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Abstract
Non-linear mixed effects models typically deal with stochasticity in observed processes but models accounting for only

observed processes may not be the most appropriate for all data. Hidden Markov models (HMMs) characterize the

relationship between observed and hidden variables where the hidden variables can represent an underlying and unmea-

surable disease status for example. Adding stochasticity to HMMs results in mixed HMMs (MHMMs) which potentially

allow for the characterization of variability in unobservable processes. Further, HMMs can be extended to include more

than one observation source and are then multivariate HMMs. In this work MHMMs were developed and applied in a

chronic obstructive pulmonary disease example. The two hidden states included in the model were remission and exac-

erbation and two observation sources were considered, patient reported outcomes (PROs) and forced expiratory volume

(FEV1). Estimation properties in the software NONMEM of model parameters were investigated with and without random

and covariate effect parameters. The influence of including random and covariate effects of varying magnitudes on the

parameters in the model was quantified and a power analysis was performed to compare the power of a single bivariate

MHMM with two separate univariate MHMMs. A bivariate MHMM was developed for simulating and analysing hypo-

thetical COPD data consisting of PRO and FEV1 measurements collected every week for 60 weeks. Parameter precision

was high for all parameters with the exception of the variance of the transition rate dictating the transition from remission

to exacerbation (relative root mean squared error [RRMSE][ 150%). Parameter precision was better with higher mag-

nitudes of the transition probability parameters. A drug effect was included on the transition rate probability and the

precision of the drug effect parameter improved with increasing magnitude of the parameter. The power to detect the drug

effect was improved by utilizing a bivariate MHMM model over the univariate MHMM models where the number of

subject required for 80% power was 25 with the bivariate MHMM model versus 63 in the univariate MHMM FEV1 model

and[ 100 in the univariate MHMM PRO model. The results advocates for the use of bivariate MHMM models when

implementation is possible.
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Introduction

Non-linear mixed effects models (NLMEs) are typically

restrained to handle stochastic processes in observed vari-

ables; in contrast, hidden Markov models (HMMs) are a

class of statistical models that can be used to characterize

relationships between observed variables and unobserved

stochastic processes. HMMs can, based on recorded data,

shed light on unobservable (hidden) processes, categorized

as states, such as the theoretical notion of disease status.

Describing unobserved variables may be of importance to

describe the system of interest and make inferences, for

instance about drug effects influencing an underlying
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disease status that cannot be observed directly. Ignoring

such influences may cause bias in estimates [1]. Further,

disease progression modelling is often of interest, which

may not be possible if the actual disease status is unob-

servable. In such cases, HMMs may be used to obtain the

most likely underlying state sequences, a representation of

the disease status sequence. The attractive properties of

such latent (hidden) variable models, including their flex-

ibility and, often, higher power to detect a covariate or drug

effect, have been described in multiple instances [1–3].

HMMs handle unobserved processes through a time

series chain, hypothesizing multiple hidden states [4, 5].

Typically set up as a discrete time chain, the series of states

visited takes place among a defined set of possible states

(often two of them, but nothing precludes a higher num-

ber). The key estimated parameters are therefore transition

probabilities between the states, like in a classical Markov

model [4], relaxing the assumption of observations being

independent. In a first-order Markov chain, the transition

probabilities give the probability of transitioning to a cer-

tain state, given the previous state. Mixed hidden Markov

models (MHMMs) extend HMMs to population data,

allowing for the estimation of random effect parameters

and potentially, covariate effects [6–8]. These models

present greater flexibility since random effects can be

incorporated on parameters associated with either obser-

vations, or hidden states.

Most HMMs presented in the literature deal with one

observed variable which tends to be of a count nature

(often described with a Poisson-like distribution). Exam-

ples include lesion counts (observed variable), revealing

whether multiple sclerosis patients are in a relapse or

remission (hidden states) [6], the number of seizures (ob-

served variable), sorting days between low and high

epileptic activity (hidden states) [8], or CD4 counts (ob-

served variable), affected whether HIV positive patients

present an unknown concomitant infection or not (hidden

states) [1]. However measures are only partial representa-

tions of the truth; hence, multiplying the number of mea-

sures taken into account and analyzing them together

should allow for a more precise and less biased assessment

of an underlying disease status. For these reasons, in this

work, we were interested in exploring how HMMs can be

extended to include multiple sources of observations

(multivariate HMMs). More precisely, the objective of this

work was to develop a bivariate MHMM that depend on

two, potentially correlated, simultaneously observed, con-

tinuous variables.

The application example chosen for this work is chronic

obstructive pulmonary disease (COPD), a condition that

afflicts approximately 65 million people worldwide [9] and

is predicted to increase over the coming years with the

rising age of the world’s population. With intermittent

periods of no deterioration in lung function (remission) and

periods where lung function is compromised (exacerba-

tions) [10], the diagnosis and management of COPD is

difficult as well as the investigation of treatment effects on

the disease progression [11, 12]. The severity of the

symptoms can be measured with endpoints such as the

forced expiratory volume in one second (FEV1) or patient

recorded outcomes (PROs). Incorporating the observed

variables, FEV1 and PRO, simultaneously in the analysis

of COPD data may give insight on the hidden patient

disease status, i.e. whether patients are in remission or

whether they are experiencing an exacerbation.

The present work aims at presenting a new type of

multivariate MHMM, exploring its implementation in the

software NONMEM, and investigating its benefits in drug

development, through a series of simulation-estimation

analyses. Specific questions were: (i) how do random

effect- and covariate (including drug effect) relationship

magnitudes affect parameter estimation accuracy and pre-

cision, (ii) how well is the correlation between the two

observed variables estimated with the bivariate model and

what is the impact of ignoring it, and (iii) what is the power

to detect a drug effect with a bivariate MHMM incorpo-

rating both observation sources simultaneously compared

to two separate univariate MHMMs?

Methods

Models

A bivariate MHMM was developed, combining FEV1

measurements and PROs. The model included two hidden

Markov states, representing COPD disease in remission

(R) or during exacerbation (E). The initial parameter values

(Table 1) for the model were chosen based on clinical

plausibility.

Both the FEV1 and PRO model components were

composed of two continuous functions, depending on

whether the observation was made while the patient status

was remission or exacerbation. The functions included

fixed effects parameters as well as random effects param-

eters accounting for inter individual variability (IIV).

Individual FEV1 values were modelled assuming log nor-

mal distributions:

FEV1R ¼ hFEV1R � exp gFEV1R
� �

; ð1Þ

FEV1E ¼ FEV1R � hFEV1E � exp gFEV1E
� �� �

; ð2Þ

where FEV1R and FEV1E are the individual values of

FEV1 in remission and exacerbation, respectively, hFEV1R
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and hFEV1E are the population estimates of the mode of

FEV1 in each state. gFEV1R and gFEV1E are random effects

describing the deviation between individual and typical

values, and are assumed to be normally distributed with a

mean of 0 and variances of x2
FEV1R

and x2
FEV1E

,

respectively.

PRO scores were described with a time dependent

decrease to represent a placebo effect (PE):

PROR ¼ hPROR
þ gPROR

� �

� 1� PE � 1� exp
� log 2ð Þ

PHL � Time

� �� �� �
; ð3Þ

PROE ¼ PROR þ hPROE
þ gPROE

� �
; ð4Þ

where log is the natural logarithm, PROR and PROE are the

individual values of PRO in remission and exacerbation,

respectively, hPROR
and hPROE

are the population estimates

of the mode of PRO in each state. gPROR
and gPROE

are

random effects describing the deviation between individual

and typical values, and are assumed to be normally dis-

tributed with a mean of 0 and variances of x2
PROR

and

x2
PROE

, respectively. PHL is the placebo effect half-life.

In this model, the maximum decrease of PRO from

baseline over time, i.e. PE, was simulated to be 20%

(PE = 0.2), and was assumed to occur at approximately

50 weeks, i.e. with a PHL of 10 weeks. Patients suffering

from COPD have a FEV1 that ranges from 0.5 to 2 L/s, and

thus the modes of the distribution of FEV1 in remission

and during exacerbation were set to 2 and 1.75 (Table 1),

respectively. The modes of the PRO distributions in

remission and exacerbation were set to 2.5 and 3 (Table 1),

respectively, attempting to mimic the relative changes in

score during exacerbation seen when using the Asthma

control questionnaire (ACQ) [13].

The general description of an HMM is:

p Y1; . . .Yn;Z1; . . .Znð Þ¼p Z1ð Þp Y1jZ1ð Þ
Yn

t¼2

p ZtjZt�1ð ÞpðYtjZtÞ

ð5Þ

where Yn denotes an observation, Zn is the hidden state, t is

the time point, n is the number of observed time points,

p(Z1) is the initial state probability, p(Y1|Z1) is the emission

probability at the start of the time sequence (i.e. the

probability of an observation given a certain hidden state),

p(Zt|Zt-1) is the transition probability and p(Yt|Zt) is the

emission probability at time t given state Z at time t.

The emission probabilities for FEV1 and PRO (Eq. 6),

governing the distribution of the observed variables at a

particular time given the state of the hidden variable at that

time, were modeled incorporating additive residual error

terms on each observed variable. Two emission probability

Table 1 Reference parameter values used in the bivariate mixed hidden-Markov model

Parameter (unit) Value Description

Observed variable parameters

hFEV1R L=sð Þ 2.00 The mode of the distribution of FEV1 in remission

hFEV1E L=sð Þ 0.25 The mode of the distribution to be subtracted from FEV1R in the exacerbation state

hPROR
scoreð Þ 2.50 The mode of the distribution of PRO in remission

hPROE
scoreð Þ 0.5 The mode of the distribution to be added to PROR in the exacerbation state

Hidden state parameters

INIT 0.90 Initial state probability of being in remission

hpRE 0.05 Transition probability from remission to the exacerbation state

hpER 0.15 Transition probability from the exacerbation state to remission

SLP 1.00 Hypothetical drug effect reducing the probability of transitioning from remission to the exacerbation state

Variance parameters

x2
FEV1R

0.03 Interindividual variability of the mode of FEV1 in remission

x2
FEV1E

0.03 Interindividual variability of the mode of FEV1 in the exacerbation state

x2
PROR

0.09 Interindividual variability of the mode of PRO in remission

x2
PROE

0.09 Interindividual variability of the mode of PRO in the exacerbation state

x2
pRE

0.06 Interindividual variability of pRE

r2FEV1 0.015 The variance (residual error) of the distribution of FEV1 in both states

r2PRO 0.05 The variance (residual error) of the distribution of PRO in both states

qR and qE - 0.33 The correlation between the two variables
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functions were necessary since there were two states pre-

sent in the model. These functions are part of the likelihood

of the observed variables and were described by the normal

probability density function (PDF), assuming that the

variables were normally distributed:

where YFEV1 and YPRO are the observed variables of

interest, S is the state that can be either R or E for remission

or exacerbation, respectively, FEV1 and PRO are the

individual values of the variables, r2FEV1s and r2PROs
are the

state-specific variances of the variables (residual error), and

qs is the correlation between the variables equal to

rFEV1s�PROs
= rFEV1srPROs
ð Þ. A correlation of - 0.33

between the observed variables was used, considering that

there appears to be a moderate correlation between the

outcome of disease specific questionnaires and FEV1 [14].

The stationary distribution, governing the probability to

start in one state or another, and the transition probabilities,

describing probabilities for a patient’s disease status to

move from remission to exacerbation, were modelled using

a logit function, to constrain the function between 0 and 1

in case random or covariate effects were included. The

stationary distribution was described as follows:

P St¼0 ¼ Rð Þ ¼ 1

1þ exp �Logit hINITð Þð Þ ; ð7Þ

where Logit hINITð Þ corresponds to log hINIT
1�hINIT

� �
, and hINIT is

the typical value for the probability of being in remission at

the start. The probability of being in the exacerbation state

at the start (P St¼0 ¼ Eð Þ) is consequently 1� P St¼0 ¼ Rð Þ:
The transition probability matrix in this work was com-

pletely specified by:

P ¼ pRR pRE
pER pEE

� �
; ð8Þ

where pRE is the probability of transitioning to E given that

the previous state was R, pER is the probability of transi-

tioning to R given that the previous state was E, pRR is the

probability of remaining in R and pEE is the probability of

remaining in E. Note that the rows sums up to 1 and

therefore only two elements of the matrix are estimated in

the model, pRE and pER.
The transition probability from the exacerbation state to

remission (pER) was modelled similarly to the stationary

distribution:

pER ¼ 1

1þ exp �Logit hpERð Þð Þ ð9Þ

The transition probability of going from remission to the

exacerbation state, pRE, included a treatment effect as well

as a random effect, gpRE :

pRE ¼ 1

1þ exp � Logit hpREð Þ þ gpRE � TRT � SLP
� �� �

ð10Þ

where hpRE is a fixed effect parameter estimate of the

probability of transitioning from the R to E state bounded

between 0 and 1, Logit hpREð Þ is the logit function of hpRE ,
treatment (TRT), in this example, is an indicator of active

treatment (0 or 1, indicating the presence or absence of

drug) and SLP is an estimated parameter quantifying the

drug effect magnitude. When drug is present, TRT•SLP
reduces the probability of transitioning from remission to

the exacerbation state. For example, for a SLP value of 1,

the probability of transitioning from remission was

decreased by 62%, 60%, 46% and 15% from hpRE values of
0.05, 0.1, 0.5 and 0.9, respectively. gpRE is the random

effect and is assumed to be normally distributed with a

mean of 0 a variance of x2
pRE .

The other transition probabilities, pRR, the probability of

staying in remission given that the previous state was also

remission, and pEE the probability of staying in the exac-

erbation state given that the previous state was the exac-

erbation state, were derived by subtracting pRE and pER
from 1, respectively.

Data

The data structure was designed to mimic a large placebo-

controlled parallel-arm trial of COPD patients on treatment

(n = 250) or on placebo (n = 250). No demographic

covariates were included. Data were simulated for

60 weeks with measurements of FEV1 and PRO available

weekly. An alternative simulation dataset was created

where FEV1 samples were collected less frequently, i.e.

monthly, mimicking more realistic conditions of sparser

biomarker data than PROs.

P YFEV1; YPROjS ¼ sð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2FEV1sr

2
PROs

1� q2s
� �q � e

� 1

2ð1�q2s Þ
YFEV1�FEV1s

rFEV1s

� �2

�2qs
YFEV1�FEV1s

rFEV1s

� �
YPRO�PROs

rPROs

� �
þ YPRO�PROs

rPROs

� �2
� �

; ð6Þ
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Parameter estimation

NONMEM version 7.3.0 was used to simulate and estimate

the data [15] and was executed through Perl-speaks-

NONMEM (PsN) [16]. The likelihood was calculated using

the forward algorithm, i.e. by summing all the probabilities

of each state at each position, according to:

Lj ¼
Xn¼2

1

Pj ¼ uRj�1
� pRR þ uEj�1

� pER
� �

� P S ¼ Rð Þ
� �

þ uRj�1
� pRE þ uEj�1

� pEE
� �

� P S ¼ Eð Þ
� �

ð11Þ

where Lj represents the total likelihood at time j, n the

number of states, and uRj�1
and uEj�1

can be defined as
PRj�1

Lj�1

and
PEj�1

Lj�1
, respectively. PRj�1

is the probability of being in

remission at the previous observation, PEj�1
is the proba-

bility of being in the exacerbation state at the previous

observation, and Lj-1 is the total likelihood at the previous

observation.
PRj�1

Lj�1
and

PEj�1

Lj�1
are, therefore, the contributions

of the respective states to the total likelihood.

Maximum likelihood (ML) estimation was performed

using the stochastic approximation expectation maximiza-

tion (SAEM) algorithm followed by an importance sam-

pling step to obtain a stable objective function value (OFV)

in NONMEM. The settings used included a maximum

number of iterations of 400, a termination test and other

specifications as found most appropriate (NONMEM

model code available in Online Appendix 1). Parameters in

the model were expressed using MU-referencing in

NONMEM where parameters in the model are associated

with IIV linearly, improving the efficiency of expectation

maximization (EM) algorithms. When suitable, to evaluate

the most likely hidden states chain, the Viterbi algorithm

was run, through a post hoc subroutine (hmm.f90) made

available as part of NONMEM [17]. The Viterbi algorithm

works recursively by using the individual likelihoods

computed for the model in combination with the sequences

of observations [18]. The most probable sequence is

obtained when the likelihood of a sequence ceases to

increase, in comparison to other explored sequences. The

Viterbi algorithm is used to reduce the computational

burden of having to evaluate all possible hidden state

sequences in an individual as only the most likely

sequences up to the current observation are kept in the

calculation. Implementation and estimation of a HMM in

NONMEM does not require any specific subroutine. The

user defines the transition probability matrix, initial state

conditions and the emission probabilities. During ML

estimation, the system is first initialized according to the

initial state conditions and emission probabilities. Then, for

each subsequent observation time, the system is estimated

according to Eq. 11. The provided NONMEM code is

annotated to describe these aspects.

Accuracy and precision

The stochastic simulation and estimation (SSE) function-

ality in PsN was used to obtain parameter precision and

accuracy [19]. The SSE is a two-step method where first a

number of data sets (here 100 per scenario) were simulated

using the model of interest and subsequently estimated

with the same model. The resulting parameter precision

and accuracy of parameters was then calculated, with the

results being summarized numerically through the relative

root mean squared error (RRMSE):

RRMSE %ð Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
X

i

ðestimatedi � trueiÞ2

true2i

s

; ð12Þ

where true values are defined as the parameter values set in

the simulation model.

Parameter values were varied to investigate the effect of

parameter magnitude on the imprecision and accuracy of

the estimates resulting in 14 model scenarios (Table 2).

Focus was on the parameters influencing the transition

probabilities (including the magnitude of drug effect and

IIV) and on the correlation in the bivariate model, as

estimation of these parameters may influence other

parameters in the model as well.

Ignoring correlation in the model

To determine the effect of ignoring the correlation when

present in the simulations, a separate SSE analysis was

performed, where the simulation model included a corre-

lation while a reduced estimation model without correla-

tion, in addition to the full simulation model, was

employed.

The bivariate likelihood without correlation was

expressed as:

P YFEV1; YPROjS ¼ sð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2FEV1sr

2
PROs

q

� e
�1

2

YFEV1�FEV1s
rFEV1s

� �2

þ YPRO�PROs
rPROs

� �2
� �

:

ð13Þ

The misfit of ignoring the correlation when it was pre-

sent was quantified with the average DOFV, which was

calculated by subtracting the OFV of each of the 100

reduced models from the OFV from each of the
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corresponding 100 full models and then taking the mean

(DOFV = OFVreduced - OFVfull).

Power to detect a drug effect

To assess the power to detect a drug effect and to determine

differences in power between univariate and bivariate

models, the Monte-Carlo mapped power (MCMP)

methodology was used [20]. According to the general

MCMP steps, a large simulated dataset (5000 individuals)

was simulated from a model with a treatment effect

reducing the probability to transition from remission to

exacerbation. The whole dataset was then estimated with a

full model, including the treatment effect, and a reduced

model, without any treatment effect. A likelihood ratio test

(LRT) was then applied, using the differences between the

sum of the individual OFVs (iOFVs). The iOFVs were

resampled 10,000 times for each sample size of interest,

and the sum of iOFVs for each sample was calculated. The

percentage of sum of iOFVs greater than the significance

criterion (a = 0.05) was taken as the power for the specific

sample size, resulting in a full power versus sample size

curve. Three scenarios, based on the reference model

(scenario 1, Table 2) were evaluated where SLP was set to

1, 0.5 or 2. An additional scenario was also evaluated to

determine whether monthly FEV1 samples in a bivariate

model would improve the power to detect a drug effect

over a univariate model only considering PRO samples (the

less informative variable). Here, SLP was set to 1.

When only one endpoint was simulated (throughout or

at certain time points), only a univariate model for emis-

sion probabilities was necessary. It was expressed as (for

example for PRO):

P YPROjS ¼ sð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffi
r2PROs

q � e
� YPRO�PROsð Þ2

2r2
PROs : ð14Þ

Results

Model

A bivariate MHMM was developed by combining the two

univariate models through bivariate Gaussian functions

(schematically represented in Fig. 1). The model consid-

ered two correlated observations, FEV1 and PRO, arising

from one of two underlying states, representing the

remission (R) and an exacerbation (E) states (Eqs. 1–9).

Simulations illustrating the influence of the drug effect

and state sequence from the base model are presented in

Figs. 2 and 3, respectively. The drug effect on pRE is
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presented in Fig. 4. There was an obvious difference

between the two states and pER was lower in patients who

received treatment (SLP = 1) resulting in small, but

noticeable, differences in FEV1 and PRO (Figs. 2 and 4).

Parameter estimation

Results with regards to parameter precision are presented

in Fig. 5 and in Online Appendix 2. Scenario 1 (reference

scenario) resulted in relatively well estimated parameters

(RRMSE B 10%) with the exception of x2
FEV1E

and x2
pRE

which were estimated with RRMSEs of 19.5% and 187%,

respectively. In general, parameters estimated with the

evaluated scenarios were precisely estimated without large

bias, apart from SLP, x2
FEV1E

and x2
pRE , with the latter being

consistently the most inaccurately and imprecisely esti-

mated parameter (Fig. 5). Doubling the transition proba-

bilities, pRE and pER, from 0.05 and 0.15 to 0.1 and 0.3,

respectively, moderately improved the estimation of all

parameters in all scenarios, reducing the average RRMSE

across all parameters by 5%.

In scenario 4, where the drug effect was 0.5, the

RRMSE of SLP was 17.6% and improved with increasing

parameter magnitude of SLP (RRMSE = 10.0% and 6.7%

for scenarios 1 and 3, respectively). A similar trend was

observed for the relative bias of SLP, which was greatest

when SLP was low and improved with increasing param-

eter magnitude. Doubling the transition probabilities (sce-

nario 5) decreased the RRMSE of SLP in the investigations

of the influence of drug effect magnitude by between 2.1

and 5.2 percentage points.

When no IIV was present on pRE (Scenario 7) the esti-

mation of parameters in the model was relatively precise

(RRMSE\ 10%) and unbiased with the exception of

x2
FEV1E

(RRMSE = 29.7%). Scenario 1 showed a slight

bias in pRE which was not present in Scenario 7 and

RRMSE of pRE decreased from 7.2 to 4.7% when no IIV

was present on the parameter. Increasing the magnitude of

Fig. 1 A schematic representation of the bivariate hidden Markov

model used in thiswork. Twoobservation sources, FEV1measurements

and PROs, depend on remission (R, grey) and exacerbation (E, orange)

states. The dashed horizontal grey line separates hidden features in the

mode from observable ones. The observations are modeled using a

bivariate Gaussian function. Transition parameters govern the

probability of transitioning from remission to the exacerbation state

(pRE), transitioning from the exacerbation state to remission (pER), or
staying in the respective states (pRR and pEE). Dashed arrows represent
the emission of observations from the hidden states. At the first time

point (denoted t = 0) the state inwhich the system starts from is dictated

by the initial state probability (Color figure online)
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x2
pRE

(scenario 8) resulted in[ 100 percentage point drop in

the RRMSE of that parameter compared with scenario 1.

Correlation had a negligible effect on parameter preci-

sion of parameters other than qR and qE, which were more

accurately estimated with a larger negative correlation. The

RRMSE of qR and qE decreased from 1.9 and 4.7 to 0.6 and

1.3%, respectively, when comparing scenarios 1 and 11. In

general the correlation between the variables was accu-

rately (average RRMSE\ 5% in tested scenarios)

estimated.

Reducing the number of available FEV1 samples

resulted in a small increase in RRMSE for most parameters

in the model. The largest increase in RRMSE was observed

Fig. 2 Simulations of FEV1 (left panel) and PRO (right panel) from

the bivariate hidden Markov model colored by treatment status

(drug = blue, placebo = dark grey). The thick blue solid line and

dark grey dashed line are the means of the observations under drug or

placebo treatment, respectively (Color figure online)

Fig. 3 Simulations of FEV1 (left panel) and PRO (right panel) from

the bivariate hidden Markov model. Dark grey and orange lines are

observations from remission and exacerbation states, respectively.

The thick dark grey dashed line and orange solid line are the means

of the observations coming from the latent and active disease states,

respectively (Color figure online)
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for x2
FEV1E

which increased from 19.5% in scenario 1 to

74.7% in scenario 13.

Simulations from the model estimated (Fig. 6) in sce-

nario 1 illustrated that despite the apparent bias in x2
pRE

the

model still performed well as the observed percentiles fell

within the simulated confidence interval corresponding to

those percentiles (based on 100 simulations).

Correlation in the model

Estimation of data simulated with qR and qE = - 0.33 with

a reduced model (both parameters set to zero) and a full

model (q’s estimated) resulted in an average DOFV of

2993 when the simulation model was based on scenario 1.

Estimation of data simulated with q = 0 with a reduced

model and a full model resulted in an average DOFV of

- 2.11, an insignificant difference between the models.

Power to detect a drug effect

The power to detect a hypothetical drug effect was esti-

mated for three different values of SLP, 0.5, 1.0 and 2.0.

The general trend was that the bivariate model was more

powerful than either univariate models, with the univariate

model for FEV1 observations being more powerful than the

model for PRO observations. Further, the lower the drug

effect the more subjects were needed for equal power.

When SLP = 0.5, 80% power was achieved with * 25

subjects for the bivariate model compared with * 63

subjects using the FEV1 model and[ 100 subjects using

the PRO model (Fig. 7, left panel). When SLP = 1, the

number of individuals required for 80% power was * 5

subjects in the bivariate model compared with * 7

subjects in the FEV1 model and * 13 subjects in the PRO

model.

The power to detect a drug effect (SLP = 1) was, for the

same number of individuals, increased by adding monthly

FEV1 observations compared to the univariate model for

PRO alone, decreasing the number of subjects needed for

80% power from * 26 to * 17 (Fig. 7, right panel).

Discussion

Pharmacometric models may be used to analyse the time-

course of a disease, which is lost when using simple

parametric models that only consider the data at the end of

the study. More complex models in this family, accounting

for several different observation sources, increase the

amount of information available for disease classification.

In this work, a bivariate MHMM was developed for sim-

ulating and analysing hypothetical COPD data consisting

of PROs and FEV1 measurements collected weekly for

60 weeks.

The example disease, COPD, was used because of the

latent nature of exacerbations, but the model can be used

on any data where inference about a latent disease state is

of interest. The classification of COPD severity is complex

and is often based on the number of exacerbations that a

patient reports. However, summarizing exacerbation fre-

quency is difficult since exacerbations are frequently

underreported and long periods of remission can precede

and succeed relatively brief periods of exacerbation [21].

The model assumptions that were made were deemed to

be acceptable in light of the goal of the work as follows.

When simulating with the developed model it was assumed

that both PRO and FEV1 were continuous and normally

distributed in the population regardless of which state an

individual was in. However, the variables in the developed

model need not be normally distributed and the model

could simulate any distribution of interest, provided that

there is a mathematical function describing the distribution.

A normal distribution was assumed for simplicity espe-

cially considering that we aimed to correlate the variables

through a function, i.e. the multivariate Gaussian function.

We included random effects on the modes (IIV), variances

of the observed variable distributions (residual error) and

assumed distinct distributions of PRO and FEV1 for each

disease state. We also assumed that the variance of PRO

was greater than the variance of FEV1 given the uncertain

nature of patient reported end points compared with bio-

marker data [22, 23]. Since PROs reflect patients’ per-

spective including tolerance towards certain effects, large

within-patient variability can be expected depending on the

mind-set of the patient at the time of the PRO evaluation.

Further, the IIV of PRO was larger than for FEV1,

Fig. 4 Individual values for the transition rate from remission to the

exacerbation state (pRE) on drug (blue) or placebo (dark grey) (Color

figure online)
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assuming a more variable response between individuals for

PRO than for FEV1, which is reasonable given inconsis-

tency in people’s perception. In this work the initial

probability of being in remission was set to 90%, assuming

that most individuals, when starting the study, were in

remission. Given that exacerbation times can vary mark-

edly (durations between 1 and * 200 days have been

reported [21]), the number 90% was chosen arbitrarily but

thought to be plausible based on that the inclusion criteria

for two large scale studies in COPD, TRISTAN and ISO-

LDE, was a history of at least one or two exacerbations in

the past year, respectively [24, 25]. Since PROs were not

simulated to represent any known tools, arbitrary values

were chosen. The assumption was also made that PROs

decreased with time, indicating a hypothetical PE with a

maximum effect of 20%, a high value compared to the

* 6% reported in a systematic review [26]. Moreover, in

the cited review, the PE could not be clearly separated from

bias. However, the main aim of this work was to develop a

bivariate MHMM and determine the parameter estimation

properties of said model, not to reconstruct a previously

observed clinical scenario. With a treatment effect of 1, a

very small change in the average PRO score and FEV1

values was observed. The difference in FEV1 between the

placebo group and treatment group is consistent with the

small differences frequently observed in clinical trials of

drugs for COPD [27–29]. However, it may be expected that

a larger difference would have been observed in PROs.

This could have been included in the model with two

treatment effects, but was not considered for simplicity.

Using HMMs practically requires the solution of three

distinct problems; (1) obtaining the likelihood of the

observations given an HMM, (2) finding the most probable

state sequence given an observation sequence and (3) given

the HMM and an observation sequence obtain the best

parameter estimates in the HMM. The third problem, also

known as the learning problem, is the focal point of this

study, since the observation sequence is simulated based on

a state sequence from the HMM and thus known. In real

data cases, where the underlying state sequence is not

known, the practical approach is to develop a HMM that

may describe the system (with sufficient number of states

and observation types) estimate it and then use it to obtain

the most likely state sequence given the observations.

Expectation maximization (EM) algorithms can be used to

solve the learning problem and are readily available in

bFig. 5 Relative root mean squared error (y-axis) of selected param-

eters (x-axis) and explored scenarios. The presented parameters are

the transition probability from remission to exacerbation (pRE), the
transition probability from the exacerbation state to remission (pER),
the drug effect (SLP), correlations in remission and the exacerbation

states (qR and qE, respectively), the variance of FEV1 in the remission

and exacerbation states (x2
FEV1R

and x2
FEV1E

, respectively), the

variance of PRO in the remission and exacerbation states (x2
PROR

and x2
PROE

, respectively) and the variance of pRE (x2
pRE ). Scenario 1 is

included as a comparison in all tested scenarios. Numbers indicate

scenarios

Fig. 6 Visual predictive check of scenario 1. The red solid line and

the blue dashed lines indicate the observed median and 97.5th and

2.5th percentiles of the observed data, respectively. The shaded

regions are the 95% confidence interval of simulations from the

model estimated in scenario 1 (Color figure online)
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several software packages [30], we therefore used SAEM

in this analysis.

Parameter precision was relatively high for all parame-

ters in the model in all tested scenarios apart from x2
pRE

.

Even when the magnitude of the parameter was increased

two-fold it was relatively biased and imprecise. Separating

IIV on hidden states parameters from IIV on parameters

describing the observed variables represents a challenge. In

general, IIV on transition probabilities and the initial state

probability may be difficult to estimate. In fact, it may be

impossible to determine whether the variability in the

observed variables is acquired from variability in ‘‘hidden

state parameters’’ or other. Despite the issues with esti-

mating x2
pRE

, model simulations from the model in scenario

1 were descriptive of the observed data.

Parameters estimated in the model benefited with

regards to precision when more transitions occurred in the

data (i.e. when the transition rates were doubled). With few

transitions the amount of information on latent variables in

the system is limited and thus, for models such as the one

developed in this work, transitions between the states of

interest are necessary for the estimation of parameters.

However, the dependence on number of transitions likely

depends on the difference in the observed variables in the

two modelled states, where larger differences should

enable more precise estimation of ‘‘hidden state

parameters’’.

The drug effect was relatively well estimated in the

tested scenarios, but precision improved with increasing

magnitude, as expected. This may have implications for the

analysis of the data using MHMMs, which may require

certain magnitudes of expected drug effects to be viable,

although these results suggest that small differences in the

observed variables due to a drug effect are detectible even

with small sample sizes. The drug effect in this model

influences just one of the transition rates and differences in

the observed variables propagate from there. It may be

possible to include a drug effect on both the transition

probabilities and the observed variables. For instance, a

disease modifying drug effect could be incorporated on the

transition probabilities while a symptomatic drug effect

could be added on an observed variable such as PRO.

Additional studies are needed to determine whether it is

possible to identify two or more drug effects present on

observed and hidden variables in the model.

Correlation had little overall effect on the precision of

parameter estimates as results with low and high negative

correlations were very similar. However, our results indi-

cate that not considering correlation when it is present

results in a worse overall fit than when it is considered,

advocating for the use of a multivariate model. If obser-

vations of two, or more, variables are collected to infer

about the disease state in a patient, it may be natural to

assume that they are correlated. If they were not correlated,

they would have little value for inference of the hidden

state sequence for instance. In this work, we assume that

the correlations are equal in both underlying states. This

assumption may be relaxed, which would make the model

more flexible. Most variables may be either positively

correlated or negatively correlated over all hidden states,

these constraints in the model may be more mechanistic

than allowing correlations to vary freely. When data were

simulated assuming no correlation and estimation allowed

the estimation of a correlation the results indicated no

difference between the full and reduced models, which is

expected since the models are nested. Some instability was

identified in the model which was estimated using SAEM

in NONMEM with a secondary importance sampling step

to obtain the OFV of the final set of parameters. A parallel

run (with 5 retries) with scenario 1 parameter estimates

resulted in an OFV fluctuation of approximately 5 points.

The power to detect a drug effect included on the

transition probability going from remission to exacerbation

(pRE) in the model was higher with the bivariate model

than with either two univariate model. The number of

observations entering the bivariate model is twice of the

univariate models and, thus, the bivariate model makes use

of more information about the drug effect. When the drug

effect was low (SLP = 0.5) the bivariate model reduced the

number of subjects resulting in an 80% power to detect a

drug effect by approximately 78% over a univariate model

considering only PRO observations. The number of

Fig. 7 Power to detect a linear drug effect (SLP) of different

magnitudes (top panels). The different line types indicate which

model was used to detect the drug effect. The horizontal dashed line

indicates 80% power. The bottom panel shows the power to detect a

linear drug effect (SLP = 1) given a bivariate model with weekly

observations of both PRO and FEV1, a bivariate model with weekly

PRO observations and monthly FEV1 observations and a univariate

considering only weekly PRO observations
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subjects required for detection of a drug effect in this

analysis was relatively low and is expected to be larger for

observed variables associated with larger uncertainty but

the results show that the use of a bivariate model to detect

drug effects is advocated, when possible, over using single

variable models.

Conclusion

In this work, a bivariate MHMM was developed for sim-

ulating and analysing correlated continuous observations

connected to hidden states. The data generated consisted of

PROs and FEV1 measurements in COPD patients condi-

tional on latent/hidden exacerbation/remission disease

states. Parameters associated with the ‘‘observable’’ portion

of the model were in general more precisely estimated than

those associated with the ‘‘hidden’’ portion; in addition,

precision depended on the magnitude of parameters such as

the transition probabilities, the drug effect on the transition

probabilities, IIV of the transition probability and correla-

tion. The power to detect a hypothetical drug effect was

consistently highest with the bivariate model compared

with univariate models.

Acknowledgements Open access funding provided by Uppsala

University. We thank Robert J. Bauer for the development and

implementation of the hidden Markov model and Viterbi algorithm in

NONMEM and making these readily available to us. We thank Joa-

kim Nyberg for his expert advice and contribution to the model

development in earlier phases of this project.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Plan EL, Nyberg J, Bauer RJ, Karlsson MO (2018) Handling

underlying discrete variables with mixed hidden Markov models

in NONMEM. https://www.page-meeting.org/?abstract=3625.

Accessed 29 Oct 2018

2. Hu C (2014) Exposure-response modeling of clinical end points

using latent variable indirect response models. CPT Pharmacomet

Syst Pharmacol 3:e117

3. Ueckert S (2018) Modeling composite assessment data using item

response theory. CPT Pharmacomet Syst Pharmacol 7:205–218

4. Sukkar R, Katz E, Zhang Y, Raunig D, Wyman BT (2012)

Disease progression modeling using hidden Markov models. In:

Annual International Conference IEEE Engineering in Medicine

and Biology Society, pp 2845–2848

5. Diack C, Ackaert O, Ploeger BA, van der Graaf PH, Gurrell R,

Ivarsson M et al (2011) A hidden Markov model to assess drug-

induced sleep fragmentation in the telemetered rat. J Pharma-

cokinet Pharmacodyn 38:697–711

6. Altman RM (2007) Mixed hidden Markov models. J Am Stat

Assoc 102:201–210

7. Multivariate longitudinal data analysis with mixed effects hidden

Markov models—Raffa—2015—Biometrics—Wiley Online

Library. http://onlinelibrary.wiley.com/doi/10.1111/biom.12296/

abstract. Accessed 4 July 2017

8. Delattre M, Savic RM, Miller R, Karlsson MO, Lavielle M

(2012) Analysis of exposure-response of CI-945 in patients with

epilepsy: application of novel mixed hidden Markov modeling

methodology. J Pharmacokinet Pharmacodyn 39:263–271

9. WHO (2017) Burden of COPD. WHO. http://www.who.int/

respiratory/copd/burden/en/. Accessed 27 June 2017

10. (1997) BTS guidelines for the management of chronic obstructive

pulmonary disease. Thorax 52:S1–S28

11. Feenstra TL, van Genugten MLL, Hoogenveen RT, Wouters EF,

Rutten-van Mölken MPMH (2001) The impact of aging and

smoking on the future burden of chronic obstructive pulmonary

disease. Am J Respir Crit Care Med 164:590–596

12. Qureshi H, Sharafkhaneh A, Hanania NA (2014) Chronic

obstructive pulmonary disease exacerbations: latest evidence and

clinical implications. Ther Adv Chronic Dis 5:212–227

13. Pavord ID, Jones PW, Burgel P-R, Rabe KF (2016) Exacerba-

tions of COPD. Int J Chron Obstruct Pulm Dis. https://www.

dovepress.com/exacerbations-of-copd-peer-reviewed-fulltext-arti

cle-COPD. Accessed 24 July 2017

14. Westwood M, Bourbeau J, Jones PW, Cerulli A, Capkun-Niggli

G, Worthy G (2011) Relationship between FEV1 change and

patient-reported outcomes in randomised trials of inhaled bron-

chodilators for stable COPD: a systematic review. Respir Res

12:40

15. Beal S, Sheiner LB, Boekman A, Bauer RJ (2009) NONMEM

user’s guides. Icon Development Solutions, Ellicot City

16. Lindbom L, Ribbing J, Jonsson EN (2004) Perl-speaks-NON-

MEM (PsN): a Perl module for NONMEM related programming.

Comput Methods Programs Biomed 75:85–94

17. ICON plc. hmm.f90 [file, internet] (2019) ICON plc. https://non

mem.iconplc.com/nonmem/hmm. Accessed 23 Sept 2019

18. Viterbi AJ (2019) Viterbi algorithm. Scholarpedia. http://www.

scholarpedia.org/article/Viterbi_algorithmAccessed 16 Sept 2019

19. Keizer RJ, Karlsson MO, Hooker A (2013) Modeling and sim-

ulation workbench for NONMEM: tutorial on Pirana, PsN, and

Xpose. CPT Pharmacomet Syst Pharmacol 2:e50

20. Vong C, Bergstrand M, Nyberg J, Karlsson MO (2012) Rapid

sample size calculations for a defined likelihood ratio test-based

power in mixed-effects models. AAPS J 14:176–186

21. Husebø G, Bakke P, Aanerud M, Hardie J, Grønseth R, Eagan T

(2014) How long does a COPD exacerbation last? Predictors for

duration more than 3 weeks. Eur Respir J 44:P1072

22. Frost MH, Reeve BB, Liepa AM, Stauffer JW, Hays RD (2007)

What is sufficient evidence for the reliability and validity of

patient-reported outcome measures? Value Health 10:S94–S105

23. Rothrock N, Kaiser K, Cella D (2011) Developing a valid patient-

reported outcome measure. Clin Pharmacol Ther 90:737–742

24. Calverley PM, Martinez FJ, Fabbri LM, Goehring U-M, Rabe KF

(2012) Does roflumilast decrease exacerbations in severe COPD

patients not controlled by inhaled combination therapy? The

REACT study protocol. Int J Chron Obstruct Pulm Dis 7:375–382

Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:591–604 603

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.page-meeting.org/%3fabstract%3d3625
http://onlinelibrary.wiley.com/doi/10.1111/biom.12296/abstract
http://onlinelibrary.wiley.com/doi/10.1111/biom.12296/abstract
http://www.who.int/respiratory/copd/burden/en/
http://www.who.int/respiratory/copd/burden/en/
https://www.dovepress.com/exacerbations-of-copd-peer-reviewed-fulltext-article-COPD
https://www.dovepress.com/exacerbations-of-copd-peer-reviewed-fulltext-article-COPD
https://www.dovepress.com/exacerbations-of-copd-peer-reviewed-fulltext-article-COPD
https://nonmem.iconplc.com/nonmem/hmm
https://nonmem.iconplc.com/nonmem/hmm
http://www.scholarpedia.org/article/Viterbi_algorithm
http://www.scholarpedia.org/article/Viterbi_algorithm


25. Keene ON, Jones MRK, Lane PW, Anderson J (2007) Analysis of

exacerbation rates in asthma and chronic obstructive pulmonary

disease: example from the TRISTAN study. Pharm Stat 6:89–97
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