior of all individuals. This is

especially so, because of the covariance structure of the GCM models (see also Raudenbush

2005). However, he also argues that if individuals do not all follow the same growth pattern,

the GCM may not have the flexibility to capture the between individual variation in tra-

jectories. Then the GCM in particular will not capture the behavior of the ‘‘non-standard’’

individuals. In line with this argument, Nagin and his colleagues argue that the GTM, which

approximates a continuous distribution of parameters with a discrete number of groups, and

thus not bound by a parametric distribution therefore will have more flexibility to accom-

modate different and also very distinct patterns of individual offending over time (Nagin

2005; Nagin and Tremblay 2005).4

3 A third method, growth mixture modeling (GMM) is essentially a combination of the two other methods.
It estimates groups, but then allows there to be variation around the parameters that define the groups
(Muthén 2001, 2007). We do not apply it in this paper.
4 Muthén (2001, 2007) has proposed an alternative, more complex approach, which essentially adds random
effects to the group based approach. This random effect approach, based on the standard growth curve
model, loosens the restriction that behavior is homogenous within groups. This latter assumption has been a
major sticking point for many critics of the group based approach (Raudenbush 2005; Sampson and Laub
2005). Nagin has argued that this added complexity is unnecessary (Nagin 2005). Kreuter and Muthén
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The goal of this paper is to use direct estimates of the individual trajectories as a way of

evaluating the relative strengths of either GTM or GCM regarding their ability to describe

the underlying distribution of offending trajectories in the population. We, however, do not

focus on differences in overall model fit (Kreuter and Muthén 2008) or on the underlying

distribution of trajectory coefficients. Instead, we use Bayesian techniques to estimate a

unique trajectory for each individual in the sample using GCM and GTM. In the GCM

case, these Bayesian estimates represent a weighted average of the coefficients from the

individual trajectory and total sample trajectory. The weights are based on the reliability of

the coefficient estimates, which tend to be high for the intercept and slope, but low for the

quadratic and cubic terms. In the case of the GTM, the Bayesian estimates are a weighted

average of the different group trajectories. We estimate separate trajectories for each

individual directly using time-series regression. We do so analyzing data from a particu-

larly rich dataset covering criminal behavior of a large sample over people’s full life

course, the criminal career and life-course study. To the best of our knowledge, this is the

first time anyone has examined the individual trajectories using any of these methods. We

compare the individual trajectories from GCM and GTM to that estimated by an individual

time series (the individual trajectory model, or ITM) using a number of different com-

parative metrics. Finally, we use each model to identify individuals as desistors, based on

the point estimates of the latent propensities. The models clearly categorize different

people as desistors, but we find that there are far more similarities between GCM and GTM

relative to ITM. This finding suggests that researchers should focus less on pitting the two

models against each other and more on understanding how the models capture the nature of

the underylying distribution.

How are Methods for Trajectories Applied?

To understand the background of this paper, it is important to understand why and how

methods for trajectories have been applied in life-course criminology. A review of the

literature shows four distinct applications.

First, these methods have been used to describe the average or basic underlying age-
crime curve in the data. Examples with GTM include Broidy et al. (2003), and Nagin and

Tremblay (2005). Examples with GCM include Lauritsen (1998), and Raudenbush and

Chan (1993), and in a comparison framework, Kreuter and Muthén (2008), which applies

both GCM and GTM.

Second, these methods have also been used to characterize the variety of individual
trajectories underlying the basic pattern. Piquero (2008) reviews the large and growing

number of studies (80 at his count) that have applied GTM to longitudinal data sets in

criminology. In a sense, these papers focus on average offending over age, but they also

begin to look for distinct patterns that can be studied for their own sake, such as chronic

offenders. Many of the studies reviewed by Piquero also begin to look for risk factors that

can predict ‘‘membership’’ in these different trajectories. Other papers focus specifically on

characteristics of the underlying distribution. For example, Hay and Forrest (2006) use

GTM to describe the variation in the distribution of self-control trajectories in adolescence.

They estimate an eight group model, and conclude that there is a substantial amount of

Footnote 4 continued
(2008) do a side by side by side comparison in terms of fit using the Cambridge data used by Nagin and
Land (1993).
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both absolute and relative stability in self control by looking at the paths described by the

eight groups. Bushway et al. (2001, 2003) argue for the use of GTM to identify a group of

desistors who can then be studied. A number of scholars have also used GTM to look for

typologies of offenders as described most prominently by Moffitt (1993). See, for example,

work by Nagin et al. (1995), Sampson and Laub (2003) and Blokland et al. (2005).

It is worth noting that there are no examples above in which the GCM is used to identify

distinctive paths, for either individuals or groups. GCM is almost always used in crimi-

nology as a regression model to relate explanatory variables to offending over time for the

group on average. In this case, the GCM is basically modeling the residuals to create more

efficient estimates, and little attention is paid to the coefficient estimates on the age/time

variables. However, as we will show, the GCM model can easily be used for this purpose,

and such use can help shed light on the underlying differences between the two models.

A third application of GCM and GTM approaches is as a control for individual het-
erogeneity as described by these trajectories as they study the impact of time-varying
covariates on offending. These approaches move beyond fixed effect or random effect

approaches that only seek to control for stable fixed effects when studying the impact of

time-varying covariates.5 Prominent examples of the use of GCM for this purpose include

the study of marriage and work by Horney et al. (1995) and Laub and Sampson (2003). In

reality, however, the GCM is a residual model, meaning that the random effects summarize

what is left rather than control for unobserved heterogeneity. Individuals interested in

controlling for individual differences have to take the additional step of decomposing the

time-varying covariates into between individual and within individual terms as done in

Horney et al. (1995). The GCM will provide results that are very similar to what can be

achieved through a fixed effect panel model.

Examples that use GTM to control for individual heterogeneity include Lacourse et al.

(2003) for gangs, Nagin et al. (2003) for school failure and Laub et al. (1998) and Blokland

and Nieuwbeerta (2005) for marriage. In a related approach, researchers have used the

groups from the GTM models to match similar individuals in order to assess the impact of

various time-varying covariates on crime and delinquency (Haviland and Nagin 2005; Apel

et al. 2007; Nieuwbeerta et al. 2009).

Researchers have also used individual trajectories to control for individual differences.

Laub et al. (1998), for example, control for posterior probabilities estimated using GTM in

a model of marriage. This approach in effect controls for individual trajectories, since each

set of posterior probabilities corresponds to a particular individual trajectory.

Fourth, researchers have started to suggest using GCM and GTM to identify curves/
trajectories which they then try to explain using time-varying covariates. Osgood (2005)

presents a good discussion of this issue within the framework of GCM. In this framework,

Osgood is primarily worried about explaining the average age-crime curve. Thornberry

et al. (2007) and Blokland and Nieuwbeerta (2005) start to look at this issue of explaining

patterns of long term change using the GTM. Blokland and Nieuwbeerta (2005) are

concerned primarily (but not exclusively) with explaining the average pattern. Thornberry

et al. (2007) focus on the behavior of smaller groups of individuals. The logical extension

of this work is to explain individual trajectories.

5 Standard panel data analysis that only seek to control for a fixed effect include papers by Gordon et al.
(2004) on gangs and Paternoster et al. (2003) on the effect of adolescent work on crime. Fixed effect models
are essentially individual trajectory models, where the trajectory is a constant, or a flat line (the mean).
Researchers attempt to explain variation around the mean with the time-varying covariates.
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In a similar vein, Bhati (2007) used individual trajectories to generate estimates of the

amount of offending prevented during periods of incarceration. This is similar to what

Blokland and Nieuwbeerta (2007) did using GTM. In this case, rather than investigate

whether a certain set of time-varying covariates could change the residual trajectory curve,

these researchers use the residual trajectory curve to ‘‘fill in’’ missing holes in the

offending trajectories. Eggleston et al. (2004) conduct a similar exercise when they esti-

mate GTM with and without controls for time spent in prison. The difference between the

two curves is an estimate of the number of crimes ‘‘prevented’’ by prison. In these

examples, the purpose is more descriptive rather than causal but nonetheless involves

looking at the relationship between time-varying covariates and offending.

This Study

In this paper, we take the focus off of the more conceptual discussions about possible

misconceptions that can arise from using average curves from the entire sample or from

groups. Instead we ask about the performance of these methods when they are asked to

describe the individual trajectories thought to exist in the sample. Both the GCM and GTM

models were designed to approximate a continuous distribution of individual trajectories

(Raudenbush 2005; Nagin 2005). And, although it has rarely been done in this field, both

approaches can be used to estimate individual curves.

The central aims of this paper are (1) to examine the quality of the predicted average
trajectories, (2) to examine the quality of the estimated individual trajectories, and (3) to

illustrate how the different assumptions of the models lead to different conclusions in

criminological research—especially on desistance from crime.

We are aware of no study that has estimated and compared the individual trajectories

obtainable from each of these (GCM or GTM) models in any context, including offending.

Yet the full model in each case describes not just the average path but the full distribution

of individual trajectories. Given that criminology as a discipline has been intensely

interested in the underlying distribution of the age-crime curve, this failure to describe the

actual population of trajectories represents a shortcoming in life-course research.

The ultimate solution to this problem would involve an explicit study of the distribution

of intercept, slope and quadratic terms that result when each individual trajectory is esti-

mated separately. This empirical or estimated distribution could then be compared with the

distribution of intercept, slope and quadratic terms estimated by GCM. This comparison

would be somewhat harder to accomplish in GTM, but some approximate comparison

could be made. While relatively straightforward with linear-regression techniques, such an

enterprise is daunting in the non-linear world of most offending analyses.6

In this paper, we take a less ambitious first step and compare the individual trajectory

for each person (ITM) with Bayesian estimates of the individual trajectories from both the

GTM and GCM models. These Bayesian estimates from both the GTM and GCM are

weighted averages of the individual and group means, and as such are explicitly biased

estimates of the individual trajectories. On the other hand, the use of group data allows for

much more precision than can be achieved by focusing only on using individual time-series

regression (the ITM model). These individual models, which are based on only 40

observations on average, have very wide confidence intervals, and therefore leave much

6 This might explain why to our knowledge no one has done this.
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doubt as to the actual path of the individual trajectory. The Bayesian estimates represent an

attempt to achieve a balance between bias and precision.

This paper’s first contribution, therefore, is to show that the two methods (GCM and

GTM) appear to describe the average trajectories equally well. Second, the paper shows

that there is a great deal of ambiguity about the nature of the individual trajectories. Third,

the paper shows that the methods diverge (predictably) in whom they identify as desistors.

This divergence can be taken as a measure of the uncertainty surrounding this question, but

also highlights the different strengths and weaknesses of the different approaches.

Data

The data set used in this study is compiled from the large-scale criminal career and life-

course study (CCLS). The CCLS is a representative sample of 4% of all the cases of

offenses tried in The Netherlands in 1977.7 The original sample consists of 5,164 indi-

viduals (Nieuwbeerta and Blokland 2003).8

We place two restrictions on the sample used in the analyses. First, to avoid problems

associated with having only a small number of individuals defining offending trajectories

at the oldest ages, we limit the offending trajectories to ages for which data was available

on at least 200 individuals. This restriction has the effect of ending our observation of the

offending trajectories at age 72. Second, here we limit our analysis to the 4,615, individuals

on which information on life circumstances is available, which follows the sample

selection used in Blokland et al. (2005). For 464 individuals of the 4,615, the decision of

the public prosecutor and/or judge led to an acquittal or ‘‘innocent’’ decision. So, these

were not convicted in 1977, whereas the remaining 3,971 were.

Police records pertaining to the 1977 offense that led to inclusion in the study offer

information on personal characteristics of the sampled individuals. 11% of the sample are

female offenders, and 10% are of non-Dutch origin. Approximately 35% are alcohol

dependent and 2% drug dependent in 1977. Death records were searched to account for

mortality in the data during the follow-up period. In the 25 years following the sampling

offense, 17% of the sampled offenders died before 2003—the end of our follow up period

(see also Nieuwbeerta and Piquero 2008).

Measures

Extracts from the general documentation files (GDF) of the Criminal Record Office (‘‘rap

sheets’’) were used to construct the entire criminal careers of the sampled individuals. The

GDF contain information on every criminal case that has been registered at the Public

Prosecutor’s Office. These extracts were supplemented with cases that normally would not

be mentioned due to expiration periods. In this way, the entire criminal history before 1977

for every individual in the sample was reconstructed. Note that in The Netherlands a

person is not given a ‘‘blank sheet’’ upon becoming an adult and the extracts therefore

contain information on both adult and juvenile offenses. Next, every new entry between

1977 and 2003 was recorded. Although the GDF contain information on all offenses that

have led to any type of judicial action, we choose to use only information on those criminal

7 Note that the offenses tried could end as release, acquittals and convictions.
8 For more details about the sample, see also Blokland and Nieuwbeerta (2005), and Blokland et al. (2005).
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law offenses followed by a conviction or a prosecutorial disposition due to policy reasons,

thereby excluding non-criminal law offenses (traffic and economic offenses, for example)

and cases that resulted in acquittal or a prosecutorial disposition due to technicalities.

Figure 1 shows the number of individuals observed at each age for the final sample.

Clearly the follow-up periods for the individuals differ substantially.9 The first feature of

this figure readers should note is that there is little attrition up until age 40. Second, we

have indicated quartiles by length of follow-up in this figure. This shows that we observe

one quarter of the sample for 32 years or less (ages 12–43), 50% of the sample for

33–46 years, and a quarter of the sample for over 46 years. 644 persons had no convictions

over the entire period they were observed, 917 had convictions in only 1 year, 581 had 2

convictions in two different years, 982 had convictions in 3–5 years, 978 had 6–12 con-

viction years and 513 had 13 or more years in which they were convicted.

In total our dataset has 184,078 observations, i.e. person-year combinations. A large

proportion (87.5%) of these person-year observations are absent any convictions. One

conviction is observed in 7.5% of the person-years, 2–5 convictions is observed in 4.6% of

the person-years, and just 0.4% of person-years had 6 or more convictions. To simplify the

analysis, we therefore focus on prevalence rather than frequency of conviction. This

decision allows us to use a simpler logit framework rather than a more complex count

model but does not change the fundamental premise of this paper.10 So, instead of focusing

on the rate of conviction, we focus on the probability of conviction in any given year.

Fig. 1 Sample size by age

9 We did a sensitivity analysis in which we tested whether the conclusions differed when reducing the
window of observations to the period age 12–50. The results were very similar and did not lead to different
conclusions.
10 We also attempted to model ITM, GCM and GTM curves with Poisson models, retaining the full
conviction count information by person-year instead of dichotomizing convictions counts. While this poses
little difficulty for GCM and GTM models, it poses difficulties for many of the ITMs. Because we wanted to
limit modeling differences between the three methods, we used logistic regression models for each, as they
could be consistently applied in each framework.
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Methods

Panel Models

We estimate three separate models, the individual trajectory model (ITM), a standard

growth curve model (GCM), and a group-based trajectory model (GTM), and use the

models to generate individual trajectories from each of the models for each of the 4,615

people in the sample.11

All of the models are cubic polynomial logit models. In other words, we model the

probability of offending as a cubic trend over the observed ages, which range from 12 to

72. All models have the same functional form:

Ln
pt

1� pt

� �
¼ PrðYtÞ ¼ a0 þ a1Aget þ a2Age2

t þ a3Age3
t þ et ð1Þ

where pt is the probability of a conviction at age t, and age, age2 and age3 the cubic

functional form of the relationship between age and the probability of a conviction. This

cubic functional form in effect means that the path can go up and down and up again and

that the peaks can be asymmetric. Each individual gets his own intercept, slope coefficient,

etc. This is assumed to be the same for all three types of models (ITM, GCM and GTM).

We can argue that we need more or less flexibility to truly capture the path. There is, of

course, a tension between complicated functional form that can capture variation and

simpler functional forms that provide easy to understand descriptions of the basic path. A

simple functional form will not capture all meaningful variation, and there well may be

interest in explaining variation NOT captured by the retrospective path (Osgood 2005).

However, as the models become more flexible, the summary information provided by the

paths becomes more complex. Criminologists have generally resolved this debate by using

quadratic or cubic functional forms. We follow suit and use the cubic functional form on the

conceptual belief that cubic functional form captures the individual age-crime curve path.12

The only differences between the ITM, GCM and GTM models are in the parametric

assumptions, i.e. in the way the parameters of the models are assumed to be distributed

over the population. In the ITM model, there are no assumptions about the way the

parameters are distributed over the population. The parameters are unique for every single

member of the sample: a separate trajectory is estimated based on that individual’s

observations. The model estimates are parameters (c) estimated by a separate analysis for

each and every individual i:

PrðYitÞ ¼ a0i þ a1iAget þ a2iAge2
t þ a3iAge3

t þ eit

where a0i ¼ c0i; a1i ¼ c1i; a2i ¼ c2i; a3i ¼ c3i

ð2Þ

11 For a book length treatment of the GCM and GTM, see respectively Raudenbush and Bryk (2002) and
Nagin (2005).
12 Bushway et al. (2003) and Blokland et al. (2005) have observed that cubic models tend to produce an
uptick at the end by definition. Blokland et al. (2005) propose using splines to fix this anomaly. We chose
not to use splines in this paper because of the added complexity caused by adding two additional trend
terms, particularly for ITM models with limited variation in the dependent variable. As a consequence, all of
the pictures will have upticks at the end. While unsightly, we do not believe that the upticks disadvantage
any one approach, and therefore do not affect the comparison.
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In the GCM model the parameters are assumed to be jointly normally distributed over

the population. The model estimates a mean for each of the effect parameters (c’s) and

variation around the means (l’s):

PrðYitÞ ¼ a0i þ a1iAget þ a2iAge2
t þ a3iAge3

t þ eit

where a0i ¼ c00 þ l0i; a1i ¼ c10 þ l1i; a2i ¼ c20 þ l2i; a3i ¼ c30 þ l3i

ð3Þ

where l0i are normally distributed with mean = 0 and variance = r. These individual

random effects on each coefficient are allowed to co-vary.

The GTM assumes that the individual specific parameters differ across groups of

individuals but are the same within each group. For each group k, separate trajectories (and

thus intercept, slope coefficient, etc.) are estimated:

PrðYitÞ ¼ a0i þ a1iAget þ a2iAge2
t þ a3iAge3

t þ eit

where a0i ¼ c0k; a1i ¼ c1k; a2i ¼ c2k; a3i ¼ c3k

ð4Þ

Although the GTM assumes that each individual actually belongs to a group, the model

itself only estimates the proportion of the population that belongs to each group—it does

not identify who belongs to which group. However, Bayesian techniques can be used to

estimate posterior probabilities of group membership in each group.

Obtaining Individual Predictions

From the estimated parameters of the models we can obtain predictions for each time point

for each individual. For the ITM, the parameters can be used directly to estimate a tra-

jectory for every single individual over the age range in question.13 In other words, we get

a predicted probability of offending for each year in which we have an observation for the

individual.

For the GCM, the full model has random effects on each parameter. Bayesian methods

are used to actually estimate an effect for each individual on each parameter. These

individual specific parameters can be used to generate a separate trajectory for each

individual. These Bayes, or shrinkage, estimates, are a weighted average of the individual

estimate from Eq. 2 and the average parameter for the entire sample from Eq. 3.

a�0i ¼ kic0i þ ð1� kiÞc00

where ki ¼ reliability ¼ Varðc00 þ l0iÞ=Varðc0iÞ
ð5Þ

The reliability parameter is the proportion of the total parameter variance that is cap-

tured by the random effect around the parameter. Additional variation in the ITM that is

not captured by the random effect must be individual specific noise. If the error captured in

the two models are essentially the same, then the reliability parameter will be close to 1,

and the Bayes estimate will converge to the individual estimate from Eq. 2. However, if

the variance around c00 is small relative to the variance in the individual equation, then the

individual estimate is unreliable, and the Bayes estimate will converge to the sample

average for that parameter.

13 The ITM models were inestimable for people with no convictions. As a result, we simply assigned these
people a trajectory where the probability was zero throughout the time period.
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If the reliability parameter is less than 1, then by definition, the Bayes estimate will be

biased away from the individual parameter estimate from the ITM. This deviation is

justified on efficiency grounds. In fact, the relative efficiency of the ITM relative to the

GCM for any given parameter is the reliability coefficient. This equation makes the

tradeoff between bias and efficiency explicit. The estimates of the coefficients for the

individual from Eq. 2 are unbiased, but inefficient (large confidence intervals). The esti-

mate of the sample mean from Eq. 3 is a biased, but more efficient, estimate of the

individual coefficient. The Bayes estimate represents a weighted average of the two esti-

mates, where the weight is the relative efficiency of the two models.

For the GTM model, the posterior probability of membership in each group for each

individual can be generated using Bayesian statistics. The underlying statistical model

assumes everyone belongs to a group with probability one—the posterior probability

represents our best guess as to which group that person belongs. Imagine a four group

model. An individual j might have, for example, a 90% probability of belonging to Group

1, a 10% probability of belonging to Group 2, and no chance of being in Groups 3 or 4.

These posterior probabilities can be used to generate an individualized trajectory for each

person. In the above example, the predicted value in a year for this person will be 90% of

the Group 1 prediction, plus 10% of the Group 2 prediction.14 In this manner, predicted

curves are generated for each individual over the entire observed life-course.

As a result, in each case, we will end up with unique trajectories for each individual

from both the ITM, GCM and GTM model. A central aim of this paper is to examine the

differences between these obtained individual trajectories.

Comparing Individual Trajectories

To examine how well the GCM and GTM compare with the ITM, we take the simple

difference between the estimated probability from the GCM and the ITM, and the GTM

and the ITM.15 We have two basic comparison statistics. The first is to simply subtract

predicted probabilities of the ITM from the GTM or GCM for each year covered by the

data for that individual to create the signed difference (SDF).16 This can be thought of as a

measure of bias, provided that one remembers that the ITM is also an estimate and not the

‘‘true’’ value. An estimate of zero would imply that the model captures the baseline curve

and correctly estimates the probability of being convicted for a person year. A positive

SDF indicates that the panel model is overestimating the probability of conviction for that

person-year, while a negative SDF indicates that the panel model is underestimating the

conviction probability.

The second measure is one of precision. We take the absolute value of the signed
difference (ADF) which gives an estimate of the average distance of the estimate from the

baseline value (ITM) without regard to whether the estimate is too high or low. This is

analogous to the standard deviation of the estimate. The SDFs and ADFs can be calculated

14 Note that creating individual curves from weighted averages of parameters instead of weighted averages
of group curves does not take into account covariances and scaling of parameters (e.g. on a logit scale as in
this paper), and so yields incorrect individual trajectories (e.g. individual curves that exceed the highest
group prediction).
15 Comparing parameters, as opposed to predicted probabilities, is challenging because of the different
norming that each logit model uses. However, it is possible to generate estimates based on the same norm,
and we encourage future work that looks at the parameters themselves, rather than the trajectories.
16 To calculate this area precisely, we numerically integrate the difference between the curves using 100
points per year. This approach gives us an accurate estimate of the area between the curves.
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and reported for each person year. We also report average SDFs and ADFs, averaging over

(groups of) persons and/or (groups of) person years.

Identifying Desistors

The study of desistors is the study of people who first reach offending levels at which their

propensity to offend is discernably different from zero, and then experience a decline in

offending propensity such that this is no longer true. Traditionally, desistors are defined

based on their observed behavior, e.g. individuals who do not offend for a certain number

of years after an age cutoff are defined as desistors. This period of non-offending ranges

from 1 year (Warr 1998) to 11 years (Farrington and Hawkins 1991). In contrast, a number

of recent articles have stressed that people should be defined as desistors based on their

latent propensity to offend, as revealed by observed behavior, rather than on their observed

behavior. Bushway et al. (2003), for example, demonstrated that an emphasis on propensity

will lead to the identification of different people than if the focus remains only on observed

behavior. The main reason for the difference lies in the fact that not all ‘observed desistors’

have a propensity which is substantively different from zero at the end of the observation

period.

Because we are dealing with predicted trajectories of offending probability, we follow

the recent developments in the literature and use predicted trajectories obtained from ITM,

GCM and GTM models to identify desistors based on their latent propensity. We define

desistors as those individuals who have a period where their latent/predicted conviction

probabilities are distinguishable from zero followed by at least 5 years when these prob-

abilities are indistinguishable from zero at the end of their career.

Bushway et al. (2001) provide instructions to identify desistors based on the predicted

conviction probabilities for each person in all years, estimated from panel models. These

instructions are a set of rules in three steps. The first step is to identify a period of stability

at the end of each individual’s predicted trajectory. We identify a period of stability as five

or more years where the probability of offending differs by no more than .1.17 Provided a

period of stability is observed, the second step is to determine if the probability of

offending during this period is discernable from zero. Using the binomial distribution, the

probability of observing zero convictions can be calculated using the average level of

offending during this period as p, and the length of the stable period as N. People are

eligible to be considered desistors if the calculated probability of observing zero convic-

tions during this stable period is above .1.

The third and last step in determining if the person can be identified as a desistor, is to

examine a 5–10 year period immediately prior the stable period of non-offending, and to

test whether the person was convicted prior to desisting.18 As in the second step, we again

use the binomial distribution with N equal to the number of observed years. However, now

we use p equal to average offending during the three peak years during this time period.

This provides a less restrictive definition of an offender. If the probability of observing zero

17 Because the functional form of these models sometimes produces upticks at the end of individual
trajectories, we allow this period of stability to end 5 years before the last observed year. Note, in cases
where no convictions are observed, this period of stability will extend the length of the observed life-course.
These individuals are identified in the steps below.
18 When possible, this time period is equal in length to the stable non-offending period, but can be shorter if
the stable period is longer than 10 years, or if the stable period begins very early in the life-course.
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convictions given these parameters is below .1, then the individual is considered an

offender during this time period.

To summarize, we operationalize desistors as those individuals who have a period

where their latent propensities to offend are distinguishable from zero followed by at least

5 years when their latent propensities are indistinguishable from zero.

Model Selection and Comparison

Model Selection

Figure 2 compares the average raw data for the sample with the average predicted con-

viction probabilities for the ITM. On average, the ITM fits the raw data reasonably well.

The peak in the average ITM is about 2 years later than the peak year for the raw data. This

slight misspecification is caused by the limits of the cubic model. A more flexible model

would generate an even closer fit. However, most trajectories in the literature are estimated

using quadratic or cubic functional form. This reflects an attempt by researchers to balance

a desire to fit the data accurately with desire to provide a ‘‘clean’’ summary description of

the individual paths of behavior. In this paper, we decide to stay with the cubic logit model

for all models.

For the GCM, we estimated parameters with random components on each of the fixed-

parameters. The parameter estimates of this model are displayed in the Appendix. Of

course, we could have tested whether the coefficients and random effects were significantly

different from zero, and only included those random effects in the final model which were

statistically significant. However, we are interested in fitting the most general models so as

to provide the best possible estimates of the individual specific curves. Or to put it another

Fig. 2 Average raw data versus individual trajectory model (ITM)
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way, we are interested in prediction rather than inference on the individual coefficients. As

a result, the significance of the individual coefficients is irrelevant.

Using the parameter estimates, Bayesian methods are then used to actually estimate

effect-parameters for each individual on each parameter. These effect-parameters can be

used to generate a separate predicted trajectory for each individual. The most important

statistic for this model is the reliability of each coefficient, which tells us the relative

weight given to the group mean versus the ITM by each parameter. The average reliability

of the intercept is .678, of the linear term is .314, of the quadratic term is .143 and of the

cubic term is .080. This means that the individual estimate of the intercept from the GCM

will be, on average, 32.2% of the group average and 67.8% of the individual estimate. In

contrast, the cubic term will be dominated by the group average with only 8% of the value

coming from the ITM. These reliabilities are very informative, because they tell us from

the beginning that while the description of levels of conviction probabilities will vary

across individuals, the story of change in convictions probabilities over time, which is

described by the quadratic and cubic terms, will be driven primarily by the average change

in the sample, and not the individual changes as described by the ITM.19

For the GTM, before we could estimate predicted trajectories, we had to decide on the

number of groups, such that the model gives a good representation of the data. We used

Nagin’s advice (Nagin 2005) to choose a model that seemed to capture the most variation

in the data with the most parsimonious number of groups. In our case this turns out to be a

seven group model. The average maximum group membership probabilities are all above

.80 for the 1 through 7 group models, but drop below .80 for the eight group model.20

Adding more groups yields lower BIC scores, but does not add substantively different

groups. In addition, it becomes difficult to distinguish between groups as we move beyond

seven groups.21

Next, using Bayesian methods, posterior probability of membership in each group for

each individual are generated for the GTM model. These posterior probabilities then are

used to generate an individualized trajectory for each person. The individual curves are

estimated as weighted averages of each of these groups. The graph for average predicted

curves for the seven groups of the GTM is presented in Fig. 3.22 Note that not all curves

are graphed through age 72, as we stopped the graph where the number of estimated cases

dropped below 20.

It is important to point out that only one of the seven groups reaches past a .8 probability

of conviction at any age. Group 6 peaks at a conviction probability of .818 at age 28.

Because individual curves are weighted averages of these seven group average curves, no

19 It is also important to note that these reliabilities are highly sensitive to the distributional assumptions of
the GCM, and therefore should not be taken as ‘‘factual’’ estimates of the overall reliability of the data. To
the extent to which the normal distribution does not adequately capture the distribution of growth param-
eters—for example, if the distribution of the cubic terms is highly skewed—then we will incorrectly
conclude that the change is driven primarily by noise. For example, we were able to dramatically increase
the reliability of the estimates of the quadratic and cubic terms by adding an over-dispersion parameter to
the logit model in GCM (see Skrondal and Rabe-Hesketh, 2007).
20 To be clear, we are referring to the average group membership probabilities for those people who
‘‘belonged’’ to a given group X—meaning that their highest posterior probability was for group X.
21 Much like a regression model where R2 continues to improve as more control variables are included,
typically, the accuracy of the individual predicted curves derived from a GTM model will increase as the
number of groups increases. Readers should keep this in mind, especially when comparing the GTM to the
GCM model.
22 We classified individuals in the group with their highest posterior probability (see also footnote 20).
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individual estimated curve from the GTM will exceed .818. Also, this peak can only come

at age 28, the peak for group 6. Likewise, no individual curve from this model will drop

below .04 at age 28, which is the estimated value of the group with the lowest predicted

conviction probability at this age (Group 1). The basic point is that the maximum and

minimum group at each age poses an a priori bound on individual curves derived from this

model. Since the individual trajectory is a weighted average of the separate trajectories, no

individual curve can have conviction probabilities at a certain age that are higher than the

highest curve or lower than the lowest curve.

Model Comparisons

The basic model fit statistics are provided in Table 1. We have 4,615 people with on

average 40 years per person. Our final dataset has 184,078 observations. Table 1 lists the

number of parameters, and the log likelihood from each model. The ITM model uses

18,460 parameters, and therefore it is not surprising that the log likelihood for the ITM is

substantially better (almost 20,000 log likelihood points) than the log likelihood for the

other models.23 Or to put it another way, the ITM log likelihood is 34% bigger than the

next biggest log likelihood. Given this flexibility, it is reasonable to assume that the ITM

model will generate the best unbiased estimate of the individual trajectories under the

assumption that latent trajectories exist, follow a cubic polynomial, and map to behavior in

a manner captured by the logistic model. That the log likelihood is not zero means that the

ITM does not capture all of the variation in the data—the cubic trajectories are abstractions

Fig. 3 7 Group trajectory model

23 This log likelihood comes from adding up the log likelihood from each of the 4,615 models. Each model
has 4 parameters.
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that summarize the behavior over the life-course. Given the far fewer parameters used by

the other models (only 14 in the case of the cubic GCM and 34 in the cubic GTM), they

will, however, be much more efficient. The goal of this paper is to understand the tradeoffs

we make when we use the GCM and GTM models, and explore some of the implications of

our reliance on these models.

While generic model fit is not an explicit focus of our paper, it is nonetheless interesting

to compare the models. The ITM model loses in dramatic fashion to the GCM and the

GTM models when we calculate the BIC scores, which penalizes models on the basis of the

number of parameters. However, using the AIC, which penalizes models less severely for

the number of parameters, the ITM model is the preferred model.24 The added flexibility of

the model captures real variation in the underlying data.

Between the GCM and GTM, the GCM wins according to all three measures of model

fit. This suggests that the GCM is able to parsimoniously and accurately capture the

individual variation across time better than the GTM. This result differs from that found by

Kreuter and Muthén (2008).25

Results

Average Predicted Trajectories and Overall Error

The first aim of this paper is to examine the quality of the predicted average trajectories.

Therefore, the average trajectories for the ITM, the GCM and the GTM models are all

presented in Fig. 4. These trajectories represent the average of all of the individual curves

from each of the models. In other words, we first predicted the conviction probabilities for

each individual for each year, and then averaged the predicted values to create the picture

Table 1 Model fit statistics and trajectory comparisons

Model fit statistics Trajectory comparisons

Model N = 4,615,
NT = 184,078

#
Parameters

Log
likelihood

BIC AIC Mean SDF
(SD)

Mean ADF
(SD)

Individual trajectory
model (ITM)

18,460 236,554.7 228,857.7 110,029.5 Ref. Ref.

Growth curve model
(GCM)

14 -55,520.0 111,158.2 111,068.1 -0.0008 (.105) 0.065 (.084)

7 Group trajectory
model (GTM)

34 -55,604.6 111,621.4 111,277.2 -0.0008 (.115) 0.071 (.093)

Bold indicates the model winner by that statistic

24 We use the standard formulas for BIC and AIC:

BIC ¼ �2 � LLþ k � lnðNÞ
AIC ¼ �2 � LLþ 2 � k

where LL is the log likelihood, k is the number of parameters used, and N is the sample size.
25 As a comparison, we also estimated the ten-group GTM, which does in fact have better model fit statistics
than the GCM. The GTM10 uses 49 parameters to achieve this and is not the model which we chose on the
basis of criteria discussed by Nagin (2005). It is, however, the preferred model when using BIC scores and,
may therefore be the right model for use when using BIC scores to make model comparisons.
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in Fig. 4. Perhaps the most important takeaway from Fig. 4 is that the models all give very

similar average curves, indicating that they do reasonably well at describing the average

change over the life-course.

In order to perform this comparison more closely, we calculate the signed difference or

SDF by subtracting the ITM’s predicted probability from the panel model’s predicted

probability for each and every person-year. A positive SDF indicates that the panel model

is overestimating the curve for that person-year (relative to the ITM), while a negative SDF

indicated that the panel model is underestimating the curve. An SDF of zero occurs when

the two models generate an identical estimate. The average SDF of a model is thus a

measure of bias.

Table 1 presents the average results for the full sample of all 184,078 person-years.

When examining the mean SDF, the first finding is striking: the average distance between

the predicted probabilities from the panel models and the ITM are identical and very

small—less than .08 of a percentage point. In other words, on average both the GCM and

GTM panel models precisely estimate the ITM trajectories.

Predicted Individual Trajectories

The second aim of this paper is to examine the quality of the estimated individual tra-

jectories. Although, on average both panel models precisely estimate the ITM trajectories,

the question can be raised whether the models produce adequate predictions for each

individual and for each year.

A first answer to this question comes from the standard deviation of the SDF (see

Table 1). The standard deviation is large, ranging from 10.5 percentage points for the

GCM to 11.5 percentage points for the GTM. This suggests that while on average the

estimates are unbiased, there is substantial variation in the degree to which the individual

probability in any given person-year is accurately captured by the panel models.

Fig. 4 Average curves: ITM, GCM and GTM7
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A second answer to this question—that is in line with the first answer—comes from the

absolute difference or ADF, which gives us a sense of how far off on average an estimate

from the GCM or GTM is from the ITM estimate that we are using as the baseline. This

average ADF is thus a measure of precision. The mean ADFs (also presented in Table 1),

are the average difference between the predicted numbers from the ITM and the GCM/

GTMs without regard to the sign of the difference. The GCM is off on average by 6.5

percentage points, while the GTM is off by 7.1 percentage points. Moreover, these also

have wide standard deviations, suggesting that mispredictions larger than 10 percentage

points on either side of the ITM estimate are not unusual.

This variation in the estimated conviction probabilities is captured by Fig. 5a and b,

which provide SDF histograms for the GCM and GTM, respectively. The distributions of

all 184,078 person-years in our data are presented. For the GCM (Fig. 5a), the good news

is that for over 60% of the person-year observations, the bias is less than 5 percentage

points, meaning that the GCM either over or underpredicts the predicted probability of

offending (from the ITM) by no more than 5 percentage points. Somewhat more troubling

is the fact that the GCM overestimates the predicted probability of offending by 5–15

percentage points for another 20% of the person-year values. Most of these are years where

the probability of offending is either zero or very close to zero but the model predicts a

non-zero probability of offending. It is also somewhat troubling that 17% of the time the

GCM underestimates the probability of offending by at least 5 percentage points, and 7%

of the time, the probability of offending is underestimated by at least 15 percentage points.

These underestimates are most likely to occur for periods where the ITM predicted

probability of offending is relatively high.

As the average ADFs already indicated (see Table 1), the story is quite similar for the

GTM (see Fig. 5b). Although for about 63% of the person-year observations, the bias is

less than 5 percentage points, somewhat troubling is the fact that the GTM overestimates

the predicted probability of offending by 5–15 percentage points for almost 16% of the

person year values. So, both GTM and GCM flatten out the curves, deemphasizing change.

In order to provide some intuition about the nature of these predictions, we present data

from two selected individuals. These individuals were selected because they highlight the

strengths and weaknesses of the different approaches. Figure 6a shows the predicted curves

of conviction probabilities created using each of the three methods for the first person

selected. This first individual has a simple pattern of involvement, with convictions at age

18, 20, 26, 35, and 42. The ITM predicts a curve that starts at a probability of offending of

.07 at age 12, peaks at .20 at age 26, and slowly declines to a probability of .02 by age 52

when the person exits our sample. The GCM curve closely matches the ITM curve,

underestimating the ITM prediction by less than 1 percentage point in each of the 40

person-years in this example. The GTM curve is also fairly close to the ITM curve,

although it overestimates it by about 1 percentage point over the course of this person’s

life. The ADF’s are of similar magnitude, indicating as in the picture that the predictions

are fairly close on average. All in all, this is an example where both GCM and GTM panel

models capture the individual trajectory described by the ITM quite well.

In contrast, Fig. 6b provides the case of a person where the panel models do not do a

very good job of capturing the predicted curves from the ITM. In this case, the person is

convicted at ages 13, 40, 42, 44 and 49. As described by the ITM, the probability of

conviction starts out at nearly 50% with a quick decline to zero by age 18, followed by a

late peak of 40% probability of conviction at age 44. Neither the GCM nor the GTM

captures the two-peaked nature of the ITM. The curves, which borrow heavily from the

average trends, do not have the flexibility to capture the kind of intermittent offending
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described by the ITM model. However, the SDF measures of bias suggest that the models

do quite well on average. The GCM, on average, underestimates the ITM by 2.7 percentage

points every year and the GTM overestimates the ITM by less than a percentage point

every year. This result masks the fact that the models both over and underestimate the ITM

rather grossly at different points of time. This is captured more accurately by the average

ADF, which is 11 percentage points for the GCM model and 14 percentage points for the

GTM. In other words, on average the GCM and GTM predictions miss the ITM by 11 and

14 percentage points in any given year, respectively.

Fig. 5 (a) Distribution of GCM SDF by person-year. (b) Distribution of GTM7 SDF by person-year
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It is important to acknowledge that the ITM itself is also an estimate, and therefore, it is

possible that the GCM and GTM are closer to the truth than the ITM. However, by

definition, the individual trajectories of the GCM and GTM are biased towards the group-

wide average. As a result, we find the divergence of these models from the point estimate

of the ITM to be informative about the extent of the possible errors, particularly for

atypical cases such as this one, which obviously diverge from the group or average pattern

in the data.

Fig. 6 (a) Example of a well-approximated individual curve. (b) Example of a poorly approximated
individual curve
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Identifying Desistors

The third aim of this paper is to examine how the different assumptions of the models lead

to different conclusions in criminological research—especially on desistance from crime.

The question becomes how the different models identify people desisting from crime

(desistors), and whether there are substantial differences in who gets identified as a de-

sistor. This difference will be informative about the strengths and weaknesses of the

different models, and shed some light on the substantive question of how to study long

term patterns of behavior such as desistance.

We define desistors as those individuals who have a period where their latent/predicted

conviction probabilities are distinguishable from zero followed by at least 5 years when

these probabilities are indistinguishable from zero at the end of their career. In the ‘‘Method’’

section we discussed at length the three steps we used to identify desistors: (1) identify a

period of stability at the end of the career; (2) determine whether the probability of offending

during that period is not discernable from zero; and (3) determine whether the probability of

offending is discernable from zero in the 5–10 years prior the non-active period.

We applied these three steps to our data of the individual predicted trajectories derived

from ITM, GCM, and GTM models. Results are reported in Table 2. The models provide

quite different pictures of the proportion of the sample that are considered desistors. Using

the ITM, we identify 60.8% of the sample as desisters, but the GTM only identifies 36.4%

and the GCM only 27.5% as desistors. So, the ITM, which is the most flexible of the

trajectories, has the highest percentage of people who are first high enough to be con-

sidered an offender before descending to a level low enough to be considered a desistor.

The GTM is the next most flexible method a priori, given that it provides a method that is a

weighted average of different group trajectories, identifies 40% fewer people as desistors

than the ITM. The biggest difference is not in the number of people who are identified as

having a period of stable non-offending in the latter part of their career, but in the number

of people who are identified as having a period of stable offending in the 10 years prior to

that period. Clearly, the differences arise primarily from Step 3 in our procedure to define

individuals as persistors.

The GCM, which found that the reliability of the quadratic and cubic terms was

very low, does not present a very ‘‘curvy’’ picture for the individual trajectories—but

rather presents a picture of change at the individual level that largely mirrors that for

the entire sample. This means that the GCM finds both a higher percentage of life

course persistors—people who never descend to a level close to zero, and a higher

percentage of never offenders, people whose predicted offending propensity never

moves appreciably away from zero. The net result is that the GCM identifies 55%

fewer desistors than the ITM, and 24% fewer than the GTM.

Table 2 Identification of desisters (% of 4,615)

Step ITM (%) GCM (%) GTM (%)

(1) Stable period identified 94.5 96.9 97.5

(2) Non-offender during stable
period

87.7 82.0 85.6

(3a) At least 5 years observed
prior to stable period

70.5 49.6 45.7

(3b) Desistor 60.8 27.5 36.4
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Clearly, if one wants to study desistors, the method matters. Each model will identify

different (number of) people as persistors and desistors, and therefore, it is reasonable to

conclude that we will reach different conclusions about the causes of desistance.

We like to stress though that this exercise does not necessarily tell us which method is

‘‘right’’. Rather, the exercise highlights the problems that arise when working with point

estimates of offending propensity, which can only be estimated with substantial error. The

GCM chooses to be very conservative when dealing with what it perceives to be error

around the coefficients of change, and the result is estimates of individual trajectories

which rely heavily on the average path traveled by the members of the sample. This will

necessarily affect who will be identified as desistors. In contrast, the GTM is less con-

servative, because it uses a weighted average of the trajectories across the groups, rather

than the overall sample mean. However, the GTM also does not have as much flexibility at

the ITM, again because it discounts some of the variation at the individual level as noise.

As we add more groups, we add flexibility, and identify more desistors, but also lose

efficiency. The ITM identifies the most desistors, but the confidence errors around the point

estimates are huge. In fact, of the 3,971 individuals for whom individual trajectories could

be estimated (1 or more conviction year), 84% of the individual trajectories from the GCM

and 71% of the individual trajectories from the GTM fall within the 95 percent confidence

intervals of the ITM.

Conclusion

In this paper, we presented and compared individual trajectories estimated from two dif-

ferent panel models, i.e. growth curve models and group trajectory models. The exercise

was noteworthy on its face because it represents a novel approach to understanding the

differences between these two models. Of course, for some life course research, the

individual trajectories are largely uninteresting. For example, if we care about the overall

age-crime curve, the description of the individual curves is not useful or important. And

indeed, our analysis shows that each method does a very similar job in describing the

average curve.

Our results, however, are informative with respect to recent attempts to use these

methods to describe individual distributions of trajectories. For example, our comparison

shows that both GCM and GTM will do a poor job of capturing the trajectories of indi-

viduals who offend late in the life-course. Moreover, our analyses show that the different

methods result in different numbers that will be identified as desistors of crime. The

biggest difference between the approaches is not in the number of people who are iden-

tified as having a period of stable non-offending in the latter part of their career, but in the

number of people who are identified as having a period of stable offending in the 10 years

prior to that period.

Our results suggest that some reflection on earlier research on criminal trajectories,

including our own, might be in order. First, our comparison shows that both GCM and

GTM will do a poor job of capturing the trajectories of individuals who offend late in the

life-course. Yet, these patterns are exactly the trajectories which Sampson and Laub (2003)

and Blokland et al. (2005) were trying to identify using GTM in their papers on life course

persistors. More generally GTM (and GCM if used this way) will generally miss the types

of cases that do not follow the general trend, a fact which might account for the very few

papers that find late starters (Piquero 2008; Eggleston and Laub 2002; Bushway et al. 2003;

van der Geest et al. 2009). Both the GTM and GCM methods simply do a poor job of
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identifying paths that do not follow the basic trend, since the methods use the average trend

to compensate for ‘‘instability’’ in the individual trajectories.

Thus, the use of GCM and GTM may lead to the conclusion that latent traits develop

more smoothly than they actually do in practice, a finding which might cast doubt about the

conclusions that are sometimes reached about the nature of the distributions from standard

panel models. For example, consider the important discussion of the time-varying nature of

self-control discussed by Hay and Forrest (2006). They estimate a GTM for measures of

self control, and find 8 groups with largely (but not completely) parallel paths. On the basis

of this finding, they conclude that there is a ‘‘strong element of truth to Gottfredson and

Hirschi’s claim of stability, but that stability in self-control is not the rule for everyone

(Hay and Forrest 2006, p. 766).’’ Our results raise questions about the strength of that

conclusion. We have shown that the groups themselves do not capture the full nature of the

individual distribution of trajectories captured by the ITM. A weighted average of the

curves presented by Hay and Forrest which takes the posterior probabilities of assignment

into account might show considerably more crossing than anticipated in their analysis,

especially if the small changing groups have non-trivial weight for many people in the

sample.

But even if Hay and Forrest had focused on the individual trajectories estimated by

the GTM, we have shown that the GTM is predisposed to flatten the individual curves

because of its reliance on the average path to generate estimates for the individual. This

means that the GTM could overestimate the stability in the sample, and could potentially

predispose the researcher to conclude there is more stability in self-control than there

truly is. In fact, researchers apply the GTM and GCM models to their observational data

in particular since they are interested in long term and enduring changes and because

they realize their observational data is measured with error. So, researchers are explicitly

trying to ‘‘smooth out’’ the large share of within individual change. We feel that the use

of Bayesian techniques to identify the individual trajectories makes this ‘‘smoothing out’’

function both more obvious and transparent. Future research that attempts to compare

the distribution of parameters of the ITM models with the parameters estimated from the

GCM models would shed light on both the reasonableness of the assumptions of

the GCM, and the tradeoffs that are made between the group and the individual in the

GCM data.

Second, our example with the desistors identifies a problem that arises when researchers

want to talk about point estimates of individual propensities over time, as advocated by

Bushway et al. (2001, 2003). Since not everyone belongs to the group with equal proba-

bility, the curve of the desistor group does not fully describe the path of each and every

individual. And, either panel model will tend to ascribe more stability to the individual

curve than a more individualized estimate. This may lead to the inclusion of people in the

desistor group whose activity seems to defy a common sense definition of a desistor.

However, the long term variation described by the path of the so-called desistor group is

still valid variation in the data that we as researchers might want to explain.

A related issue is that the ITM model identified nearly twice as many desistors as the

GTM and GCM models using the same stochastic definition of desistors. This difference is

driven by the need in the definition to be able to observe a change from active offending to

a period of stable non-offending. Using GCM and GTM, we find roughly 30% fewer of the

convicted offenders have ever had a stable period of non-zero offending propensity than

when we use ITM.

From a policy perspective, these models suggest that a substantial proportion of

the sample of convicted offenders in The Netherlands in 1977 are offenders in name
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only—they are stochastically not different from zero, and therefore any treatment or effort

to get them to change is not really necessary. Looking at the correlates of desistance for

this subsample would be a waste of time, since there is no real change to explain.

Therefore, the GCM and GTM focus the policymakers’ attention on the smaller 30% of the

whole sample who appear to experience real change.

In contrast, the ITM includes much of the variation which the GTM and GCM essen-

tially eliminate as unreliable noise. Therefore, the ITM will identify the GTM and GCM

‘‘non-offenders’’ as people who do indeed experience real change from non-zero offending

probability to something approaching zero. Therefore, the ITM says that studying these

people whom the GCM and GTM categorize as non-changers will be worthwhile. More-

over, from a supervision perspective, the ITM approach says that more of these people are

indeed ‘‘risky’’ at the time of their conviction, and therefore are susceptible to or in need of

intervention to become desistors. The GCM and GTM perspective says that a fairly large

number of people are largely innocuous, with their ‘‘true’’ offending propensity consistent

with very low levels of offending propensity.

While the ITM is undoubtedly the best unbiased model of the individual trajectories, the

confidence intervals around these individual models are very large. The GCM and GTM

models attempt to deal with the error by producing more efficient estimates, in effect

trading off bias for efficiency. Our results show clearly that both approaches do about

equally well on average, although both models deviate quite a bit from the predicted paths

from the ITM. That analysis also brought real meaning to the low reliability estimates for

the quadratic and cubic terms on the GCM. Osgood (2005) is right—there is a lot of

variation in the data that is not captured in either the GCM or GTM models.26 This is both

a strength and a weakness, depending on the question being asked.

This message is both important and sobering for researchers interested in studying the

type of long term change captured by the logic of trajectories—the reality is that we can

only estimate our dependent variable with a great deal of error. Attempts to estimate this

variable will necessarily be highly dependent on the modeling assumptions, which should

be made explicit by the researcher. The GCM model’s reliability measures provide a useful

warning light about the potential for noise to affect conclusions. Unfortunately, GTM does

not provide such a warning signal. On the other hand, the warning signal in GCM is highly

dependent on the correct modeling of the functional form of the variation. While we are

aware of the possibility of many different functional forms for this variation (Raudenbush

2005), we are aware of little empirical work that explores the correlation between different

distributional forms of the random effect and the reliability measures for the change

coefficients.

Epilogue

A reasonable person could argue that our own models were not flexible enough. For

example, our imposition of the cubic logistic model artificially constrained the paths to

26 Consider for example the log likelihoods reported in Table 2. The total log likelihood to be explained in
our dataset was -69,450.9. The ITM LL was -36,554.7, which means that the ITM captures more variation
which could then be explained by covariates. In contrast the GCM LL was -55,520,which means that the
individual trajectories measured by the GCM model have captured 42% of the variation captured by the ITM
models. The GTM model, with a log likelihood of -55,604.6, also captures 42% of this variation.
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look smooth when they are not, thereby eliminating interesting variation that still may be

explainable. While we have no fundamental objection to such an argument in principle, we

do think that such an argument taken to the extreme can lead to problems. At some point,

we believe the researcher needs to assert the existence of the individual trajectory with the

specified functional form as a summary statement of an individual’s underlying propensity

to offend. A researcher who is unwilling to do this is left to study offending events (not

rates). Such a ‘‘rely on the data’’ approach is the extreme on the continuum of individual

trajectories. The ITM, which attempts to smooth out the radical shifts suggested by the

data, is the first move away from a model that assumes that an offender is either fully an

offender or fully a non-offender.

The biggest drawback to the ‘‘no propensities’’ approach is that this approach homog-

enizes all offenders and non-offenders in a manner that is antithetical to much crimino-

logical research. We know not all offenders are equally ‘‘criminal’’. Although prediction is

not easy, information about past offending, for example, is a well-accepted predictor of

future offending (Gendreau et al. 1996). The reverse is also true—not all ‘‘non-offenders’’

are equal, and in fact individuals with longer spells of non-offending much more closely

resemble non-offenders than people with only a short spell of non-offending (Kurlychek

et al. 2006). As such, we find the ‘‘solution’’ of ignoring the stochastic nature of the data to

be unsatisfactory. We think it both more responsible and interesting to acknowledge the

uncertainty, and use the models of latent propensity with a strong awareness of their

limitations.

These limitations should lead empirical life-course researchers to be a bit more humble

about the ability of any one model to explain the data. In this context, we think the debate

about the ‘‘correct’’ trajectory model, pitting GTM against GCM, is largely pointless. Both

have relative strengths when trying to pursue life-course research and we think this paper

demonstrated that both methods could provide useful insights into the life-course, par-

ticularly about the average change over time. In fact, in this paper we have shown how

GCM can be used in ways for which it has yet to be used in the literature. However, we

have concerns about the ability of either approach to approximate the full complexity of

the individual trajectories.

As a result, we believe that researchers need to spend more time considering the

individual trajectories of offending in future studies. These studies will then also shed more

light on the discussion of whether the identification of groups (regardless of methodology

and models) helps us understand the longitudinal patterning of criminal behavior. Alter-

natively, researchers can focus on identifying a ‘‘latent trait’’ which is common to many

offenders (including groups), but we would encourage more substantive discussion about

the vast amount of ‘‘residual’’ variation that is left over after this trait is identified. This

would include, in our opinion, more attention to the underlying nature of the model that

identifies much of the individual variation as ‘‘unreliable’’.
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Appendix

See Table 3.
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