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Abstract
The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain 
folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. 
WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and viru-
lence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle 
control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional 
regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein–protein 
or protein–DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 
domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array 
of functions performed by different WD40 domain containing proteins, their domain organization and functional conserva-
tion during the course of evolution.
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1  Introduction

WD40 repeat proteins, as the name suggests, are character-
ized by the presence of a tandem repeats (4–16) of ~ 40–60 
amino acids having tryptophan (W)–aspartic acid (D) at the 
C terminus and glycine (G)–histidine (H) residues at 11–24 
amino acids downstream from the N terminus. However, 
the GH and WD dipeptides are not the absolutely necessity 
for these proteins (http://BMERC​-www.bu.edu/wdrep​eat). 
These dipeptides are also flanked by core sequences that are 
conserved in nature [1, 2]. Although the internal sequences 
of the repeating units in different proteins are highly vari-
able, there are occurrences of most probable residues at each 
position with a characterizing spacing between them [1, 2]. 
The WD40 repeats were first identified in the β subunit of 
transducin, a GTP binding protein and therefore, it is also 

referred to as transducin repeats. Structurally, they are char-
acterized by a β propeller fold comprising of 4–8 antiparallel 
sheets; each sheet, in turn, has 4 β strands. These sheets are 
arranged as the blades of a propeller around a central cavity, 
while each WD repeat is a part of these antiparallel strands 
[3]. They form a platform at which protein–protein or pro-
tein–DNA interactions take place [3, 4].

It has been postulated that the WD40 repeats have arisen 
from intragenic duplication and recombination events [5]. 
Up to date, based on the available genome sequences and the 
proteomic data, it is predicted that there are about 200 puta-
tive WD-containing proteins in plants [6, 7], and 349 such 
proteins in the human [8]. Their presence in prokaryotes is 
rare, and only a few have been reported yet [3, 9].

The WD40 repeats are among the top ten most abundant 
domains in eukaryotes. Proteins containing WD40 repeats 
take part in diverse processes viz., transcriptional regulation, 
vesicular trafficking, cytoskeletal assembly, apoptosis, cell 
cycle control, chromatin modification and signal transduc-
tion. Owing to the numerous roles of WD-repeat proteins 
in cellular processes, any malfunctions in these proteins 
might lead to diseases [1]. Studying these proteins is thus of 
prime importance. Although the interaction of WD repeats 
with other molecules, and their structure and evolution have 
been extensively reviewed [2, 3, 10], their functional aspect 
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and distribution among the five kingdoms of life has not 
yet received adequate attention. Here in this review, we are 
summarising the functions and the distribution of WD40 
repeat proteins from the simplest kingdom Monera to the 
highly complex metazoans.

2 � Structure of WD40 Domain

The crystal structure of the prototype WD40 repeat protein, 
the β-subunit of G-protein, was first determined by Wall 
et al. in 1995. It showed that the WD40 domain forms a 
symmetrical β propeller fold. Subsequent studies with other 
proteins have shown that the propeller fold commonly com-
prises of 4–8 β sheets which, in turn, has four antiparallel 
β strands, named a, b, c and d. The repeating WD unit is a 
part of these strands, while the a blade of the propeller starts 

from one strand (d strand) of the adjacent repeating unit [3] 
(Fig. 1). Accordingly, strand d from the adjacent unit along 
with a, b and c strands of the same unit form a blade. In the 
Gβ protein containing seven blades, the outer strand of the 
last i.e., the seventh blade is formed from the N terminal 
region of the first repeat that overlaps the three strands at 
its C terminus region. This kind of arrangement leads to 
the formation of a “Velcro snap” that closes the ring and 
provides stability [2]. Some proteins like Aip1 (an actin-
interacting protein) and DDB1 (a DNA damage-binding 
protein) have multiple WD40 β propeller structures. While 
Aip1 has two 7-bladed β propeller structures, DDB1 com-
prises of three. The first propeller structure of DDB1 lacks 
the Velcro, while it is present in the second and third propel-
ler structures [11]. This suggests that the Velcro closure is 
dispensable and the WD40 domains devoid of it stabilise the 
propeller structure by other mechanisms to close their ring. 

Fig. 1   Sequence and structural features of WD40 domains, which 
contain several copies of the 44–60 residues WD40 repeat. WD40 
repeats typically fold into seven-bladed beta propellers with each 
blade comprising a four-stranded anti-parallel beta-sheet. a Sequence 
logo for WD40 repeats. The letter plots represent amino acid conser-
vation at each position. The corresponding b-strands within a repeat 
are depicted below. Each WD40 repeat typically contains a variable 
region of 11–24 residues followed by key signature sequence fea-
tures: a glycine–histidine (GH) dipeptide at the end of strand D, 
three small amino acids (serine, glycine etc.) at the C-terminal end 
of strand B and a tryptophan–aspartate (WD) dipeptide at the end 
of strand C. The logo was created with HMM logo [15] based on a 
structural alignment [16] of WD40 domains as classified in SCOP 

(PDB IDs 1tbg, 1erj, 2ce8, 1u2 v, 1nex, 1p22, 1nr0, 1pi6,1sq9, 1vyh, 
2ovr and 1yfq) [17]. b WD40 domains often fold into seven-bladed 
beta-propellers with a funnel-like shape and, by convention, the nar-
rower part of the funnel containing the DA and BC loops is defined 
as the top domain and the wider part as the bottom of the propeller 
(i). The WD40 sequence repeat corresponds to strand D of one blade 
followed by strands A, B and C of the next blade (iii). The WD40 
sequence repeat therefore is not equivalent to a single propeller blade. 
The main chain is coloured using a gradient from red at the N-termi-
nus to blue at the C-terminus (ii, iii). Residues often involved in pep-
tide interactions on the top surface are highlighted with red asterisks. 
Reproduced with permission from Stirnimann et al. [3], with permis-
sion from Elsevier. (Color figure online)



393WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions﻿	

1 3

As an example, in hemopexin protein, which scavenges the 
heme released during the turnover of heme proteins, a disul-
phide bond connects the first and the last blade [2, 12]. Inter 
sheet hydrophobic interactions also play a role in stabilizing 
these structures [4]. By geometrical modelling, it has been 
predicted that the sevenfold β propeller is the most ideal and 
stable β sheet geometry [13]. At least 7 WD40 repeats are 
required to make such structures. It has been found that the 
proteins with lesser number of repeats dimerize to form at 
least seven propellers for attaining stability. One example 
is Sec13, which functions as a component of coat protein 
II (COPII) in the nuclear pore complex. Although it has 6 
WD-40 domains, in order to gain stability, it shares 1 WD40 
domain with its complex partner ancestral coatomer element 
1 (ACE1) [14]. As described by Xu and Min in 2011, WD40 
domains recruit their substrates/partners by different mecha-
nisms that are listed below [4].

•	 Acting as interchangeable substrate receptor to selec-
tively target different substrates In SCF ubiquitin ligase 
complex containing SKP1, CUL1, and an F-box, approx-
imately 70 F box proteins serve as interchangeable sub-
strate receptors; thereby recruiting various substrates for 
ubiquitination followed by proteasomal degradation;

•	 Recruiting different substrates in a similar way by the 
same WD40 protein The N terminal repeat of clathrin 
protein is a WD40 β propeller structure which loads the 
cargo in the coated pit during endocytosis;

•	 Recruiting different substrates in different ways by the 
same WD40 domain During GPCR signalling, the Gβ 
protein binds to Gα, Gγ, and phosducin in different 
modes.

•	 Ligand binding through its insertion motif of the WD40 
domain As in case of the Bub3 protein which plays a role 
in the spindle assembly checkpoint. It has 2 insertion 
motifs which enable its binding to Bub1 and Mad3;

•	 Ligand binding through inter-blade binding grooves of 
the WD40 domain This type of binding mode is found in 
the PALB2–BRCA2 peptide complex. PALB2 protein 
recruits BRCA2 and RAD51 in the homologous recom-
bination repair mechanism [4].

3 � Distribution and Origin of WD Repeats

The evolutionary origin of WD40 repeat-containing pro-
teins remains enigmatic as the diversity in their structures 
and functions is quite large, thus questioning the existence 
of a common ancestor. The members of the family which 
arose during the early evolution were less similar, while 
those with more similarity evolved later. They are exclusive 
to eukaryotes and are uncommon in prokaryotes. Interest-
ingly, in archaea, YVTN and YWTD repeat proteins have 

seven-bladed β propeller structures with homology to meta-
zoan cell surface proteins [18]. They are considered as 
WD40 repeat like proteins with a common ancestral origin 
and acquired from the eukaryotes via horizontal gene trans-
fer [18, 19]. The high degree of similarity in structures rather 
than the primary sequences are the determining features of 
the WD40 repeat proteins thereby making their phyloge-
netic analysis very difficult. The sequence repeats that form 
a stable propeller-like structure have remained conserved 
during evolution; however, the functional selection of the 
residues found on their surfaces has evolved depending on 
the domains where the ligand interactions take place [2]. 
Accordingly, the grouping of WD-repeat proteins has been 
done by clustering them on the basis of the sequence other 
than the internal repeat residues.

3.1 � WD40 Repeats Proteins in Monera

Although the WD40 repeat proteins are confined to the 
eukaryotes and are absent in prokaryotes, the first prokary-
otic protein PkwA was identified in Thermomonospora 
curvata [9, 20, 21]. Subsequently, several WD40 proteins 
were characterized in other prokaryotes like the WdlA in 
Streptomyces lincolnensis [22], and WdpB and WdpC in 
Streptomyces coelicolor [23]. However, they have not been 
studied in depth as compared to their eukaryotic counter-
parts. Several WD40 domain-containing proteins have also 
been reported in cyanobacteria and other archaea [24], but 
they remained uncharacterized. Their functions need to be 
elucidated to find their potential involvement in various bio-
logical processes. Systematic analysis of various WD repeat-
containing proteins in prokaryotes suggests the existence of 
around 4000 such proteins, with abundance in cyanobacteria 
and planctomycetes [24]. In prokaryotes, those proteins for 
which the functions are known, mainly participate in signal-
ling and nutrient synthesis [24].

3.2 � WD40 Repeats Proteins in Protista

Few reports are available regarding the presence of the 
WD40 proteins in the unicellular eukaryotes. In the uni-
cellular green alga Chlamydomonas reinhardtii, a WD40 
repeat protein encoded in the gene mut11 is essential for the 
transcriptional repression [25]. The WD40 repeat-contain-
ing myosin F protein in Gregarina polymorpha contributes 
to actin remodelling. It contains several WD40 repeats at 
its C-terminal, along with several other domains like the 
myosin motor domain, a coiled coil structure and a neck 
domain with 6 IQ motif [26]. In Leishmania, LACK protein, 
an ortholog of mammalian RACK1, maintains the level of 
LmCOX4; a subunit of the mitochondrial cytochrome com-
plex required for maintaining the membrane potential gener-
ated by the electron transport chain. LACK is indispensable 
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for the thermostability and pathogenicity of the organism 
[27]. The ortholog of RACK1 in Trypanosoma brucei is 
termed TRACK. It is a part of the translational machinery 
as it binds to eEF1A and associates with the ribosome and 
polysomes. It has also been shown to take part in cytokinesis 
[28, 29].

In Plasmodium falciparum, there are several WD40 
repeat proteins viz., PfSEC13, PfRACK and PfAMA1. 
PfSEC13 forms the nuclear pore complex, associates with 
chromatin and other nucleic acid binding proteins, regu-
lating transcription [30]. PfRACK is expressed during the 
replication of the parasite and it inhibits Ca2+ signalling in 
the host erythrocytes. It also associates with integrin, src, 
and protein kinase C, playing a role in cell migration [31]. 
PfWLP1 interacts with cell adhesion proteins PfAMA1 and 
PfCCp, stabilizing the cell adhesion protein complex during 
the blood stage progeny of the parasite [32].

3.3 � WD40 Repeats Proteins in Fungi

Various WD40 domain-containing proteins have been exten-
sively studied in pathogenic as well as non pathogenic fungi, 
which play prominent roles in many cellular and biologi-
cal processes (Fig. 2). Based on those studies, the WD40 
domain-containing proteins in fungi are broadly categorized 
into four groups: RACK1 like proteins, Striatin family, 
MSIL family and HET family.

•	 Receptor for activated C kinase (RACK1) like protein is 
a WD repeat-containing protein in Verticillium dahlia. It 
affects the level of ribosomal proteins and the expression 
of genes which regulate the hyphal growth, virulence, 
and pathogenicity [33]. In Saccharomyces cerevisiae, the 
RACK1 homolog is Asc1p. It consists of 7 WD repeats, 
it is localized at the smaller subunit of the ribosome and 

is involved in kinase signalling and repression of trans-
lation [34, 35]. It binds to GDP–Gpa2, thereby block-
ing the guanine nucleotide exchange activity of Gpa2. 
It binds to Cyr1 that catalyzes the synthesis of cAMP, 
causing a reduction in the cAMP level. It also represses 
the MAP kinase signalling [36]. It is a core component 
of 40S ribosomal subunit and is required for the Flo-11 
dependent adhesive growth under amino acid starvation 
[35]. Another RACK1 homolog protein in Ustilago may-
dis (RAK1) plays a role in cell wall formation, growth, 
mating and virulence [37]. It regulates the expression of 
rop1, a transcriptional regulator of pfr1 that regulates the 
pheromone (mfa) and pheromone-receptor genes [37].

•	 In S. macrospora, the pro 11 mutant is found to be defec-
tive in early sexual development and in the formation of 
fruiting bodies. The meiosis process is affected in the 
mutants, thereby resulting in the sterile phenotype which 
is unable to form sexual spores. Mouse striatin is able 
to restore the fertility in the pro11 mutant of Sordaria 
macrospora, as the process of meiosis is restored in it. 
This suggests the functional conservation of striatin [38]. 
GPI anchored protein smGPI-1 and the kinase activator 
smMOB3 are the core components of the fungal STRI-
PAK (striatin-interacting phosphatase and kinase) com-
plex. smMOB3 interacts with the C terminal of PRO11. 
The fungal SLMAP (Pro45) interacts with PRO11 and 
smMOB3 in this multiprotein STRIPAK complex. Pro45 
localizes at the nuclear envelope, endoplasmic reticulum, 
and mitochondria and plays an important role in develop-
ment [39]. In Neurospora crassa, striatin ortholog Ham-
3 is essential for the vegetative and reproductive devel-
opment [40]. Members of STRIPAK complex HAM2 
(Strip) and HAM3 (Striatin) are the core components of 
the multiprotein assembly at the nuclear envelope that 
regulate the MAP-kinase pathway (MAK-1) [41].

Fig. 2   The functions performed 
by different protein families in 
Yeast with the WD40 domain
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•	 In fungi, Msi1-like (MSIL) protein family members 
have been extensively characterized with diverse roles 
in the regulation of numerous processes as DNA damage 
response, epigenetic modifications etc. The members of 
this family have evolutionary divergent roles in different 
families of fungi [42]. Mis16, a MSIL protein is essential 
for survival in S. pombe, it plays an important role in the 
kinetochore assembly in mitosis [43].

•	 HET-D and HET-E (heterokaryon incompatibility pro-
tein), both belong to a family of proteins encoded by the 
het gene family with as many as 11 loci in Neurospora 
crassa. The members of this family comprise WD40 
repeat domains at their C-terminus and are responsible 
for vegetative incompatibility in filamentous fungi like 
Podospora anserine and Neurospora crassa [44, 45].

Other than these four main groups, there are some other 
examples of the WD40 domain-containing proteins in fungi. 
For instance, the Gβ like protein in Aspergillus fumigatus 
(CpcB, Cross pathway control B) participates in virulence 
and drug sensitivity of fungus [46]. In yeasts, CDC4 protein, 
which is a member of SCF ubiquitin E3 ligase complex, 
contains the F-box and WD40 repeats. It plays a signifi-
cant role in the growth, filamentation, and morphogenesis 
of the yeast [47]. CreC, a WD40 repeat-containing protein 
was characterized in Aspergillus nidulans as a component 
of CRC (carbon catabolite repression) pathway which is a 
regulatory mechanism for using glucose as the preferential 
carbon source by the microorganism. The homolog of CreC 
in Magnaporthe oryzae, a pathogen of rice plants, (MoCreC) 
plays important roles in the vegetative and sexual growth, 
conidium formation and pathogenicity by modulating the 
CRC pathway [48].

3.4 � Functions of WD40 Repeat Proteins in Plants

In plants the WD40 repeat proteins play key roles in the 
regulation of various processes as summarized below.

3.4.1 � Immunity

The WD repeat proteins involved in plant immunity are—
Gβ family, that are present in a variety of eukaryotes [49, 
50]; and Transparent testa glabra1 (TTG1) family, which is 
found only in higher plants. G protein complexes are directly 
associated with the ligand binding innate immune receptors 
[e.g., EF-Tu receptor (EFR)]. In response to the fungal and 
bacterial infections, these complexes convert the pathogen-
associated molecular patterns into intracellular defence 
responses like production of ROS, activation of defence 
genes, deposition of callose and apoptosis [15–17, 51–55]. 
A combination of various G protein isoforms viz., XLG2, 
AGG1/2, and AGB1 are needed to impart the immunity to 

the plants. Similarly, the Gα isoform GPA1 mediates the 
stomatal closure which in turn inhibits the entry of microbes 
through the stomata [56]. Under DNA damage, the immune 
response also involves the RACK1 protein, a member of the 
WD repeat family.

Another WD repeat containing protein TTG1, has been 
associated with the defence mechanism in dicots. It associ-
ates with the oomycetes specific receptor PAR1, and acti-
vates the immune response by increasing the ROS produc-
tion and apoptosis [57]. TTG1 has been associated with the 
transcription factors MYB and GL3 to form a ternary com-
plex where TTG1 act as a scaffolding platform facilitating 
their interactions. This ternary complex binds to the promot-
ers of the genes for the production of secondary metabolites 
like anthocyanin and proanthocyanidin [58, 59]. These sec-
ondary metabolites (also known as defence metabolites) are 
the primary means of defence against the microbial attack 
and are essential for the survival of plants in a complex envi-
ronment [60, 61].

3.4.2 � Cell Wall Formation

Three WD repeat proteins viz., LEUNIG Homolog (LUH), 
FRAGILE FIBER3 (FRA3) and TWD40-2 have been asso-
ciated with cell wall formation in plants. The luh-1 mutants 
are defective in mucilage extrusion, thereby suggesting its 
role in the expression of genes associated with mucilage 
maturation [62]. FRA3 is an inositol polyphosphate 5-phos-
phatase with an N terminal WDR domain [63]. Mutations 
in the fra3 gene reduce secondary cell wall thickness in the 
xylem vessels and fibres. Another WD40 protein TWD40-2 
mediates the endocytosis of cellulose synthase during cellu-
lose biosynthesis [64]. Mutation of the twd40-2 gene causes 
impaired endocytosis and stunted plant growth due to the 
decreased cellulose content [65].

3.4.3 � Gene Regulation

CYP71, HOS15 and MS11 are the major WD repeat proteins 
that are associated with gene regulation in plants. CYP71 is 
a regulator of histone modification for chromatin based gene 
silencing. It directly interacts with the histone H3 and its 
absence causes reduced lateral organ development as well as 
reduced root elongation [66]. HOS15 causes the repression 
of genes associated with abiotic stress tolerance. It causes 
histone deacetylation and its mutation results in the cold 
hypersensitivity [67]. MSI1 is a histone binding protein 
and is part of a histone deacetylase complex. It associates 
with the histone deacetylase 19 (HDA19) as a part of a core 
complex and upregulates the abscisic acid (ABA) receptor 
genes [68].
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3.4.4 � Proteasomal Degradation

Various WD repeat proteins are E3 ubiquitin ligases e.g., 
COP1. COP1 interacts with the adapter protein Trib for 
the transcriptional regulator C/EBPα, resulting in its deg-
radation [69] In Arabidopsis thaliana, the ULCS1 gene 
encodes a WD40 protein that interacts with the subunit 
of E3 Cullin ring ligase, thereby regulating the degrada-
tion of various proteins involved in the developmental 
process [70].

3.4.5 � Microtubule Organisation

In Nicotiana tabacum, the deficiency of WD40 protein 
RAE1 serves as a platform for the assembly of proteins 
required for the organisation of spindle fibres [71]. 
Another WD40 protein NEDD in Arabidopsis thaliana 
interacts with γ tubulin complex and plays a role in micro-
tubule organisation [72].

As summarised above, various WD repeat proteins in 
plants control cellular processes primarily by acting as an 
interaction platform for various proteins.

3.5 � Functions of WD40 Repeat Proteins in Animalia

As summarized below, like in the case of plants, WD repeat 
proteins also control numerous processes in the kingdom 
Animalia (Fig. 3).

3.5.1 � Signal Transduction

There are several WD40 repeat proteins viz., the β subunit 
of heterotrimeric G protein, RACK1, striatins, STE4, LIS1, 
MSI1, PR55, PLAP etc., that are involved in signal trans-
duction. They help in the signalling process by providing 
platforms for the assembly of other proteins involved in the 
process. Receptor for activated kinase 1 (RACK1) has seven 
WD40 repeats with a β propeller structure that functions 
as an adaptor or scaffold for protein–protein interactions. It 
acts as a receptor that binds to activated protein kinase C, 
regulating its signalling [73].

Striatin subfamily, which comprises three members (stri-
atin, SG2NA and zinedin) belongs to the WD40 repeat super 
family. They are primarily membrane associated proteins 
but are also present in the cytoplasm. Striatin family mem-
bers were the first among the WD40 repeat proteins shown 
to bind calmodulin in presence of calcium. They are thus 
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involved in the Ca2+ signalling in a Ca2+/Cam dependent 
manner [74]. Striatin and SG2NA have been independently 
shown to interact with phocein and protein phosphatase 2A 
(PP2A), thereby attributing them to vesicular trafficking and 
cell signalling respectively [75]. Noticeably, Drosophila has 
only one homolog of Striatin/SG2NA i.e., CKA, which acts 
as a platform for organizing the components of JNK signal-
ling [76]. SG2NA recruits Akt to the plasma membrane and 
mitochondria along with the antioxidant protein DJ-1 to pro-
tect cells from oxidative stress. Cells with down-regulated 
expression of SG2NA are more susceptible to the oxidative 
stress while the cells over-expressing it are resistant [77]. 
SG2NA enhances the cancer cell survival by inhibiting the 
proteasomal degradation of DJ-1 and stabilizes it which, in 
turn activates Akt to increase the rate of cell proliferation 
[78].

Notchless gene in Drosophila and Xenopus encodes a 
novel WD40 repeat-containing protein that modulates the 
Notch signalling involved in cell fate decision during devel-
opment. This protein binds to the cytoplasmic domain of 
Notch and increases its signalling activity [79]. WDR26, a 
Gβ like protein, suppresses the mitogen-activated protein 
kinase (MAPK) signalling pathway. It is highly conserved 
in evolution and inhibits the transcriptional activities of ETS 
proteins ELK1 and is a negative regulator of MAPK signal-
ling [80].

3.5.2 � Chromatin Assembly

ORC-associated (ORCA) is another WD40 domain-contain-
ing protein which facilitates assembly of the origin recogni-
tion complex (ORC), thereby playing a critical role in DNA 
replication during the initiation and cell cycle progression. 
Depletion of ORCA in human primary cells and embryonic 
stem cells results in the loss of ORC association to chroma-
tin and thus the cells accumulate in the G1 phase [81]. chro-
matin assembly factor-1 (CAF-1), has three subunits—p48, 
p60, and p150, of which the p48 is a WD repeat protein and 
binds to histone H4 in the absence of p150 and p60. It is 
also a component of histone acetylase. Together, these three 
subunits of CAF-1, H3 and H4 form the chromatin assembly 
complex (CAC) [82, 83].

3.5.3 � Apoptosis

Apoptosis is an essential process for embryonic development 
and for maintaining homeostasis in adult tissues. The prod-
uct of CED4 gene in C. elegans participates in the proapop-
totic signal. In human, Apaf (Apoptotic protease activating 
factor 1, a homolog of CED-4) is an activator of Caspase 9 
that induces the release of cytochrome C from the mitochon-
dria, inducing apoptosis. Apaf1 associates with Caspase 9 
and cytochrome C to form a proteasomal complex and 12 

WD40 repeats at the C terminal region of Apaf1 mediate its 
interaction with those proteins [84, 85].

3.5.4 � Cell Cycle

The cell cycle is primarily controlled by numerous CDKs 
that get activated at different stages by their respective cyc-
lins. While the concentration of CDKs remains constant 
throughout the cell cycle; their activation and inactivation 
depends on the availability of different cyclins. The ubiqui-
tin ligase complexes bring out their proteolytic degradation 
by attaching ubiquitin chain to their targets. Two polyubiq-
uitinating E3 complexes that affect the cell cycle are SCF 
(Skp1, Cullin, and F-box) and the anaphase–promoting 
complex or cyclosome (APC/C). Several WD40 proteins 
act as scaffolds which facilitate the interactions between 
E3 enzymes and their substrate through the multiprotein 
assemblies. The WD40 domain-containing proteins Cdc20 
and Cdh1 act as activators for APC/C, E3 ligase. They inter-
act with APC/C and through their WD40 domains, recruit 
substrates to E3 ligase and increase the specific activity of 
APC/C [86]. The SCF complex remains active throughout 
the cell cycle and plays a prominent role in different stages. 
The WD40 domain of F-box protein mediates the substrate 
recognition in SCF complex and promotes its auto-ubiquit-
ination and turnover [87].

Human Aurora-A is a key regulator of the mitotic spindle. 
It is required for proper formation of the mitotic spindle and 
separation of centrosome. It ensures proper alignment of 
chromosomes and exit from mitosis. Human Aurora-A is 
turned over through the APC/C mediated ubiquitin protea-
some pathway and in vivo degradation of Aurora-A depends 
on hCdh1 [88].

Coronin, a 55 kDa protein isolated from Dictyostelium 
discoideum, is an actin-binding protein which interacts with 
microtubules and also has a role in phagocytosis [89]. It is a 
WD40 repeat-containing protein with a β propeller structure. 
It plays a role in organizing the normal actin cytoskeleton 
and cell division [90]. Myocardial ischemic preconditioning 
up-regulated protein-2 (MIP2) is a member of the WD40 
repeat family having five WD40 domains. Over-expression 
of MIP2 in rat cardiomyocytes resulted in shorter cell cycle 
and increased cellular proliferation, suggesting its role in 
cell proliferation [91]. Centrosome, the primary microtubule 
organizing center, and γ tubulin are required for microtubule 
nucleation. The recruitment of γ tubulin to centrosome is 
mediated by its interaction with NEDD1, a WD40 repeat 
protein [92, 93].

Striatin family members play a significant role in differ-
ent events of the cell cycle. Striatin interacts with PP2A and 
regulates MAP2 phosphorylation and microtubule dynam-
ics. Inhibition of striatin results in hyperphosphorylation 
of MAP2 and microtubule destabilization that arrests cells 
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in G0/G1 phase inhibiting proliferation [94]. Mammalian 
misshapen like kinase 1 (MINK1) is a member of GCK 
family which functions in cytoskeletal assembly and cell 
senescence. It directly interacts with STRN4 (zinedin) in 
the multiprotein complex STRIPAK [95]. Knockdown of 
MINK results in multinucleated cells. SG2NA, a cell cycle-
regulated protein, regulates the cell cycle process. Downreg-
ulation of 78 kDa isoform of SG2NA extends the G1 phase 
and its over-expression delays the entry into M phase. The 
expression of SG2NA is dynamically regulated by pGSK-
3beta and pERK at different stages of the cell cycle [96]. 
Loss of the 78 kDa isoform decreases the CyclinD1 level and 
increases the number of cells in G1 phase [97].

3.5.5 � Transcription and RNA Processing

TFIID, is a multiprotein complex of TATA-box binding 
protein (TBP) and several transcription associated factors 
(TAFs). Most of TAFs contain multiple WD40 repeats. 
Although TAFs are not required for the basal transcrip-
tion activity, they regulate the transcription process and 
behave as coactivators. Cleavage stimulation factor (CstF) is 
required for the polyadenylation of mammalian pre mRNAs. 
It is composed of three subunits of molecular weight 77, 
64 and 50 kDa. The 50 kDa subunit shows homology with 
G protein β subunit and has multiple WD40 repeats. It is 
required for mRNA processing [98]. Similarly, another WD 
repeat-containing protein WDR5 is a core component of Set/
MLL histone methyltransferase complex. It catalyses meth-
ylation of histone H3, leading to the activation of transcrip-
tion [99–101].

3.5.6 � Innate Immunity

Some WD40 repeat proteins play important roles in innate 
immune responses. RACK1, with seven tandem WD40 
domains, is a scaffolding protein involved in signalling 
and development. It also has a role in innate immunity. 
FcRACK1 protein from Chinese white shrimp is char-
acterized by seven WD40 repeat domains. Its expression 
increases upon microbial infection, suggesting a role in 
innate immunity [102]. Angio-associated migratory cell pro-
tein (AAMP) is a WD40 repeat-containing protein that binds 
to the nucleotide binding domain of Nod2, a leucine-rich 
repeat (NLR) containing protein, mediating the activation 
of NF-kβ during innate immune responses [103].

3.5.7 � Cytoskeletal Assembly

A novel 67 kDa WD40 repeat protein 1 [WDR1, also known 
as actin-interacting protein (Aip1)], consists of nine WD 
repeats. It helps inducing the disassembly of actin filaments 
[104, 105]. In Drosophila, it assists depolymerisation of 

F-actin [106], thereby regulating various processes like 
cytokinesis, cell migration and muscle contractility [107].

3.5.8 � Development

Some WD40 repeat proteins also have roles in different 
stages of development. β-TrCp-2 is a highly conserved 
protein belonging to the F-box family of ubiquitin ligase 
specificity factors. In Xenopus embryo it negatively regu-
lates the Wnt/β catenin signalling pathway and its expres-
sion reduces the dorsal axis formation [108]. The extra sex 
comb (esc) protein is composed of multiple copies of the 
WD40 domain. It participates in the repression of home-
otic genes involved in determining the developmental fate 
of cells [109]. Another protein WDR62, which is the second 
most mutated gene in microcephaly patients, interacts with 
mitotic signalling kinase AURKA. Upon glial specific dele-
tion of WDR62, brain volume decreases, suggesting its role 
in brain growth and development [110].

In addition to above, a brief summary of functions of few 
more WD40 repeat proteins is summarised below in Table 1. 
Also, owing to the diverse functions carried out by various 
WD repeat-containing proteins, any dysfunction in them 
may lead to various anomalies. The list of such diseases 
is given below in Table 2, and a list of the WD40 repeats 
containing proteins we have discussed in this manuscript, 
the organisms from which they were studied, correspond-
ing functions and relevant references, are also provided in 
Table 3.

4 � Conclusion

WD40 repeats were first identified in the β-subunit of the 
heterotrimeric G protein and CDC-4 protein [144]. It was 
found to consist of a repetitive sequence motif of 40 amino 
acids with highly conserved glycine, histidine (GH) and 
an aspartic acid residing before the signature tryptophan 
and aspartic acid (WD) residues. Later it was clarified as 
a sequence of 44–60 residues with the GH dipeptide at the 
N-terminus and the WD dipeptide at the C-terminus [2, 10]. 
WD40 domains are involved in diverse cellular processes by 
acting as an adaptor for protein–protein and protein–DNA 
interactions. They are involved in varied functions like sig-
nal transduction, transcription, development, cell cycle regu-
lation, apoptosis. They thus play a significant role in main-
taining the homeostasis and proper functioning of the body. 
Most of the WD40 domain-containing proteins possess addi-
tional domains with catalytic or other functional activities. 
Their way of interaction with respective partners in different 
cellular processes and their functional variability are yet to 
be fully explored. Their occurrence and widespread diversity 
in the higher order of organisms suggest their involvement 
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in sustaining the complexity of those organisms. Although 
recent studies have shed light on the structure, mechanism of 
action and abnormalities that are caused due to any impair-
ment in their functions, a detailed analysis of these proteins 
throughout the five kingdoms of life have never been per-
formed. Once thought to be confined as a eukaryotic protein, 
its presence has now been detected in prokaryotes as well. 
However, due to the lack of detailed characterization and 
knowledge of functional aspects of these proteins in prokary-
otes, the question of their evolution is still unanswered. We 
have summarised their functions and the diversity in various 

kingdoms of life. Accumulative evidences indicate that they 
primarily serve as an interacting platform for various pro-
teins that are the key regulator of diverse processes. None of 
the known WD repeats containing protein has any catalytic 
activity, while they can possess other subunits performing 
the catalytic functions. Therefore, understanding the role of 
WD repeat-containing proteins is of paramount importance 
to understand the critical processes they regulate. The grow-
ing research on these proteins highlights the significance of 
the role played by them.

Table 1   List of the functions of 
various WD repeat proteins

Protein Function References

WDR5 Differentiation of osteoblast and chondrocytes [111]
TFIID Transcription initiation complex [112]
IC138/IC140/IFTA-1 Cilia assembly [113]
MHCK-A/B/C Cytoskeleton and myosin assembly [114]
Lis-1 Regulates microtubule motor cytoplasmic dynein [115]
Swd2 Polyadenylation in transcription [116]
SPA1 Part of phytochrome A signal transduction complex in Arabidopsis [117]
Mad2/BubR1 Form kinetochore complex which is involved in interaction with 

histone deacetylase
[118]

Bop1/GRWD1 Part of pre-ribosomal complex in ribosome biogenesis [119]
STE4 Subunit of heterotrimeric G protein signal transducing in yeasts [120]
MSI1 Negatively regulates the Ras-mediated increase in cAMP [121]
PR55 Regulatory subunit of protein phosphatase 2A [122, 123]
PLAP Activator protein of phospholipase A2 [124]
PRP4/PRP17 Role in splicing in yeasts [125]
HIR1 Acts as repressor of histone gene transcription [126]
SEC13 Formation of mature transport vesicle from ER membrane [127]
TAFII80 Component of RNA polymerase II transcriptional apparatus [128]
Mdv1p Role in division of mitochondria [129]
Leucine rich repeat 

kinase-1 (LRRK-1)
Regulates osteoclast function [130]

Tomosyn Inhibits vesicle priming and synaptic transmission [131]
SG2NA Maintains the Endoplasmic reticulum homeostasis

Protects cells from oxidative injury
[77, 97]

Table 2   List of the diseases caused by the various WD repeat proteins

Protein Disease References

Endonuclein A cell cycle regulated protein which act as an oncogene when upregulated [132]
STRAP Oncogenic effect through interaction with TGF-β [133]
G protein β-3 Spliced variants are found in case of hypertension [134]
AAAS Mutation in it causes triple A syndrome [135, 136]
Gurcho Role in colorectal cancer suppression by Wnt signalling pathway [137]
AHI 1 Mutation in it is responsible for Joubert syndrome [138]
LIS1 Mutation in it causes Lissencephaly [20, 139]
CSA Mutation causes Cockayne syndrome [140]
TBL1 Deletion in it leads to late-onset sensory neural deafness phenotype [141]
SG2NA and zinedin Cancer cell survival and progression [78, 142]
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Table 3   Summary of the various WD repeat proteins amongst the five kingdoms

Protein Organism Function References

Protista
 Mut11 Chlamydomonas reinhardtii Gene regulation by transcriptional repres-

sion
[25]

 Myosin F protein Gregarina polymorpha Actin remodelling [26]
 LACK1 (homologue of RACK1) Leishmania Role in thermostability and pathogenicity [27]
 TRACK (homologue of RACK1) Trypanosoma brucei Role in cytokinesis [28, 29]
 PfSEC13 Plasmodium falciparum Role in regulation of transcription [30]
 PfRACK Plasmodium falciparum Signalling and cell migration [31]
 pfWLP1 Plasmodium falciparum Stabilizes cell adhesion complex [32]

Fungi
 Receptor for activated C kinase (RACK1) 

like protein
Verticillium dahliae Role in regulation of the hyphal growth, 

virulence and pathogenicity
[33]

 Asc1p (RACK1 protein homologue) Saccharomyces cerevisiae Phosphosignalling and translation repression [34, 35]
 RAK1 (RACK1 protein homologue) Ustilago maydis Role in cell wall formation, growth, mating 

and virulence
[37]

 Pro11 (mammalian striatin homologue) Sordaria macrospora Role in fungal cell differentiation during 
fruiting body development

[38]

 Ham-3 (Striatin orthologue) Neurospora crassa Role in vegetative and reproductive develop-
ment

[40]

 Mis16 (MSIL protein) S. pombe Role in kinetochore assembly in mitosis [43] [43]
 HET-D and HET-E (heterokaryon incom-

patibility protein)
Podospora anserine Responsible for vegetative incompatibility [44, 45]

 Gβ like protein (CpcB, Cross pathway 
control B)

Aspergillus fumigatus Participates in virulence and drug sensitivity [46]

 CreC homologue Magnaporthe oryzae Role in vegetative and sexual growth, 
conidium formation and pathogenicity by 
modulating CRC pathway

[48]

Plants
 Gβ (member of G protein complex) Arabidopsis thaliana Role in the production of ROS, defence gene 

activation, callose deposition or apoptosis 
in response to fungal and bacterial infec-
tions

[15–17, 51–55]

 Transparent testa glabra1 (TTG1) Nicotiana tabacum Activates immune response of plants by 
ROS production and apoptosis

[57]

 LEUNIG Homolog (LUH), FRAGILE 
FIBER3 (FRA3) and TWD40-2

Arabidopsis thaliana Cell wall formation [62, 63, 65]

 CYP71 Arabidopsis thaliana Development and root elongation [66]
 HOS15 Arabidopsis thaliana Repression of abiotic stress tolerant genes 

by mediating their histone deacetylation
[67]

 MS11 Arabidopsis thaliana Part of histone deacetylase complex and 
regulate abscisic acid signalling

[68]

 ULCS1 Arabidopsis thaliana Controls proteasomal degradation of differ-
ent proteins involved in developmental

[70]

 RAE1 Nicotiana tabacum Role in spindle fibre organisation [71]
 NEDD Arabidopsis thaliana Role in microtubule organisation [72]

Animals
 RACK1 (Receptor for activated kinase1) Mammals Role in PKC mediated signalling [73]
 Striatins Mammals Ca2+ signalling pathway, vesicular traffick-

ing
[74, 75]

 CKA (homologue of striatin/SG2NA) Drosophila JNK signalling [76]
 SG2NA Mouse, Human Protects cells from oxidative stress and role 

in cancer cell proliferation
[77, 78]

 Notchless gene Drosophila and Xenopus Modulates Notch signalling activity during 
development

[79]
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