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Abstract
Non-starch polysaccharides derived from natural resources play a significant role in the field of food science and human health 
due to their extensive distribution in nature and less toxicity. In this order, the immunostimulatory activity of a non-starch 
polysaccharide (CQNP) from Chenopodium quinoa was examined before and after deproteination in murine macrophage 
RAW 264.7 cells. The chemical composition of CQNP and deproteinated-CQNP (D-CQNP) were spectrometrically analysed 
that revealed the presence of carbohydrate (22.7 ± 0.8% and 39.5 ± 0.8%), protein (41.4 ± 0.5% and 20.8 ± 0.5%) and uronic 
acid (8.7 ± 0.3% and 6.7 ± 0.2%). The monosaccharide composition results exposed that CQNP possesses a high amount of 
arabinose (34.5 ± 0.3) followed by galactose (26.5 ± 0.2), glucose (21.9 ± 0.3), rhamnose (7.0 ± 0.1), mannose (6.0 ± 0.1) and 
xylose (4.2 ± 0.2). However, after deproteination, a difference was found in the order of the monosaccharide components, with 
galactose (41.1 ± 0.5) as a major unit followed by arabinose (34.7 ± 0.5), rhamnose (10.9 ± 0.2), glucose (6.6 ± 0.2), mannose 
(3.4 ± 0.2) and xylose (3.2 ± 0.2). Further, D-CQNP potentially stimulate the RAW 264.7 cells through the production of 
nitric oxide (NO), upregulating inducible nitric oxide synthase (iNOS) and various pro-inflammatory cytokines including 
interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α). Moreover, stimulation of RAW 264.7 cells by 
D-CQNP takes place along the NF-κB and the MAPKs signaling pathways through the expression of cluster of differentiation 
40 (CD40). This results demonstrate that RAW 264.7 cells are effectively stimulated after removal of the protein content in 
C. quinoa non-starch polysaccharides, which could be useful for develop a new immunostimulant agent.
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Introduction

Quinoa (Chenopodium quinoa Willd.) is one of the ancient 
Pseudo-cereal crops belonging to the family of Cheno-
podiaceae. It is a broadleaf non-grasses plant originated 
from South America and their seeds have been included in 
cereal-based foods. It is largely produced by small farms 
and associations in the Andean region of South America. 
Nevertheless, it is currently cultivated in more than 70 
countries, including Kenya, India, United States and many 
European countries. It considers as a starch-rich compo-
nent that is high in carbohydrates and also contains starch 
and small amounts of sugars. Quinoa starch content var-
ies from 51 to 61% and its granule diameter is ˂3 μm [1]. 
Currently, quinoa is gaining more attention in the nutrition 
and pharmaceutical industries because it is rich in nutri-
ents, especially the dietary fiber content (1.1% to 16.3%) 

is higher than other cereals such as rice (0.4%), wheat 
(2.7%) and corn (1.7%). Also, there is no gluten compared 
to other grains [2]. Quinoa is important for patients with 
celiac disease because it is believed that gluten-free fiber 
deficiency can be prevented by adding quinoa seeds to the 
diet [2].

Previous studies on quinoa proteins have shown that 
it contains a balanced essential amino acid composi-
tion and high levels of essential amino acids. Its value is 
higher than that of common grains [3]. The lipid content 
of quinoa is two to three times higher than that of general 
grains and contains high levels of unsaturated fatty acids, 
which contribute an important role in nutrition [2]. In 
addition, it contains some important micronutrients such 
as minerals and vitamins, as well as significant amounts 
of bioactive components such as polyphenols, flavonoids 
that exhibit various biological activities [4, 5]. It has been 
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reported that quinoa can help reduce the risk of complica-
tions such as diabetes, heart disease, obesity, anemia and 
dyslipidemia [6].

Non-starch polysaccharides are the important compo-
nents of dietary fiber that are formed by the binding of 
many monosaccharide units by glycosidic bonds, which 
play an important role in regulating cellular growth and 
development. Several studies report that non-starch poly-
saccharides of cereals have shown countless biological 
activities including immunogenic [7], anti-oxidants [8], 
anti-atherosclerogenic [9], anti-cancer [10] and anti-dia-
betics [11]. Of these, immunostimulatory activities are 
directly connected to health benefits. Promoting innate 
immunity in a controllable way will enhance the host 
defence activities [12]. Recently, Barbosa and de Car-
valho Junior stated that the immunomodulatory potential 
of polysaccharides is used to assess the ability of these 
biopolymers to enhance the body immunity towards viral 
infections, especially SARS-CoV-2 [13]. Polysaccha-
rides from various natural sources such as plants [14], 
algae [15], fungi [16–18] stimulates the innate and cel-
lular community via interactions with T cells, monocytes, 
macrophages, and polymorphonuclear lymphocytes [19]. 
When stimulated, the macrophage can destroy the patho-
gens directly by phagocytosis and indirectly through the 
secretions of NO and various cytokines TNF-α, IL-1β, 
and IL-6 [20]. Usually, non-starch polysaccharide stimu-
late the macrophages by binding to pattern recognition 
receptors (PRRs) such as toll-like receptors (TLRs), 
Dectin-1, and complement receptor type 3 (CR3), and 
trigger the signal transduction pathways including phos-
phoinositide-3-kinase (PI3K)/Akt, mitogen-activated 
protein kinases (MAPKs), as well as transcription fac-
tors such as nuclear factor (NF)-κB and activator pro-
tein (AP) [7]. Numerous researches have been done to 
evaluate the immunomodulatory activity of non-starch 
polysaccharides derived from various natural resources 
[7, 21–24]. However, there are only a few investigations 
into the effect of structural changes in polysaccharide on 
macrophage activity.

Hence, we aimed to study the structural characteristics 
of non-starch polysaccharides (CQNP) and deproteinated 
CQNP (D-CQNP) from C. quinoa, and explored the pos-
sible immunostimulatory activity on the murine RAW 
264.7 macrophage cell line. We inspected the immuno-
genic effect of CQNP and D-CQNP by examining the 
production of NO, cytokines, inducible nitric oxide syn-
thase (iNOS), and TNF-α. We also determined the sign-
aling pathway associated with the immunostimulatory 
activity of CQNP and D-CQNP by examining the NF-κB 
and MAPK via a cluster of differentiation 40 (CD40) and 
CD11b expression.

Materials and Methods

Chemical and Reagents

Cell culture media and its supplements were purchased 
from Lonza, Inc. (Walkersville, MD, USA). The major 
enzymes such as α-amylase and proteinase K were 
attained from Sigma-Aldrich, St. Louis, MO, USA. The 
primary antibodies such as anti-phospho-NF-κB p65, 
anti-phospho-c-Jun N-terminal kinase (JNK), anti-phos-
pho-extracellular signal-regulated kinase (ERK1/2), and 
anti-phospho p38, and secondary antibody (horseradish 
peroxidase-conjugated anti-rabbit antibody) were obtained 
from Abcam, Cambridge, UK. The antibodies for flow 
cytometry analysis such as anti-CD40-APC (1C10) and 
anti-CD11b (M1/70) were procured from ThermoFisher 
Scientific, Waltham, MA, USA.

Isolation of Non‑starch Polysaccharide

In this study, the C. quinoa non-starch polysaccha-
ride (CQNP) was isolated by hot water extraction and 
α-amylase treatment. The C. quinoa seeds were collected 
from the local market of XiNing City, QingHai Province, 
China. The seeds thoroughly cleaned with distilled water, 
dried at 45 °C, and were milled into a fine powder. For 
CQNP extraction, 20 g of powdered sample was extracted 
with 200 mL of distilled water at 65 °C. The collected 
extract was centrifuged at 4000 × g for 15 min. Afterwards, 
the extract was mixed with an equal volume of phosphate-
buffered saline (PBS, pH 6.0) and incubated with 4 mg of 
α-amylase (Sigma-Aldrich, St. Louis, MO, USA) for 16 h 
at 55 °C. The reaction was arrested by raising the tempera-
ture to 100 °C for 10–15 min. Finally, the reaction mixture 
was filtered through a 110 nm size of the membrane, dia-
lyzed against distilled water and freeze-dried.

Deproteination of CQNP

About, 1 mg of CQNP was dissolved in 0.1 M sodium 
phosphate buffer and then incubated with 10–20% of pro-
teinase K (w/v) in a water bath at 58 °C for 24 h. The 
reaction was stopped by keep the sample at 100 °C for 
10 min. Afterwards, the reaction mixture was centrifuged 
(10,000 rpm for 10 min) and the supernatant was dialyzed 
against distilled water and freeze-dried [25]. The depro-
teinated CQNP was named as D-CQNP.
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Chemical and Monosaccharide Composition 
Analysis

The presence of carbohydrate, protein and uronic acid 
were examined by phenol–sulfuric acid [26], Folin-
phenol reagent [27] and m-hydroxydiphenyl reaction 
[28], respectively. For the monosaccharide composition 
analysis, three milligrams of the sample was hydrolyzed 
with 0.5 mL of 4 M trifluoroacetic acid (TFA) at 100 °C 
for 6 h. The hydrolyzed product was reduced by  NaBD4 
and then acetylated using acetic anhydride. The mono-
saccharide composition analysis was carried out by a gas 
chromatography–mass spectrometry analysis (GC–MS, 
6890N/MSD 5973, Agilent Technologies, Santa Clara, 
CA, USA) equipped with the HP-5MS capillary column 
(30 m × 0.25 mm × 0.25 μm; Agilent Technologies).

Molecular Weight Analysis

The average Mw and Rg values were estimated by follow-
ing the method of Tabarsa et al. [29]. Briefly, the sam-
ple was solubilized in distilled water (2  mg/mL) and 
heated for 30 S using a microwave bomb (Parr Instrument 
Co., Moline, IL, USA). Then, the samples were filtered 
through a cellulose acetate membrane (3.0 μm pore size; 
Whatman International) and injected into a TSK G5000 
PW column (7.5 × 600 mm; Toso Biosep, Montgomery-
ville, PA, USA) coupled with a multi-angle laser light 
scattering (MALLS) detection (HELEOS; Wyatt Tech-
nology Corp., Santa Barbara, CA, USA) and refractive 
index (RI) detection (Waters, Milford, MA, USA) system 
(HPSEC–UV–MALLS–RI). The Mw was calculated using 
ASTRA 5.3 software (Wyatt Technology Corp.).

Glycosidic Linkage Analysis

The glycosidic linkage profile of the highest immu-
nostimulant D-CQNP was investigated using the method 
of Ciucanu and Kerek [30]. Nearly, 3 mg of D-CQNP was 
fully dissolved in 0.5 mL dimethyl sulfoxide under a nitro-
gen stream. Add, 20 mg of NaOH to this solution. The 
methylation process was carried out by mixing of methyl 
iodide for 45 min and then hydrolyzed with 4 M TFA at 
100 °C for 6 h. The hydrolysates were reduced in distilled 
water with  NaBD4 and acetylated using acetic anhydride 
at 100 °C. The partially methylated alditol acetates were 
subjected to GC–MS analysis (6890N/MSD 5973, Agilent 
Technologies) equipped with an HP-5MS capillary column 
(30 m × 0.25 mm × 0.25 μm; Agilent Technologies).

Cell Proliferation and NO Production

In this study, the immunostimulatory activities of CQNP 
and D-CQNP were tested on RAW 264.7 macrophage 
cells (ATCC; Manassas, VA, USA and ATCC, Rockville, 
MD, USA). RAW 264.7 cells were grown in RPMI-1640 
medium in the presence of 10% fetal bovine serum (FBS) 
under 5%  CO2 atmosphere condition. The cell prolifera-
tion activity was tested using WST-1 assay. RAW 264.7 
cells were cultured in a 96-well microplate (1 ×  106 cells/
mL) with different concentration of CQNP or D-CQNP 
(12, 25 and 50 µg/mL) for 24 h at 37 °C. Add 100 µL of 
10% WST-1 solution into the wells and extend the incuba-
tion for 1 h. The absorbance was read at 450 nm and the 
proliferation activity (%) was calculated using the follow-
ing equation. Similarly, the cells were treated with CQNP 
or D-CQNP and the NO production was measured using 
Griess reaction [31].

Real‑Time PCR Analysis

RAW 264.7 cells (1 ×  106 cells/mL) were incubated 
with polysaccharide or LPs (1 µg/mL) at the concentra-
tion of 50 µg/mL in a 96-well microplate under 5%  CO2 
atmosphere for 18 h at 37 °C. The total RNA content was 
extracted from the cells using TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA). cDNA was constructed using 
oligo-(dT) 20 primer and Superscript III RT (Invitrogen) 
by following the steps provided in the kit. PCR amplifi-
cation was performed by a Real-Time PCR system using 
Fast Start DNA Master TB Green II kit (Takara Bio, Inc., 
Shiga, Japan) using the specific primers (Table 1).

Cell proliferation (%) = Absorbance of sample∕

Absorbance of control × 100.

Table 1  Sequences of the primers used in real-time PCR analysis

Gene Sequences of the primers

iNOS 5′-CCC TTC CGA AGT TTC TGG CAG CAG C-3′ (forward)
5′-GGC TGT CAG AGC CTC GTG GCT TTG G-3′ (reverse)

IL-1β 5′-ATG GCA ACT ATT CCT GAA CTC AAC T-3′ (forward)
5′-CAG GAC AGG TAT AGA TTC TTT CCT TT-3′ (reverse)

IL-6 5′-TTCC TCT CTG CAA GAG ACT-3′ (forward)
5′-TGT ATC TCT CTG AAG GAC T-3′ (reverse)

IL-10 5′-TAC CTG GTA GAA GTG ATG CC-3′ (forward)
5′-CAT CAT GTA TGC TTC TAT GC-3′ (reverse)

TNF-α 5′-ATG AGC ACA GAA AGC ATG ATC-3′ (forward)
5′-TAC AGG CTT GTC ACT CGA ATT-3′ (reverse)

β-Actin 5′-TGG AAT CCT GTG GCA TCC ATG AAA C-3′ (forward)
5′-TAA AAC GCA GCT CAG TAA CAG TCC G-3′ (reverse)
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Western Blot Analysis

RAW 264.7 cells (1 ×  106 cells/mL) were treated with CQNP 
or D-CQNP (50 µg/mL) for 18 h at 37 °C. Then, the cells 
were lysed in RIPA buffer for 30 min and centrifuged at 
14,000 × g (4 °C) for 15 min. The protein content was esti-
mated by Micro BCA™ Protein Assay Kit (Thermo Scien-
tific, Waltham, MA, USA) according to the manufacturer’s 
guidelines. Simultaneously, the cell lysates containing nearly 
30 µg of protein was loaded on sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and the 
protein band was transferred onto a polyvinylidene fluoride 
(PVDF) membrane. The membrane was incubated with par-
ticular primary antibodies such as anti-phospho-NF-κB p65, 
anti-phospho-c-Jun N-terminal kinase (JNK), anti-phospho-
extracellular signal-regulated kinase (ERK1/2), and anti-
phospho p38 (Abcam, Cambridge, UK) followed by second-
ary horseradish peroxidase conjugated anti-rabbit antibody. 
The proteins were identified by Pierce ECL Plus Western 
Blotting Substrate (ThermoFisher Scientific, Waltham, MA, 
USA) and the expression was visualized by Bio-Rad image 
analysis system (Bio-Rad Laboratories).

Flow Cytometry Analysis

The polysaccharides treated RAW 264.7 cells (50 µg/mL) 
were washed with flow cytometry staining buffer and then 
incubated with specific antibodies such as anti-CD40-APC 
(1C10) and anti-CD11b (M1/70) for 30 min at 4 °C under 
the dark condition. The flow cytometry analysis was carried 
out by CytoFLEX flow cytometer (Beckman Coulter, High 
Wycombe, UK), and the data were analyzed using the Cyt-
Expert 2.3.0.84 software (Beckman Coulter).

Statistical Analysis

All experiments were performed in triplicate (n = 3), and the 
value was expressed as the average and standard deviation 
(SD). The statistical analysis was carried out using SPSS 
software (Version 16; SPSS, Inc., Chicago, IL, USA). The 
differences between groups were analyzed using one-way 
analysis of variance (ANOVA) and Duncan's multiple-range 
test, and a p-value of < 0.05 was considered statistically 
significant.

Table 2  Total yield, chemical composition, and monosaccharide content and molecular weight analysis of CQNP and D-CQNP obtained from 
Chenopodium quinoa 

CQNP non-starch polysaccharide of Chenopodium quinoa, D-CQNP deproteinated non-starch polysaccharide of Chenopodium quinoa, n.d. not 
detected

Sample

CQNP D-CQNP

Chemical composition (%)
 Yield (%) 1.7 20.4
 Carbohydrate 22.7 ± 0.8 39.5 ± 0.8
 Protein 41.4 ± 0.5 20.8 ± 0.5
 Uronic acid 8.7 ± 0.3 6.7 ± 0.2

Monosaccharide content (%)
 Rhamnose 7.0 ± 0.1 10.9 ± 0.2
 Arabinose 34.5 ± 0.3 34.7 ± 0.5
 Xylose 4.2 ± 0.2 3.2 ± 0.2
 Mannose 6.0 ± 0.1 3.4 ± 0.2
 Glucose 21.9 ± 0.3 6.6 ± 0.2
 Galactose 26.5 ± 0.2 41.1 ± 0.5

Samples Mw (kDa) Rg (nm)

Peak I Peak II Peak III Peak I Peak II Peak III

Molecular weight 
(Mw) and radius of 
gyration (Rg)

 CQNP 148.5 ± 36.6 24.9 ± 1.9 n.d 60.3 ± 3.9 74.6 ± 2 n.d
 D-CQNP 774.3 ± 13.5 90.9 ± 7.7 77.2 ± 6.8 57.5 ± 0.3 62.3 ± 0.4 62.3 ± 0.1



2296 Journal of Polymers and the Environment (2022) 30:2291–2303

1 3

Results and Discussion

Proximate Composition of CQNP and D‑CQNP

The non-starch polysaccharide from C. quinoa was 
extracted by hot water extraction and α-amylase treat-
ment. The yield and chemical composition of CQNP was 
displayed in Table 2. The amount of extracted CQNP 
was 1.7% of the starting raw material. Primarily, the 
CQNP constituted by carbohydrate (22.7 ± 0.8%), protein 
(41.4 ± 0.5%) and uronic acid (8.7 ± 0.3%). Of these result, 
CQNP has a high protein content because the protein is 
not hydrolyzed before the extraction of the non-starch 

polysaccharides [32]. Further, the existence of free protein 
in the polysaccharide maybe disturbs the structural and 
pharmaceutical properties. Hence, the protein content was 
removed from CQNP by proteinase K that showed notable 
changes in protein content. Totally, 20.4% of D-CQNP was 
obtained, which consisted of 39.5 ± 0.8% carbohydrate, 
20.8 ± 0.5% protein, and 6.7 ± 0.2% uronic acid.

The monosaccharide composition analysis is one of 
the recognized tools to determine the quality of polysac-
charide [33]. In this study, the monosaccharide composi-
tion of CQNP and D-CQNP was analyzed using GC–MS 
analysis. As shown in Table 2 and Fig. 1, the major con-
stituents of CQNP were arabinose (34.5 ± 0.3), galactose 

Fig. 1  Monosaccharide com-
position analysis of non-starch 
polysaccharides extracted from 
Chenopodium quinoa using 
a gas chromatography–mass 
spectrometry analysis. (A) 
CQNP and (B) D-CQNP. CQNP 
non-starch polysaccharide of 
Chenopodium quinoa, D-CQNP 
deproteinated non-starch 
polysaccharide of Chenopodium 
quinoa 
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(26.5 ± 0.2), glucose (21.9 ± 0.3), rhamnose (7.0 ± 0.1), 
mannose (6.0 ± 0.1) and xylose (4.2 ± 0.2). However, these 
compositions were varied in D-CQNP which showed galac-
tose (41.1 ± 0.5) as a major sugar unit followed by arabinose 
(34.7 ± 0.5), rhamnose (10.9 ± 0.2), glucose (6.6 ± 0.2), man-
nose (3.4 ± 0.2) and xylose (3.2 ± 0.2).

Molecular Weight Analysis

The molecular weight of polysaccharide is an important 
factor to be associated with various biological activities 
[34]. The average molecular weight of CQNP and D-CQNP 
were examined using a MALLS technique through a high-
performance size exclusion column (HPSEC). As shown in 
Fig. 2 and Table 2, CQNP exhibited two different peak at 
the elution time between 11.6 and 14.7 min (peak I) and 
15.4 and 17.9 min (peak II). The average molecular weight 
of CQNP calculated using the MALLS system, which was 
148.5 ± 36.6 kDa and 24.9 ± 1.9 kDa, respectively. Next, 
the D-CQNP emerged from the HPSEC as three distinct 
peaks between 11 and 13.7 min (peak I), 13.8 and 15.4 min 

(peak II), and 15.5 and 17.8 min (peak III) indicating that 
the molecular weight of 774.3 ± 13.5 kDa, 90.9 ± 7.7 kDa, 
and 77.2 ± 6.8 kDa, respectively. Similarly, the non-starch 
polysaccharide has a molecular weight of 15–150 kDa when 
isolated from green gram using hot water extraction [22]. 
Further, Rg values were calculated from the spectrum, which 
showed approximate sizes of the molecules ranging from 
60.3 to 74.6 nm for CQNP and 57.5 to 62.3 for D-CQNP.

Cell Proliferation and Nitric Oxide Production

Generally, macrophages or monocytes play a significant 
role in both immunities, which considered being impor-
tant immunocytes to protect the host from the pathogen, 
including cancer [35]. In this study, the immunostimula-
tory effect of CQNP and D-CQNP were tested on murine 
RAW 264.7 macrophage cells. Initially, the RAW 264.7 cells 
were incubated with different concentration of CQNP and 

Fig. 2  Determination of molecular weight of non-starch polysac-
charides extracted from Chenopodium quinoa using HPSEC–UV–
MALLS–RI spectral analysis. (A) CQNP and (B) D-CQNP. CQNP 
non-starch polysaccharide of Chenopodium quinoa, D-CQNP depro-
teinated non-starch polysaccharide of Chenopodium quinoa 

Fig. 3  The effects of CQNP and D-CQNP treatments on cell prolif-
eration and NO production in RAW 264.7 cells. (A) Cell proliferation 
and (B) NO production. The presence of letters x, y and z indicates 
a significant difference (p < 0.05) between the concentration of poly-
saccharides and a and b designates a significant difference (p < 0.05) 
between the treatments. NO nitric oxide, RPMI Roswell Park Memo-
rial Institute medium, LPS lipopolysaccharide, CQNP non-starch 
polysaccharide of Chenopodium quinoa, D-CQNP deproteinated non-
starch polysaccharide of Chenopodium quinoa 
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D-CQNP for 24 h and assess the cell proliferation activity 
using WST-1 assay. The cell proliferation results were com-
pared with LPS treatment (1 µg/mL). As shown in Fig. 3A, 
RAW 264.7 cells showed an enhanced level of cell prolifera-
tion than LPs treatment when incubating with CQNP and 
D-CQNP. While increasing the concentration the cell prolif-
eration activities were also increased. Further, the extracted 
non-starch polysaccharides did not show any toxic effects 
to the RAW 264.7 cells at the tested concentration. Subse-
quently, the NO production that could occur during treat-
ment with different concentrations of CQNP and D-CQNP 
was measured in RAW 264.7 cells. NO is one of the primary 
molecule produced by stimulated macrophages that shows 
potent cytotoxic effects on pathogen and cancer cells. It is 
also performed as an intracellular messenger in the regu-
lation of various physiological process [36]. In this study, 
RAW 264.7 cells treated with D-CQNP exhibited higher NO 
production than CQNP, demonstrating that the deproteinated 
non-starch polysaccharide has a strong immunostimulatory 
function (Fig. 3B).

Expression of iNOS and Cytokines

iNOS is one of the major enzyme involved in the NO pro-
duction in stimulated macrophages [37]. Therefore, the 
experiments are being conducted to examine whether the 
increase in NO production is associated with increased iNOS 
activity and/or gene expression. Here, the gene expression of 
iNOS and various cytokines such as IL-1β, IL-6, IL-10 and 
TNF-α were studied by Real-Time PCR analysis. As shown 
in Fig. 4, the RAW 264.7 cells treated with 50 µg/mL of 
D-CQNP revealed significantly higher iNOS expression than 
those treated with CQNP. These findings are consistent with 
the result of NO production. Several studies reported that 
the increase in NO production in RAW 264.7 cells is asso-
ciated with an increase in iNOS expression [38–40]. Simi-
larly, the mRNA expression of various cytokines including 
IL-1β, IL-6, IL-10 and TNF-α was significantly increased 
(p˂0.05) when RAW 264.7 cells were treated with D-CQNP 
(50 µg/mL). These results confirmed that the RAW 264.7 
cells are stimulated by D-CQNP by enhance the NO produc-
tion through the mRNA expression of iNOS and various 
cytokines.

Western Blot Analysis

In addition, the underlying mechanisms for the activation 
of RAW 264.7 cells were explored by evaluating the protein 
expressions of NF-κB and MAPK (p38, ERK, and JNK) 
signaling pathways using western blot analysis. NF-κB is 
one of the major transcriptional factors that controls pro-
inflammatory gene expression. The treatment of RAW 264.7 
cells with CQNP and D-CQNP promote the phosphorylation 

of NF-κB (Fig. 5). In a previous study in support of this 
result, it was reported that the translocated NF-κB induce the 
pro-inflammatory mediators expression including iNOS and 
cytokines [7]. Similarly, the pathways of MAPKs also play 
a major role in regulating cellular functions and regulating 
pro-inflammatory responses [41]. In particular, p38 MAPKs 
play an important role in responding to cellular processes 
[42]. The phosphorylation of MAPKs, p38, ERK, and JNK 
has remarkably induced in RAW 264.7 cells by the treatment 
of CQNP and D-CQNP. Of these, the phosphorylation of 
ERK and JNK was markedly higher than others. Further-
more, D-CQNP showed an expression equivalent to a posi-
tive control (LPS). Hence, these results demonstrated that 
the immunostimulating activity of CQNP and D-CQNP was 
related to the activation of NF-κB and the MAPKs signaling 
pathways.

Fig. 4  The expression of inducible nitric oxide synthase and pro-
inflammatory cytokines in CQNP and D-CQNP treated RAW 264.7 
cells was evaluated through real-time PCR analysis; (A) iNOS 
expression and (B) expression of TNF-α, IL-1β, IL-6 and IL-10. The 
alphabets a and b signify significant differences (p < 0.05) between 
the polysaccharide treatments. LPS-treated cells served as a positive 
control. iNOS inducible nitric oxide synthase, IL-1β interleukin 1 
beta, TNF-α tumor necrosis factor alpha, CQNP non-starch polysac-
charide of Chenopodium quinoa, D-CQNP deproteinated non-starch 
polysaccharide of Chenopodium quinoa, PCR polymerase chain reac-
tion, LPS lipopolysaccharide
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Flow Cytometry Analysis

Flow cytometry analysis was used to evaluate the surface 
biomarkers on RAW 264.7 cells treated with CQNP or 
D-CQNP (50 µg/mL) for 24 h. In this study, two biomark-
ers, CD11b and CD40 were used; CD11b is an indicator of 
activated macrophage that can be detected from the surface 
of granulocytes, monocytes, macrophages and natural killer 
cells and subsets of B- and T-cells. However, CD40 is a 
co-stimulatory molecule that induces the IL-2 and TNF-α 

through T- cell activation [43]. When treating RAW 264.7 
cells with CQNP or D-CQNP at 50 µg/mL the expression of 
CD11b and CD40 was 23.82% and 27.90% for CQNP and 
80.25% 81.33% for D-CQNP, respectively (Fig. 6). More-
over, the activity of D-CQNP more or less similar to the 
positive control (LPS). This result was agreed in previous 
studies, where CD11b and CD40 expression were found to 
be higher when macrophages were activated by microfibers 
[44]. Furthermore, the expression of CD40 was higher than 
CD11b, which demonstrates the stimulation of RAW 264.7 

Fig. 5  The protein expression 
of p-p38, p-JNK, p-ERK, and 
p-p65 in CQNP and D-CQNP 
treated RAW 264.7 cells. In this 
experiment, α-tubulin served as 
a control. RPMI represents the 
cells without treatment of poly-
saccharides. p-p38 phosphoryl-
ated p38, p-JNK phosphorylated 
c-Jun N-terminal kinase, p-ERK 
phosphorylated extracellular 
signal-regulated kinase, p-p65 
phosphorylated p65, RPMI 
Roswell Park Memorial Insti-
tute medium, LPS lipopolysac-
charide, CQNP non-starch 
polysaccharide of Chenopodium 
quinoa, D-CQNP deproteinated 
non-starch polysaccharide of 
Chenopodium quinoa 
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cells by non-starch polysaccharide of C. quinoa through the 
NF-κB and MAPK signaling pathways by the production of 
pro-inflammatory cytokines and NO production via CD40 
expression.

Glycosidic Linkage Analysis

Overall, the immunostimulatory results demonstrate that DQ-
CQNP stimulates the RAW 264.7 cells at a higher level than 
CQNP; hence, the main structural details of DQ-CQNP was 

further explored by glycosidic linkage analysis. Totally, thir-
teen derivatives were identified: 1 → Araf, 1 → Rha, 1 → 3 Araf, 
1 → 5 Araf, 1 → Glc, 1 → Gal, 1 → 2, 5 Araf, 1 → 2 Araf, 1 → 4 
Gal, 1 → 4 Glc, 1 → 3 Gal, 1 → 6 Gal, 1 → 3, 4 Gal (Fig. 7; 
Table 3). Predominantly, galactopyranosyl as a main sugar 
component in the D-CQNP structure which was connected by 
(1 → 3, 4), (1 → 6), (1 → 3), (1 → 4) linkages with the peak area 
of 17.8%, 10.0%, 9.5% and 1.3%, respectively. Next, the arabi-
nopyranosyl existed in the second residence with the connec-
tion of (1 → 5), (1 → 3), (1 → 2), (1 → 2, 5) linkages. In addition, 

Fig. 6  Evaluation of CD11b and CD40 expression in CQNP and 
D-CQNP treated RAW 264.7 cells. Cells treated with LPS and the 
medium alone (RPMI) served as a positive and negative control. 
The letters a and b indicate significant differences (p < 0.05) between 
the polysaccharide treatments. CD11b cluster of differentiation 11b, 

CQNP non-starch polysaccharide of Chenopodium quinoa, D-CQNP 
deproteinated non-starch polysaccharide of Chenopodium quinoa, 
RPMI Roswell Park Memorial Institute medium, LPS lipopolysaccha-
ride
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(1 → 4) linked glucopyranosyl residues were found to be present 
in the D-CQNP structure. It is noteworthy that D-CQNP con-
tains some types of terminal residues such as arabinopyranosyl, 
rhamnopyranosyl, galactopyranosyl and glucopyransosyl.

Conclusion

In this study, non-starch polysaccharide CQNP was 
extracted from C. quinoa by hot water extraction and 
α-amylase treatment. Simultaneously, the protein content 
of CQNP was removed by enzymatically using proteinase 
K. Both samples enhanced the RAW 264.7 cells prolif-
eration without toxicity. Among these, the higher RAW 
264.7 cells stimulation was found in D-CQNP than CQNP. 
D-CQNP stimulate the RAW 264.7 cells through NF-κB 

and MAPK signaling pathways by the production of NO 
and pro-inflammatory cytokines via CD40 expression. 
The structure of D-CQNP mainly consisted of (1 → 3, 4), 
(1 → 6), (1 → 3), (1 → 4) linked galactopyranosyl with ara-
binopyranosyl, and glucopyranosyl residues. These find-
ings are helpful for understanding the structural properties 
of non-starch polysaccharides from C. quinoa and their 
effect on macrophage activation.
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Fig. 7  GC–MS chromatogram 
represents the glycosidic link-
age of D-CQNP. GC–MS gas 
chromatography–mass spec-
trometry, D-CQNP deprotein-
ated non-starch polysaccharide 
of Chenopodium quinoa 

Table 3  Glycosidic linkage 
analysis of D-CQNP extracted 
from Chenopodium quinoa 

S. no Retention 
time (min)

Methylation product Linkage type Peak area (%)

1 6.34 1,4-Di-O-acetyl-2,3,5-tri-O-methyl-Ara Araf-(1 → 13.4
2 6.91 1,5-Di-O-acetyl-2,3,4-tri-O-methyl-Rha Rha-(1 → 9.5
3 7.83 1,3,4-Tri-O-acetyl-2,5-di-O-methyl-Ara  → 3)-Araf-(1 → 7.4
4 8.37 1,4,5-Tri-O-acetyl-2,3-di-O-methyl-Ara  → 5)-Araf-(1 → 7.7
5 9.10 1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-Glc Glcp-(1 → 4.4
6 9.46 1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-Gal Galp-(1 → 9.7
7 9.96 1,2,4,5-Tetra-O-acetyl-3-O-methyl-Ara  → 2,5)-Araf-(1 → 1.8
8 10.62 1,2,4-Tri-O-acetyl-3,5-di-O-methyl-Ara  → 2)-Araf-(1 → 3.1
9 10.75 1,4,5-Tri-O-acetyl-2,3,6-tri-O-methyl-Gal  → 4)-Galp-(1 → 1.3
10 10.88 1,4,5-Tri-O-acetyl-2,3,6-tri-O-methyl-Glc  → 4)-Glcp-(1 → 4.4
11 11.03 1,3,5-Tri-O-acetyl-2,4,6-tri-O-methyl-Gal  → 3)-Galp-(1 → 9.5
12 11.74 1,5,6-Tri-O-acetyl-2,3,4-tri-O-methyl-Gal  → 6)-Galp-(1 → 10.0
13 13.45 1,3,4,5-Tetra-O-acetyl-2,6-di-O-methyl-Gal  → 3,4)-Galp-(1 → 17.8
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