Skip to main content
Log in

Cloning, Expression, Purification, and Characterization of Cold-Adapted α-Amylase from Pseudoalteromonas arctica GS230

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A cold-adapted α-amylase (ParAmy) gene from Pseudoalteromonas arctica GS230 was cloned, sequenced, and expressed as an N-terminus His-tag fusion protein in E. coli. A recombinant protein was produced and purified with DEAE-sepherose ion exchange chromatography and Ni affinity chromatography. The molecular weight of ParAmy was estimated to be 55 KDa with sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). With an optimum temperature for activity 30 °C, ParAmy showed 34.5% of maximum activity at 0 °C and its activity decreased sharply at above 40 °C. ParAmy was stable in the range of pH 7–8.5 at 30 °C for 1 h. ParAmy was activated by Mn2+, K+ and Na+, and inhibited by Hg2+, Cu2+, and Fe3+. N-Bromosuccinimid showed a significant repressive effect on enzyme activity. The K m and V max values of the α-amylase for soluble starch were 7.28 mg/mL and 13.07 mg/mL min, respectively. This research suggests that Paramy has a good potential to be a cold-stable and alkalitolerant amylase in detergent industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ParAmy:

α-Amylase from Pseudoalteromonas arctica GS230

DEAE:

Diethylaminoethyl cellulos

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

LB:

Luria–Bertani

NBS:

N-Bromosuccinimide

Ni-NTA:

Ni2+-nitrilotriacetate

ORF:

Open reading frame

SDS:

Sodium dodecyl sulfate

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TCA:

Trichloroacetic acid

UV/Vis:

Ultraviolet/visible

References

  1. Aghajari N, Feller G, Gerday C, Haser R (1998) Protein Sci 7:564–572

    Article  CAS  Google Scholar 

  2. Amoozegar MA, Malekzadeh F, Malik KA (2003) J Mol Biol 52:353–359

    CAS  Google Scholar 

  3. Amico SD, Sohier JS, Feller G (2006) J Mol Biol 358:1296–1304

    Article  Google Scholar 

  4. Bassam A, Annous I, Hans P (1994) J Ind Microbiol 13:10–16

    Article  Google Scholar 

  5. Brown SH, Costantino HR, Kelly RM (1990) Appl Environ Microbiol 56:1985–1991

    CAS  Google Scholar 

  6. Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T (1995) Appl Environ Microbiol 61:1502–1506

    CAS  Google Scholar 

  7. Cusano AM, Parrilli E, Duilio A, Sannia G, Marino G, Tutino ML (2006) FEMS Microbiol Lett 258:67–71

    Article  CAS  Google Scholar 

  8. Ezeji TC, Bahl H (2006) J Mol Biol 125:27–38

    CAS  Google Scholar 

  9. Feller G, Lonhienne T, Deroanne C, Libioulle CJ, Beeumen V, Gerday C (1992) J Biol Chem 267:5217–5221

    CAS  Google Scholar 

  10. Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C (1994) Eur J Biochem 222:441–447

    Article  CAS  Google Scholar 

  11. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  12. Georgiou G, Segatori L (2005) Curr Opin Biotechnol 16:538–545

    Article  CAS  Google Scholar 

  13. Kay T (2006) Appl Microbiol Biotechnol 72:211–222

    Article  Google Scholar 

  14. Kim ES, Na HK, Jhon DY, Yoo OJ, Chun SB, Wui IS (1996) Biotechnol Lett 18:169–174

    Article  CAS  Google Scholar 

  15. Liu HF, Lv MS, Wang SJ, Fang YW, LI HZ (2008) China Brewing 13:13–18

    CAS  Google Scholar 

  16. Mamo G, Hatti-Kaul R, Mattiasson B (2006) Enzyme Microb Technol 39:1492–1498

    Article  CAS  Google Scholar 

  17. Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) J Biochem 95:697–702

    CAS  Google Scholar 

  18. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Biotechnol Appl Biochem 31:135–152

    Article  CAS  Google Scholar 

  19. Sambrook J, Frisch ER, Maniatis T (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  20. Xue YT, Jang M, Kim K, Yu Z, Lee Y (2008) Indian J Biochem Biophys 45:305–309

    Google Scholar 

  21. Zhang JW, Zeng RY (2008) Antarct Mar Biotechnol 10:75–82

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (40746030), Natural Science Foundation of the Science and Technology Department of Jiangshu (BE200830094,BE2009095), Natural Science Foundation of the Education Department of Jiangshu (09KJA170001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Wang, S., Fang, Y. et al. Cloning, Expression, Purification, and Characterization of Cold-Adapted α-Amylase from Pseudoalteromonas arctica GS230. Protein J 29, 591–597 (2010). https://doi.org/10.1007/s10930-010-9290-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9290-0

Keywords

Navigation