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Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic obstructive disease of the airways. An exacerbation of COPD

is defined as shortness of breath, cough, and sputum production. New therapies for COPD exacerbations are examined in

clinical trials frequently based on the number of exacerbations that implies long-term study due to the high variability in

occurrence and duration of the events. In this work, we expanded the two-state model developed by Cook et al. where the

patient transits from an asymptomatic (state 1) to a symptomatic state (state 2) and vice versa, through investigating

different semi-Markov models in a Bayesian context using data from actual clinical trials. Of the four models tested, the

log-logistic model was shown to adequately characterize the duration and number of COPD exacerbations. The patient

disease stage was found a significant covariate with an effect of accelerating the transition from asymptomatic to

symptomatic state. In addition, the best dropout model (log-logistic) was incorporated in the final two-state model to

describe the dropout mechanism. Simulation based diagnostics such as posterior predictive check (PPC) and visual

predictive check (VPC) were used to assess the behaviour of the model. The final model was applied in three clinical trial

data to investigate its ability to detect the drug effect: the drug effect was captured in all three datasets and in both

directions (from state 1 to state 2 and vice versa). A practical design investigation was also carried out and showed the

limits of reducing the number of subjects and study length on the drug effect identification. Finally, clinical trial simulation

confirmed that the model can potentially be used to predict medium term (6–12 months) clinical trial outcome using the

first 3 months data, but at the expense of showing a non-significant drug effect.
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Introduction

Chronic obstructive pulmonary disease (COPD) is defined

in the Global Initiative for chronic obstructive lung disease

(GOLD) report as a common preventable and treat-

able disease, characterized by persistent airflow limitation

that is usually progressive and associated with an enhanced

chronic inflammatory response in the airways and the lung

to noxious particles or gases [1]. COPD is a leading cause

of morbidity and mortality worldwide and results in an

economic and social burden that is both substantial and

increasing. Exacerbations and co-morbidities contribute to

the overall severity in individual patients.

An exacerbation in COPD is defined as an acute event

characterized by a worsening of the patient’s respiratory

symptoms (e.g. dyspnoea) and non-respiratory symptoms

(e.g. fatigue) that is beyond normal day-to-day variations
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and leads to a change in medication or even hospitalization

[2].

The latest GOLD guidelines point out, the yearly

exacerbation rate is an important risk factor to consider as

it affects the patient’s health status and its lung function

over time [1]. Reducing the number of exacerbations would

have a beneficial impact on the patient life and on the

disease status.

Exacerbations are historically analysed in terms of fre-

quency through the negative binomial approach that

assumes that for each individual the number of exacerba-

tions can be described by a Poisson process with a different

rate for each subject [3].Due to the high variability in

occurrence and duration of the event, longer term clinical

study and large sample size are needed to observe enough

exacerbations in the trials to detect meaningful treatment

effect. Moreover, a frequency analysis ignores the vari-

ability in the number and the duration of each exacerbation

among individuals. Figure S1 shows some example pat-

terns of few individuals’ exacerbations represented as

duration in asymptomatic state (state 1) and symptomatic

(exacerbation, state 2): it is evident that some participants

experience shorter duration exacerbations while others may

have a few but long duration exacerbations.

Like many other chronic diseases such as chronic

bronchitis, migraine and psychiatry, COPD patients’

experience of exacerbations can be described as subjects

making multiple transitions between asymptomatic and

symptomatic state.

Ng and Cook [4] and Cook et al. [5, 6] characterized

such exacerbations data in terms of a two-state stochastic

process where the patient alternates between an asymp-

tomatic state or state 1 (i.e. no exacerbation is present) and

a symptomatic state or state 2 (i.e. where exacerbation is

present) under the first order Markov assumption that says

that the next state depends only on the present state and not

on the history of the process. In this way, not only the

information of exacerbation is considered but also the time

that the patient spends in each state: therefore, a more

complete use of the information present in the dataset is

achieved.

In this work, we investigated this two-state approach in

Bayesian context, and aimed to extend Cook’s approach by

exploring different Markov and semi-Markov distribution

assumptions (i.e. respectively exponential model and

Gompertz, log-logistic model) and by comparing them with

the simpler semi-Markov assumption investigated by Cook

et al. (i.e. Weibull model). Note that using Bayesian

approach allows no assumptions on model parameters and

the semi-Markov feature implies that the memory of the

system changes with time, conversely from the Markov

feature that implies constant time dependency. Several

clinical trial data with different mechanisms of treatments

and study duration were used to evaluate performance of

the models in identifying drug effect.

Materials and methods

Data

Data 1

A 52-week Phase III placebo controlled trial that evaluates

the efficacy and safety of the inhaled Salmeterol/Fluticas-

one Propionate combination product (50/500 mg strength)

twice daily with Salmeterol 50 mg twice daily alone and

Fluticasone Propionate 500 mg twice daily alone (GSK

study ID: SFCB3024). Subjects who were diagnosed with

mild, moderate, severe COPD according to the ATS stag-

ing system [7] and had at least 10 pack-years of smoking

history and at least one acute COPD exacerbation per year

in the past 3 years were included in the study. For this

work, data from the Salmeterol treatment alone or placebo

were used.

Total of 619 subjects administered with Salmeterol or

placebo were included in this analysis.

Data 2

Two replicate 52-week Phase III studies that evaluate the

effects of once daily inhaled treatment with three dosage

strengths of fluticasone furoate ‘‘FF’’/vilanterol ‘‘VI’’ (FF/

VI) (50/25, 100/25 and 200/25 mcg) versus one dosage

strength of VI (25 mcg) in subjects with COPD

(HZC102970/NCT01017952, HZC102871/

NCT01009463).

From these studies, we included 3238 subjects that were

diagnosed with moderate, severe and very severe COPD

according to GOLD staging system [1] in this analysis.

Data 3

A phase 2b placebo-controlled study that evaluates the

efficacy and safety of the oral dosing Losmapimod, an

experimental anti-inflammatory drug, administered twice

daily, that is compared (2.5, 7.5 and 15 mg) with placebo

for 24 weeks in adult subjects with COPD (MKI113006/

NCT01218126).

Total of 602 subjects that were classified according to

GOLD standard mainly Stage II or Stage III were included

in the analysis. In addition, the similar analysis was also

conducted in a sub-group with low eosinophils (EOS) as

findings in [8] indicate eosinophil-related heterogeneity

within COPD and suggest that losmapimod could be a
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potential therapy to reduce exacerbations in COPD patients

with eosinophil levels B 2%.

Note that each study was approved by a national,

regional, or investigational centre ethics committee or

institutional review board, in accordance with local

requirements. Each patient gave written informed consent

before enrolment.

Table 1 presents the description of the three datasets

available for this work and the key covariates of interest in

each dataset. Further details on the conduct and primary

results of the studies are available via ClinicalTrials.gov.

Two-state semi Markov model

Ng and Cook [4] and Cook et al. [5, 6] were first to propose

this approach in a bronchitis trial to describe the exacer-

bation process but generally this method can be extended to

various chronic diseases in which subjects make multiple

transitions between asymptomatic and symptomatic state

(e.g. in infectious diseases, neurology and rheumatology as

described in Cook et al. [6]). In this work, we explored

different semi-Markov distribution assumptions to describe

the transition (and the non-transitions as well in case of

subjects that do not change state) of COPD exacerbations.

Specifically, the onset and the resolution of the exacer-

bations were modelled through a two-state mixed semi-

Markov renewal process where the sojourn time in a state

depended on the time since entry into that the state. The

transition rate of the jth subject from state k (k = 1, 2) was

defined in the following way:

kkj ¼ h t; pkj; bkwjXj

� �
ð1Þ

where h(t, pkj, bkwjXj) was the hazard function that was a

function of time, a set of parameters pkj associated with the

renewal process and bkw(w = 0,…,M) that were the coef-

ficients associated with the covariates (Xj) that can be used

to explain some of the variabilities. Note to account for the

variation in duration that individuals might stay in the

study, the study length for each individual was included as

a covariate in the model.

The following four frequently used distribution func-

tions [composed of a hazard (h t; pkj
� �

) and survival func-

tion (S t; pkj
� �

)] were investigated:

Table 1 Demographic information of the three datasets used

Data 1 Data 2 Data 3

Treatment Placebo Sum Treatment Placebo Sum Treatment Placebo Sum

Smoke status

Unknown 4 3 7

Current-smoker 156 142 298 1064 363 1427 192 72 264

Ex-smoker 155 159 314 1359 452 1811 257 81 338

Disease stage

Missing 22 8 30

Mild 143 140 283 1 0 1 3 1 4

Moderate 110 114 224 951 305 1256 176 52 228

Severe 62 50 112 1103 383 1486 200 77 277

Very severe 346 119 465 70 23 93

Total 315 304 619 2423 815 3238 449 153 602

Pack year smoking (current smokers)

Mean 45.9 41.8

SD 18.4 17.3

Min 12 11.8

Max 99.8 90

Season

Autumn–winter 142 133 275

Spring–summer Mar–Aug 173 171 344

Total 315 304 619 2423 815 3238 449 153 602

For Data 1, the disease stage was classified according to ATS 1995 guideline (%predicted FEV1 C 50 = mild; 35–50 = moder-

ate;\ 35 = severe); for Data 2 and Data 3, the disease stage was classified according to GOLD guideline (%predicted FEV1 C 80 = mild;

50–80 = moderate; 30–50 = severe;\ 30 = very severe)
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1. The exponential model

fkj t; pkj
� �

¼ h t; pkj
� �

� S t; pkj
� �

¼ hkj � e� hkj�tð Þ ð2Þ

where hkj ([ 0) is the scale parameter;

2. The Weibull model

fkj t; pkj
� �

¼ h t; pkj
� �

� S t; pkj
� �

¼ hkjak tð Þak�1�e� hkj�takð Þ

ð3Þ

where hkj ([ 0) is the scale parameter, ak([ 0) is the shape

parameter for state k;

3. The Gompertz model

fkj t; pkj
� �

¼ h t; pkj
� �

� S t; pkj
� �

¼ hkje
ak �t � e

hkj
ak
� 1�eak �tð Þ

� �

ð4Þ

where hkj ([ 0) is the scale parameter, ak (- !, ? !) is

the shape parameter (https://cran.r-project.org/web/packa

ges/reliaR/reliaR.pdf);

4. The log-logistic model

fkj t; pkj
� �

¼ h t; pkj
� �

� S t; pkj
� �

¼
ak t=hkj
� �ak

t � 1þ t
hkj

� �ak� �� 1

1þ t
hkj

� �ak� � ð5Þ

where hkj ([ 0) is the scale parameter, ak ([ 0) is the shape

parameter (http://www.openbugs.net/Manuals/Reliability/

Manuals/Distributions.html#Log-Logistic).

These models differ in the assumptions on their hazard

or survival functions (or a transformation of these func-

tions) with time. Note that the exponential model has a

hazard that is constant with time, the Weibull model has

the logarithm of the hazard that depends linearly on the

logarithm of time, the Gompertz model has the logarithm

of the hazard that depends linearly on time whereas the log-

logistic model has the logit of its survival that depends

linearly on the logarithm of time.

Note that potential covariates effects (bkw) and random

effects gkj can be introduced in the parameters of the above

model distributions in the following way:

hkj ¼ h0kjgkje
log Tjð Þbk0þbk1X1þ...þbkMXMð Þ ð6Þ

akj ¼ a0kjgkj

where Tj was the study length for subject j.

Both scale and shape parameters were initially included

in the models as fixed effects, and then random effects

were included on top of the fixed effects as independent

normal distributed variables. For the best model, where

possible, correlation of the random effects was tested by

assuming random effects followed a multivariate normal

distribution.

Note that the covariate analysis was run using only Data

1 as it was the available dataset richer in covariates

(Table 1). The following available covariates were tested

for statistical significance namely, baseline seasonality,

disease stage (ATS), smoke and yearly packs of cigarettes.

Note that the last covariate was considered continuous

whereas the first three covariates were first transformed

into binary values 0 versus 1 [i.e. spring–summer (April–

September) vs autumn–winter (October–March); disease

stage mild vs rest; ex-smoker vs rest] to test their signifi-

cance and then into more complex values re-parameteri-

zation only if the simpler binary parameterization resulted

in a significant effect.

Dropout

The impact of dropouts was also explored. The dropout

was formalised as a time to event model. The drop out

model was introduced to the two-state model to describe

the probability of dropout at a certain time. It was assumed

that drop out was missing at random which implies the

dropout independency from the exacerbations data. Note

that the criterion to define a subject that drops out is not

strictly related to the clinical trial study length as the

subject last visit can oscillate up to 1 month before the end

of the entire study where the subject can stop to be mon-

itored and at the same time not be defined a dropout.

The choice of the potential dropout model was investi-

gated separately from the two-state model (i.e. using only

dropout data) through three different parametric models:

the exponential model that assumed a constant probability

of an event over time, the log-logistic and the Weibull

models that instead introduced a time dependency. Also the

effect of the following covariates on the best dropout

model: the number of exacerbations, the disease stage and

total duration in state 2 were tested. The covariates were

introduced in the similar way as that described in Eq. 1.

Once the dropout model was optimized, it was integrated in

the final two-state model and the performance of the inte-

grated models was further investigated.

Two-state model evaluation

To evaluate the performance of the two-state models, dif-

ferent simulation based diagnostics were used such as

posterior predictive check (PPC) implemented as in Yano

et al. [9] and visual predictive check (VPC) implemented

as in Holford et al. [10]. Specifically, simulations of 100

datasets were performed using the final model. For building
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the PPC plots, different statistics were calculated on the

simulated data and compared to that obtained in the

observed data. For the VPC plots, the distribution of the

duration in each state from each simulation was compared

to the distribution of the observed duration. Note that the

choice of the number of bins in the VPC was done by

applying a clustering technique (i.e. k-means cluster as

implemented in the R software [11]) based on the observed

durations in each state that enabled us to find the com-

promise between the number of bins and the information

carried in each bin through number of clusters vs sum of

residuals plot. The final VPC binning was then obtained

using the same clustering technique with the chosen

number of bins.

Note that before diving into the simulation-based model

diagnostics, the standard criteria to evaluate the model

convergence in a Bayesian framework were first inspected

(e.g. parameter trace plots, parameter posterior

distributions).

Drug effect evaluation and design consideration

Once the best model structure was identified, the drug

effect was added and evaluated in all three datasets by

looking at both the drug effect estimates and their relative

confidence intervals and the transition rates and

probability.

A further design investigation was performed to show

the impact of the number of subjects and study length on

the drug effect identification. It is noted that the subjects

were randomly selected from the original data in order to

have a sample through sampling without replacement that

is still representative of the COPD population.

Finally, a validation analysis was done to evaluate the

ability of the model to predict clinical trial data and the

drug effect using relatively less amount of information (i.e.

only 3 month data).

To evaluate the drug effect and different design settings

the transition probability and the transition rate ratio [pla-

cebo vs active transition rates (see Eq. 1)] were considered.

Bayesian analysis

A Bayesian method with vague priors on the model

parameters [h or a * normal (0,1000), b * nor-

mal(0,1000) and variance of g (r2 = 1/s) s *
gamma(0.001, 0.001)] was adopted in this work. Markov

Chain Monte Carlo (MCMC) technique as implemented in

OPENBUGS 3.2.3 rev 1012 [12] was used for all the

analyses, to estimate the unknown parameters and to obtain

their posterior distributions. In addition, instead of using

the standard distributions in the library, the general dlog-

like function (http://www.openbugs.net/Manuals/Tricks.

html#GenericDistribution) in OPENBUGS was applied, as

it enabled us to implement explicitly the transition rate

distribution function together with the censoring informa-

tion when needed. When simulations were performed,

OPENBUGS was called from the R [11] (version 3.2.3)

package BRugs. In addition, the deviance information

criterion (DIC), a Bayesian measure of model fit that

penalizes model complexity (the smaller the value the

better the fit of the model), was used to assist the model

selections.

Results

Figure 1 presents the schematic of all the analysis per-

formed in this work reporting which dataset and which

tools/diagnostics were used at each stage of the analysis.

The results section is presented in the following way: the

first part shows the different model building steps (i.e. test

different distribution function, adding covariate, adding

dropout model) that were performed using only the Data 1

dataset; the second part focuses on the drug effect identi-

fication in all the three datasets; the third part explores,

using Data 3 and Data 1 respectively, the impact of dif-

ferent designs on the drug effect and a model evaluation on

the ability to predict the outcome of longer duration trial

(6–12 month) using only 3-month data.

Model selection

All four models describing the semi-Markov transition

process were tested, with both fixed and random effects on

Fig. 1 Schematic of the different analysis steps reporting which

dataset and which tools/diagnostics were used
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shape and scale parameters, the DIC and the shape

parameters from these models are presented in Table 2.

The log-logistic model according to DIC criteria seems to

be the best among the four followed by the Weibull, the

exponential model and finally the Gompertz model. Note

that the random effect was tested in both shape (when

present) and scale parameters and was found significant

only on the scale parameter (DIC results not reported). A

correlation term between alpha1 and alpha 2 in the log-

logistic model was also tested by defining the random

effects between the two states as realization of a multi-

variate normal distribution instead of two independent

normal distributions but this attempt resulted in a non-

significant drop of DIC. Trace plot from log-logistic model

on the key parameters (alpha1, alpha2, theta1 and theta2)

are presented in the supplementary material, Fig. S2.

In Table 2 are also reported the shape parameters of the

different distributions. Note that according to the log-lo-

gistic model, the transition rates over time are in both states

having a bell shape increasing at the beginning and then

decreasing towards zero when extrapolated to infinity, see

Fig. S4. Note also that in state 2 the bell shape is less

evident as only a relevant time window is presented (i.e.

time that a subject can stay in symptomatic state). The

simulation-based diagnostics relating to the log-logistic

model are presented in Figs. S5–S7. Figure S5 shows that

the log-logistic model yields a good performance as the

observed values of the total observations, observations in

state 1 and observations in state 2 are centred in their

respective simulated distributions. In Fig. S6 the duration

bins in both state 1 and state 2 seem to be captured by the

log-logistic model reasonably well. In Fig. S7 the number

of exacerbations is also well captured by the model.

Covariate selection

Table 3 presents the results of a covariate analysis per-

formed using the log-logistic model as base model. Adding

disease stage resulted in the greatest drop in DIC (4 points),

even if the drop per se cannot be considered big. The

parameter beta1 (b1 in Eq. 6), that represented the

covariate effect of the disease stage in state 1, was sig-

nificant for transitions from state 1 to state 2 [0 was not

included in the 95% credible interval (CI)] and seemed to

accelerate the transition from state 1 to state 2 (the scale

parameter is decreasing due to the covariate contribution

and as a consequence the sojourn time in state 1 is shorter).

No other covariates had a similar drop of DIC, however,

smoke status (also the more informative annual cigarette

smoking packs) on parameter beta1 seemed to be respon-

sible (0 was not included in the 95% CI) for slowing the

transition from state 2 to state 1 (the scale parameter is

increasing due to the covariate contribution and as a con-

sequence the sojourn time in state 2 is longer). This sug-

gests that if the patient is a current smoker the recovery

from a COPD exacerbation would be slower and if a

patient had a disease status that was moderate or severe,

this would result in the patient transitioning to an exacer-

bation state faster. The baseline seasonality did not show

any trends with respect to the covariate effect parameter.

Also adding in an interaction between smoke and disease

status didn’t improve the model fitting.

Figure S8 presents the simulation-based diagnostic for

the log-logistic model with the inclusion of the disease

stage covariate. The diagnostics suggest the model ade-

quately described the observed data.

Drop out model

The DIC of the three investigated dropout models, applied

only on dropout data, showed the log-logistic model was

superior in describing the dropout data (i.e. DIC log-lo-

gistic = 1577; Weibull = 1579 and exponential = 3484).

Disease stage was included as a covariate in the dropout

model and was shown to be significant even though the

drop in the DIC was around 3 points. In particular, the

disease stage covariate effect was estimated with median

value of - 0.68 (95% CI - 1.28, - 0.1). The simulation-

based diagnostics relative to the dropout mechanism are

depicted in Fig. S9 which shows the dropout rate was

Table 2 DIC, median and 95% credible intervals (CI) of the shape parameters (alpha1 and alpha2) of the four two-state mixed models

Model DIC Alpha1 - state 1 –[ 2 Alpha2 - state 2 –[ 1

Median 2.5 97.5 Median 2.5 97.5

Exponential 7236

Weibull 7087 1.004 0.92 1.09 1.75 1.57 1.94

Gompertz 7247 - 9.12E - 04 - 2.59E - 03 7.76E - 04 - 5.99E - 03 - 1.19E - 02 - 4.97E - 04

Loglogistic 7026 1.34 1.22 1.48 2.97 2.67 3.27

DIC deviance information criterion
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adequately captured based on the PPC and that the study

length was also well captured based on the VPC plots; in

particular, the simulations of subject study lengths that are

dropping out are consistently reproduced.

Final model (integrated two-state and drop
out with covariate)

In Fig. 2 are presented the simulation-based diagnostics of

the final model with the inclusion of the drop-out

mechanism and the selected covariates. The performance

of the final model was good as the observed pattern was

reasonably reproduced by the simulated data. The intro-

duction of the dropout model slightly increases the vari-

ability as shown by the wider confidence intervals (see for

comparison Figs. S5–S7). Trace plots on the key parame-

ters (alpha1, alpha2, theta1, theta2, beta1 and beta2) from

the final model are presented in the supplementary mate-

rial, Fig. S3.

Table 3 DIC and covariate

effect parameter (median and

95% CI) of the covariate

analysis using the log-logistic

model

Model DIC Beta11 - state 1 –[ 2 Beta12 - state 2 –[ 1

Median 2.5 97.5 Median 2.5 97.5

Loglogistic 7026

Loglogistic ? smoke 7025 0.07 - 0.30 0.42 0.26 0.08 0.44

Loglogistic ? pky smoke 7025 - 0.002 - 0.01 0.01 0.005 0.001 0.01

Loglogistic ? disease stage (ATS) 7022 - 0.40 - 0.78 - 0.05 - 0.11 - 0.29 0.09

Loglogistic ? basaline seasonality 7028 - 0.08 - 0.44 0.29 - 0.06 - 0.25 0.12

DIC deviance information criterion

Fig. 2 PPC on total number of observations, and number of observa-

tions in each state (top—red vertical line is the observed value) and

VPCs on number of exacerbations (bottom left—solid bars are observed

values, error bars are 95% CI obtained from model simulation),

observations in state 1 (bottom middle) and observations in state 2

(bottom right) of the final integrated model (two-state model and the

dropout mechanism with the inclusion of the disease stage covariate

implemented with the log-logistic model) (Color figure online)
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Drug effect evaluations

Table 4 presents the drug effects estimated on the three

datasets involving drugs with different mechanisms of

action using the final two-state log-logistic model. The

drug effect is significant (i.e. the drug effect parameter

posterior distribution does not include the 0 value) on

different transitions (i.e. from asymptomatic to symp-

tomatic or vice versa). For Data 1 (placebo vs Salmeterol),

Data 2 (VI vs all doses of FF/VI) and the low EOS sub-

group of data3(placebo vs highest dose of Losmapimod)

the drug effect was statistically significant in the transition

from asymptomatic to symptomatic state and the drug acts

to slow down the transition rate towards the exacerbation

state. For Data 3 [placebo and 2 smaller doses vs highest

dose (i.e. 15 mg)] the drug effect is significant on the

opposite direction (i.e. from symptomatic to asymptomatic

state) and it acts to speed up the transition towards the non-

exacerbated state. Note that the model used for fitting Data

3 was simplified; the random effect relative to state 2 was

deleted because the data were not able to support it as the

study length is 6 months with lower exacerbation rate

compared to Data 1 and Data 2. Note also that for this

dataset the dropout window that defines if the patient truly

dropout was reduced to 2 weeks.

In Figs. 3, 4 are presented for the log-logistic model the

transition rates ratios (placebo/active) over time and the

transition probability stratified by disease severity for all

the three datasets. As far as Data 1 is concerned, the

transition rate ratio is significantly different from one in the

transition from asymptomatic to symptomatic state and by

being greater than one it suggests that the drug is acting in

slowing down the passage from asymptomatic to symp-

tomatic state. This ratio is decreasing over time suggesting

that the longer the patient stays in the non-exacerbated

state the more unlikely is that he will have exacerbations in

both placebo and drug arms. The transition probability

stratified by severity shows that the drug is acting mainly in

the moderate severity as the transition rates are clearly

separate. Similar observations were shown for Data 2 and

the relative transition rates ratio over time and the transi-

tion probability stratified by severity. This time, the

severity stratification is significant for the most severe

patients. As far as Data 3 is concerned, there is a significant

difference in transition from exacerbated state (state 2) to

non-exacerbated state (state 1), as the ratio was smaller

than one it suggested that the drug was acting in speeding

up the passage from symptomatic to asymptomatic state.

The transition probability instead is not significant for any

of the severity levels.

Design considerations

In Figs. 5, 6 are presented transition rates ratios over time

(placebo vs highest dose) using Data 3 under different

design settings. In particular, in Fig. 5, the sample size was

reduced from 150 to 100 and to 50, but assuming the study

length was 6 months. The transition rates ratio was sig-

nificantly different from 1 up to a sample size of 100

subjects per treatment group. In Fig. 6, the sample size was

kept as equal to 150 whereas the study length was cut from

approximately 6 to 4 and to 3 months (i.e. 168, 120 and

90 days): in this case the transition rates ratio was no

longer significantly different from 1 with study duration of

3 months.

The extrapolation capability of the model was tested

using Data 1 (Fig. 7). In particular, using data from

3 months’ trial, the model predictions at 6 and 12 months

were compared to the observed data. The longer the

extrapolation period from 3 months to 1 year, the more the

model predictability is poor as the VPC plots of the number

of exacerbations show in Fig. 7—bottom panel (i.e. the CI

become wider and less centred on the observed value) and

the less the drug effect is well characterized as shown in the

upper panel of Fig. 7 (i.e. the transition rates ratio gets

closer to identity line).

Discussions

Exacerbations are historically analysed in terms of fre-

quency through the negative binomial approach but due to

the high variability in occurrence and duration of the event

this frequency based approach seems to be not optimal. A

more complete use of the data information is to consider

the time that the patient spends in the exacerbated

(symptomatic) and non-exacerbated (asymptomatic) state.

Four different models were then tested to describe the

Table 4 Estimated drug effects

(median and 95% CI) using the

log-logistic two-state mixed

model

Dataset Beta11 - state 1 –[ 2 Beta12 - state 2 –[ 1

Median 2.5 97.5 Median 2.5 97.5

Data 1 0.310 0.046 0.559 - 0.031 - 0.162 0.104

Data 2 0.224 0.0933 0.353 0.025 - 0.037 0.087

Data 3 0.211 - 0.229 0.651 - 0.196 - 0.396 - 0.002

Data 3 low EOS 0.818 0.020 1.740 - 0.110 - 0.430 0.223
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transition process between the asymptomatic and symp-

tomatic state as a first order Markov (exponential model) or

a first order semi-Markov [Weibull (as Cook et al.),

Gompertz and log-logistic models]. These models differ in

the assumptions on their hazard or survival functions (or a

transformation of these functions) with time.

Using the DIC criteria, log-logistic model was selected

as the best model to describe the data and with its semi-

Markov approach resulted in better description of the

process compared to the Markov approach proposed in

Cook’s et al. (i.e. lower DIC than the Weibull model)

suggesting that that the memory of the exacerbation pro-

cess is not constant in time. It is notable that for this work,

the transition models between state 1 and 2 were assumed

to be the same, but allowing different parameters to be

estimated. In theory, it is possible to select different models

for state 1 and 2. A preliminary testing showed that it might

be possible a model with Weibull distribution for

Fig. 3 Transition rate ratios (placebo/active) using the log-logistic model in Data 1 (on the top), Data 2 (in the middle) and Data 3 (on the

bottom)
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Fig. 4 Transition probability using the log-logistic model for different disease stage level in Data 1 (a), in Data 2 (b) and in Data 3 (c) [red
lines—placebo arm; blue lines—treatment arm] (Color figure online)
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Fig. 4 continued

Fig. 5 Transition rates ratio using log-logistic model for Data 3 using respectively 150, 100 and 50 subjects per arm (from left to right)
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transitions from state 1 to 2, and with log-logistic for

transitions from state 2 to 1 could be equally valid. Such

evaluations may be considered in future. A final consid-

eration to make is that the underlying exacerbation process

is not known and that the log-logistic distribution was

chosen only accordingly to model fit criteria rather than

biological based information so further data need to be

collected in the future to confirm this hypothesis. Note that

potentially all data could have been analysed simultane-

ously instead of utilising separately Data 1 for the inves-

tigation of the base model and in a second stage the study

information could have been added as a covariate to better

capture the data.

Different non-time varying covariates were tested and

the most significant was the disease stage. Possible future

exploration might include time varying covariates such as

season during the trial and exacerbation severity.

The dropout mechanism was assumed to follow a

missing-at-random (MAR) pattern and was found to be

better described by a log-logistic distribution. This choice

was reasonable because the observed dropout rate due to

exacerbations was low [e.g. for Data 2 less than 3% (97

subjects) and for Data 3 less than the 2% (12 subjects)

(13, 14)] and because the majority of the dropout was

caused by adverse events that justify further the choice of

independency of the mechanism from efficacy.

It is worthy to note that the covariate inclusion and the

dropout model in the final model did not dramatically

improve the model performance as can be seen in the

simulation-based diagnostics (see Figs. S5–S7, S8 and

Fig. 2). This can be explained by the fact that the covariate

that was included in the model did not create a big drop in

the DIC and by the fact that the dropout values observed in

the dataset were really small, almost negligible.

The analysis of the three datasets revealed that the two-

state model was able to identify the drug effect in hetero-

geneous COPD populations (i.e. different disease severity

and exacerbations rates) involving drugs with different

mechanism of action. It is noteworthy that for Data 1, Data

2 and the low EOS subset of Data 3, the two-state model

confirmed the results reported using the standard negative

binomial models (13, 14) and, in addition, for Data 3 the

two-state model was able to detect a drug effect that was

not significant using the negative binomial. An additional

advantage of the two-state model was to identify potential

drug effect showing increased transition rate from state 2 to

state 1. Note that with the standard negative binomial

approach the direction of the drug action would not be

identifiable. Moreover, the analysis performed on the drug

Fig. 6 Transition rates ratio using log-logistic model for Data 3 using study length equal to 168, 120 and 90 days (from left to right), respectively

and keeping 150 subjects per arm
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interaction with the severity of the patient showed that for

data 1 the drug effect was relatively stronger for moderate

to severe patients (transition probabilities of the placebo

arm were separated and higher than the treatment arm),

whereas in the Data 2, drug effect was larger in the sub-

group of very severe patients, see Fig. 4. This result is of

particular interest as it may help to identify the population

in which the drug may be more efficacious but as no

mechanistic explanation is available further investigation

should be done to validate the finding.

A useful application of the final model was to evaluate

drug effect under different study designs as shown in

Figs. 5, 6. Using Data 3 we observe that reducing the study

duration up to 4 months or reducing the number of subjects

up to 100 per arm would not compromise the detection of a

drug effect. This is an important result as it suggests it

would be possible to shorten the study length and so reduce

the trial cost without compromising any drug effect

identification.

The extrapolation capability of the two-state log-logistic

model to 6 months and 12 months using parameter esti-

mates obtained from Data 1 with only 3 months data was

reasonable, see Fig. 7. The predictions at 12 months were

slightly deteriorated but overall the estimated drug effect at

1-year was well predicted using only 3 months’ data.

Therefore, these results suggest that the model can reliably

be used in simulation framework to explore the compound

behaviour in different drug development setting.

Note that these design investigation findings are difficult

to generalize as they are bounded to the dataset under

analysis (i.e. dataset rate of exacerbation; size of the drug

effect), so further efforts need to be undertaken in the

future for model refinement.

Fig. 7 Transition rates ratio (on top) and number of exacerbations (on

the bottom—solid bars are observed values, error bars are 95% CI

obtained from model simulation) using log-logistic model for Data 1

extrapolating to 6 months (middle) and 1 year (right) from estimates

of 3-months data (left)

Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:371–384 383

123



Conclusions

In this work, we expanded the Cook’s two-state model by

investigating different semi-Markov transition models

using three clinical studies with COPD exacerbations data.

The log-logistic model adequately characterized the dura-

tion and number of COPD exacerbations, as well as cap-

turing the effect of different treatment interventions (i.e.

the drug effect was detected in both directions—slowing

down transition to exacerbation state and speeding up

transition to non-exacerbated state). Preliminary design

investigations with actual study data showed that, given the

dataset under analysis (e.g. specific rate of exacerbation

and identified drug effect), a clear drug effect can be

detected even with shorter study duration (i.e. from 6 to

4 months) or relatively lower sample size (i.e. from 150

subjects to 100).
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