Skip to main content
Log in

Unique Characteristics of Recombinant Hybrid Manganese Superoxide Dismutase from Staphylococcus equorum and S. saprophyticus

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at −20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na+, K+), divalent (Ca2+, Mg2+), multivalent (Mn2+/4+, Zn2+/4+) cations and anions (Cl, SO4 2−) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EDTA:

Ethylene diamine tetra acetate

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

ORF:

Open reading frame

PAGE:

Polyacrylamide gel electrophoresis

rMnSODSeq:

Recombinant hybrid manganese superoxide dismutase from S. saprophyticus/S. equorum

SDS:

Sodium dodecyl sulphate

SO:

Superoxide

SOD:

Superoxide dismutase

T m :

Melting temperature

T mD :

Melting temperature of dimer

T mM :

Melting temperature of monomer

References

  1. McCord JM, Fridovich I (1969) Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  Google Scholar 

  2. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724. doi:10.1016/s0140-6736(94)92211-x

    Article  CAS  Google Scholar 

  3. Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Article  CAS  Google Scholar 

  4. Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with alzheimer and parkinson diseases. J Biol Chem 280(12):11648–11655

    Article  CAS  Google Scholar 

  5. Yasui K, Baba A (2006) Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm Res 55:359–363

    Article  CAS  Google Scholar 

  6. Lods LM, Dres C, Johnson C, Scholz DB, Brooks GJ (2000) The future of enzymes in cosmetics. Int J Cosmet Sci 22:85–94

    Article  CAS  Google Scholar 

  7. Indrayati A, Asyarie S, Suciati T, Retnoningrum DS (2014) Study on the properties of purified recombinant superoxide dismutase from Staphylococcus equorum, a local isolate from Indonesia. Int J Pharm Pharm Sci 6(11):1–6

    Google Scholar 

  8. Seatovic S, Gligic L, Radulovic E, Jankov RM (2004) Purification and partial characterization of superoxide dismutase from the thermophilic bacteria Thermothrix sp. J Serb Chem Soc 69(1):9–16

    Article  CAS  Google Scholar 

  9. Areekit S, Kanjanavas P, Khawsak P, Pakpitchareon A, Potivejkul K, Chansiri G, Chansiri K (2011) Cloning, expression, and characterization of thermotolerant manganese superoxide dismutase from Bacillus sp. MHS47. Int J Mol Sci. doi:10.3390/ijms12010844

    Google Scholar 

  10. Ken C-F, Lee C-C, Duan K-J, Lin C-T (2005) Unusual stability of manganese superoxide dismutase from a new species, Tatumella ptyseos ct: its gene structure, expression, and enzyme properties. Protein Expr Purif 40(1):42–50

    Article  CAS  Google Scholar 

  11. Wang W, Ma T, Zhang B, Yao N, Li M, Cui L, Li G, Ma Z, Cheng J (2014) A novel mechanism of protein thermostability: a unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Sci Rep 4:1–9

    Google Scholar 

  12. Li D, Gao J, Li Y, Lu J (2005) A thermostable manganese-containing superoxide dismutase from the thermophilic fungus Thermomyces lanuginosus. Extremophiles 9(1):1–6

    Article  Google Scholar 

  13. Wang X, Yang H, Ruan L, Liu X, Li F, Xu X (2008) Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermus sp. XMH10. J Ind Microbiol Biotechnol 35(2):133–139

    Article  CAS  Google Scholar 

  14. Zhu Y, Li H, Zhang X, Zhang C, Xiang J, Liu G (2011) Characterization of a thermostable manganese-containing superoxide dismutase from inshore hot spring thermophile Thermus sp. JM1. Acta Oceanol Sin 30(6):95–103

    Article  CAS  Google Scholar 

  15. Song C, Sheng L, Zhang X (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol 96(1):123–132. doi:10.1007/s00253-011-3835-9

    Article  CAS  Google Scholar 

  16. Miller A (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8(2):162–168

    Article  CAS  Google Scholar 

  17. Wuerges J, Lee J-W, Yim Y-I, Yim H-S, Kang S-O, Carugo KD (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101(23):8569–8574. doi:10.1073/pnas.0308514101

    Article  CAS  Google Scholar 

  18. Borgstahl G, Parge H, Hickey M, Beyer W, Hallewell R, Tainer J (1992) The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 71(1):107–118. doi:10.1016/0092-8674(92)90270-M

    Article  CAS  Google Scholar 

  19. Breusegem FV, Slooten L, Stassart J-M, Moens T, Botterman J, Montagu MV, Inze D (1999) Overproduction of Arabidopsis thaliana Fe-SOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40(5):515–523

    Article  Google Scholar 

  20. Abreu IA, Cabelli DE (2010) Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochim Biophys Acta 1804:263–274

    Article  CAS  Google Scholar 

  21. Liu J, Yin M, Zhu H, Lu J, Cui Z (2011) Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles 15(2):221–226

    Article  CAS  Google Scholar 

  22. Song C, Li H, Sheng L, Zhang X (2015) Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase. Gene 568(1):1–7

    Article  CAS  Google Scholar 

  23. Indrayati A (2011) 16S rDNA Based identification of novel superoxide dismutase producing bacteria isolate from Indonesia. Microbiol Indones 5(2):88–93

    Article  Google Scholar 

  24. Ghebremedhin B, Layer F, König W, König B (2008) Genetic classification and distinguishing of Staphylococcus sp. based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46(3):1019–1025. doi:10.1128/JCM.02058-07

    Article  CAS  Google Scholar 

  25. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  26. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  28. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68(5):850–858. doi:10.1021/ac950914h

    Article  CAS  Google Scholar 

  29. Sun Y, Oberley LW, Li L (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    CAS  Google Scholar 

  30. Kimoto R, Funahashi T, Yamamoto N, Miyoshi S, Narimatsu S, Yamamoto S (2001) Identification and characterization of the sodA genes encoding manganese superoxide dismutases in Vibrio parahaemolyticus, Vibrio mimicus, and Vibrio vulnificus. Microbiol Immunol 45(2):135–142

    Article  CAS  Google Scholar 

  31. Yainoy S, Isarankura-Na-Ayudhya C, Tantimongcolwat T, Prachayasittikul V (2007) Cloning of active human manganese superoxide dismutase and its oxidative protection in Escherichia coli. Pak J Biol Sci 10(20):3541–3548

    Article  CAS  Google Scholar 

  32. Kostyuk VA, Potapovich AI, Strigunova EN, Kostyuk TV, Afanas’ev IB (2004) Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys 428:204–208

    Article  CAS  Google Scholar 

  33. Ericsson U, Hallberg B, Detitta G, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298

    Article  CAS  Google Scholar 

  34. Gaupp R, Ledala N, Somerville GA (2012) Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2:33. doi:10.3389/fcimb.2012.00033

    Article  Google Scholar 

  35. McWilliam H, Li W, Uludag M, Squizzato S, Park Y, Buso N, Cowley A, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600

    Article  Google Scholar 

  36. Barrière C, Brückner R, Talon R (2001) Characterization of the single superoxide dismutase of Staphylococcus xylosus. Appl Environ Microbiol 67(9):4096–4104. doi:10.1128/AEM.67.9.4096-4104.2001

    Article  Google Scholar 

  37. Tanghe A, Dijck PV, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176

    Article  CAS  Google Scholar 

  38. Dawson NJ, Katzenback BA, Storey KB (2015) Free-radical first responders: the characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog Rana sylvatica. Biochim Biophys Acta 1850(1):97–106. doi:10.1016/j.bbagen.2014.10.003

    Article  CAS  Google Scholar 

  39. McKersie B, Chen Y, de Beus M, Bowley S, Bowler C, Inzé D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103(4):1155–1163

    Article  CAS  Google Scholar 

  40. Abreu IA, Hearn A, An H, Nick HS, Silverman DN, Cabelli DE (2008) The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: a specialized enzyme for the elimination of high superoxide concentrations. Biochemistry 47:2350–2356

    Article  CAS  Google Scholar 

  41. Søndergaard A, Stahnke L (2002) Growth and aroma production by Staphylococcus xylosus, S. carnosus and S. equorum—a comparative study in model systems. Int J Food Microbiol 75(1–2):99–109

    Article  Google Scholar 

  42. Chan C, Wilbanks C, Makhatadze G, Wong K (2012) Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values. PLoS One 7(1):e30296. doi:10.1371/journal.pone.0030296

    Article  CAS  Google Scholar 

  43. Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR (1990) Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol 216(4):1031–1044

    Article  CAS  Google Scholar 

  44. Sancho J, Serrano L, Fersht AR (1992) Histidine residues at the N- and C-termini of. alpha.-helixes: perturbed pKas and protein stability. Biochemistry 31(8):2253–2258. doi:10.1021/bi00123a006

    Article  CAS  Google Scholar 

  45. Sheng Y, Stich TA, Barnese K, Gralla EB, Cascio D, Britt RD, Cabelli DE, Valentine JS (2011) Comparison of two yeast MnSODs: mitochondrial Saccharomyces cerevisiae versus cytosolic Candida albicans. J Am Chem Soc 133:20878–20889

    Article  CAS  Google Scholar 

  46. Sheng Y, Durazo A, Schumacher M, Gralla EB, Cascio D, Cabelli DE, Valentine JS (2013) Tetramerization reinforces the dimer interface of MnSOD. PLoS One 8(5):e62446. doi:10.1371/journal.pone.0062446

    Article  CAS  Google Scholar 

  47. Lin C-T, Lin M-T, Chen Y-T, Shaw J-F (1995) Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method. Plant Mol Biol 28(2):303–311

    Article  CAS  Google Scholar 

  48. Whittaker MM, Whittaker JW (1998) A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J Biol Chem 273(35):22188–22193. doi:10.1074/jbc.273.35.22188

    Article  CAS  Google Scholar 

  49. Edwards RA, Whittaker MM, Whittaker JW, Baker EN, Jameson GB (2001) Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity. Biochemistry 40(15):4622–4632. doi:10.1021/bi002403h

    Article  CAS  Google Scholar 

  50. Trinh CH, Hunter T, Stewart EE, Phillips SEV, Hunter GJ (2008) Purification, crystallization and X-ray structures of the two manganese superoxide dismutases from Caenorhabditis elegans. Acta Crystallogr F 64(12):1110–1114. doi:10.1107/S1744309108037056

    Article  CAS  Google Scholar 

  51. Borgstahl GEO, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, Lepock JR, Cabelli DE, Tainer JA (1996) Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 35(14):4287–4297. doi:10.1021/bi951892w

    Article  CAS  Google Scholar 

  52. Desmet J, Joniau M, Hv Dael (1992) The effect of metal ion binding on protein stability. In: Tweel WJJvd, Harder A, Buitelaar RM (eds) Stability and stabilization of enzymes. Elsevier Science Publisher BV, Maastricht, pp 299–308

    Google Scholar 

  53. Whittaker JW (2003) The irony of manganese superoxide dismutase. Biochem Soc Trans 31(6):1318–1321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Program Riset Desentralisasi DIKTI 2013 and Program Riset Inovasi 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie S. Retnoningrum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retnoningrum, D.S., Rahayu, A.P., Mulyanti, D. et al. Unique Characteristics of Recombinant Hybrid Manganese Superoxide Dismutase from Staphylococcus equorum and S. saprophyticus . Protein J 35, 136–144 (2016). https://doi.org/10.1007/s10930-016-9650-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9650-5

Keywords

Navigation