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Abstract
We use optimal control via a distributed exterior field to steer the dynamics of an ensemble
of N interacting ferromagnetic particles which are immersed into a heat bath by minimizing
a quadratic functional. Using the dynamic programming principle, we show the existence of
a unique strong solution of the optimal control problem. By the Hopf–Cole transformation,
the associated Hamilton–Jacobi–Bellman equation of the dynamic programming principle
may be re-cast into a linear PDE on the manifold M = (S2)N , whose classical solution
may be represented via Feynman–Kac formula. We use this probabilistic representation for
Monte-Carlo simulations to illustrate optimal switching dynamics.

Keywords Stochastic Landau–Lifschitz–Gilbert equation · Stratonovich noise · HJB
equation · Dynamic programming principle · Hopf–Cole transformation · Discretization
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1 Introduction

We control a ferromagnetic N -spin system which is exposed to thermal fluctuations via an
exterior forcing u := (u1, . . . , uN ) : [0, T ] × � → (R3)N . A relevant application includes
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data storage devices, for which it is crucial to control the dynamics of the magnetization
m := (m1, . . . , m N ) : [0, T ] × � → (S2)N in order to ensure a reliable transport of data
which are represented by thosemagnetic structures. Besides the external force Hext,i(ui ) =
Cext ui , the i-th spin of the ensemblewithmagnetizationmi is exposed to the different forces
Hani,i(mi ), Hd,i(mi ), and Hexch,i(m):

• the anisotropic force Hani,i(mi ) = Ami for some A ∈ R
3×3
diag, which favors alignment

of mi with the given material dependent easy axis e ∈ R
3,

• the ‘stray-field force’ Hd,i(mi ) = −Bi mi for some Bi ∈ R
3×3
diag,• the exchange force Hexch,i(m), which penalizes non-alignment of neighboring magne-

tizations via Hexch,i(m) = −(Jm)i , for some positive semi-definite J ∈ R
3N×3N
sym .

For every 1 ≤ i ≤ N , we denote their superposition

Heff,i(m,u) = Hani,i(mi ) + Hd,i(mi ) + Hexch,i(m) + Hext,i(ui ) (1.1)

as the effective field. The dynamics of m for times [0, T ] is then governed by the following
SDE system (1 ≤ i ≤ N ):

dmi (t) =
(

mi × Heff,i(m,u) − α mi × [
mi × Heff,i(m,u)

])
dt + ν mi × ◦ dWi (t) ,

mi (0) = m̄i ∈ S
2 .

(1.2)

Here,W = (W1, . . . , WN ) is a (R3)N -valued Wiener process on a filtered probability space
(�,F, {Ft }t ,P) satisfying the usual conditions to represent thermal fluctuations from the
surrounding heat bath. The leading term in the drift part in (1.2) causes a precessional motion
of mi around Heff,i(m,u), while the dissipative second term scaled by α > 0 favors a time-
asymptotic alignment of mi with Heff,i(m,u). The Stratonovich type of the stochastic
integral of the diffusion term ensures that each state process mi takes values in S2. We refer
to [3,4] for further details on the model.

Our aim is to find a control process u∗ such that the solution process m∗ from (1.2)
approximates a given deterministic profile m̃ ≡ (m̃1, . . . , m̃ N ) ∈ L2

(
0, T ; (S2)N

)
. More

precisely, we aim to solve the following problem.

Problem 1.1 Let the parameters δ, ν, α ≥ 0, and T , λ > 0, N ∈ N as well as h ∈
C2

(
(S2)N ;R)

be given. Let
(
�,P,F, {Ft }0≤t≤T

)
be a given stochastic basis with the usual

conditions, and W be a {Ft }0≤t≤T -adapted (R3)N -valued Wiener process on it. Find a pair1

(m∗,u∗) ∈ L2{Ft }
(
�; C

([0, T ]; (S2)N ) × L2(0, T ; (R3)N )
)

which minimizes the cost functional

Jsto(m,u) := E

[∫ T

0

(
δ ‖m(s) − m̃(s)‖2

(R3)N + λ

2
‖u(s)‖2

(R3)N

)
ds + h

(
m(T )

)]

subject to (1.2). We call such a minimizer a strong solution of the optimally controlled
Landau–Lifschitz–Gilbert equation.

The problem (1.2) with u = 0 has been studied in [3]. In the case of a finite ensemble of
nanomagnetic particles, the deterministic optimal control problem has been studied in [1,2];

1 L2{Ft }
(
�; C

([0, T ]; (S2)N )) :=
{
m ∈ L2{Ft }

(
�; C

([0, T ]; (R3)N )) : m(t) ∈ (S2)N , P-a.s. for all

t ∈ [0, T ]
}
.
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we also refer to [5] for a deterministic control problem for infinitely many ferromagnetic
particles (a PDE). In [7], some of the present authors have studied Problem 1.1 in its weak
form and constructed a weak optimal solution�∗ := (

�∗,P∗,F∗, {F∗
t }0≤t≤T ,m∗,u∗,W∗)

of the underlying problem via the Young measure (relaxed control) approach for a compact
control set U ⊂ (R3)N such that 0 ∈ U, which may be generalized to the case U = (R3)N

thanks to the coercivity of the cost functional with respect to u; see also [6] for an extension
to infinite spin ensembles. To approximate it numerically, implementable strategies may be
developed that rest on Pontryagin’s maximum principle which characterizes minimizers.
In [7], a stochastic gradient method is proposed to generate a sequence of functional-
decreasing approximate feedback controls, where the update requires to solve a coupled
forward-backward SDE system. A relevant part here is to simulate a (time-discrete) back-
ward SDE via the least-squares Monte-Carlo method, which requires significant data storage
resources [6,7], and thus limits the complexity of practically approachable Problem 1.1.

In this work, we use an alternative strategy which rests on the dynamic programming
principle. This allows us to prove the existence of a unique strong solution of Problem 1.1,
which sharpens results of [7]. Since the solution of the underlying SDE lies onM = (S2)N ,
the Hamilton–Jacobi–Bellman equation is defined on the manifold [0, T ] × M. In Sect. 3
we verify that the value function is the unique solution of that Bellman equation and that
it belongs to C1,2

([0, T ] × M)
. To solve this semi-linear PDE by deterministic numerical

strategies seems non-accessible due to the high dimension of the underlying manifoldM; we
also want to avoid a direct probabilistic representation of its solution which would involve a
backward SDE. Indeed, we demonstrate how the nonlinear HJB equation may be replaced
with a linear parabolic PDE (3.12) by applying the Hopf–Cole transformation. The quadratic
form resp. linearity of the control in the cost functional resp. in the equation (1.2) together
with the geometric character of the problem then lead to an isotropic quadratic term in the
HJB equation (3.8), which is crucial for this transformation. The regularity of the value
function and the optimal policy mapping is explicitly expressed through the regularity of the
terminal condition h. Furthermore, the solution w of the linear parabolic PDE can now be
represented via a Feynman–Kac formula. This is the starting point for the numerical scheme
proposed in Sect. 5. To approximate the optimal pair (m∗,u∗) numerically, a Monte-Carlo
method for the solution w of the linear equation (3.8) and its tangential gradient ∇Mw is
proposed, fromwhich the optimal feedback function ū can be obtained directly via (3.15). To
approximate ∇Mw through a difference quotient with needed accuracy, we choose a stencil
diameter h̄ = O(

1/
√

M
)
for a sufficiently large number of Monte-Carlo realizations M ; see

Remark 6.1. Importantly, this approach does not require larger data storage resources as [6,7]
does, but an ample calculation of iterates from related SDEs. Computational studies for the
switching dynamics of single and multiple ferromagnetic particles are reported in Sect. 6.

The strategy which is proposed in this work to efficiently approximate the minimizer of
the stochastic optimal control Problem 1.1 exploits its special structure to successfully apply
the Hopf–Cole transformation—which then

(i) guarantees the existence and uniqueness of a classical solution of the associated
Hamilton–Jacobi–Bellman equation, and of a strong solution of the optimal control prob-
lem,

(ii) leads to a characterisation of optimality through a linear parabolic PDE, which in turn
allows the efficient numerical approximation in high-dimensional spaces throughMonte-
Carlo simulation without the need for computationally more costly backward SDEs.
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2 The Stochastic Landau–Lifschitz–Gilbert Equation

The solution process m of (1.2) attains values in M = (S2)N . For any

mmm = (m1, . . . , m N ) = (
m1,1, m1,2, m1,3, . . . , m N ,1, m N ,2, m N ,3

) ∈ M
we have

‖mmm‖2
(R3)N =

N∑
i=1

‖mi‖2R3 =
N∑

i=1

3∑
�=1

|mi,�|2 = N .

For any mmm = (m1, . . . , m N ) ∈ M, denote σσσ(mmm) = diag
(
σ(m1), . . . , σ (m N )

)
, where

σ(mi ) ∈ R
3×3 is the matrix

σ(mi ) =
⎛
⎝

0 −mi,3 mi,2

mi,3 0 −mi,1

−mi,2 mi,1 0

⎞
⎠ .

Again, for any (mmm,uuu) ∈ M × (R3)N , we define

f(mmm,uuu) := mmm × Heff(mmm,uuu) − α mmm × [
mmm × Heff(mmm,uuu)

]
.

Then, using σσσ also here, and combining Hani,i(mi ) + Hd,i(mi ) = −Di mi with some
Di = Bi − A ∈ R

3×3
diag as well as D = diag

(
D1, . . . ,DN

)
, we have

f(mmm,uuu) = σσσ(mmm)Heff(mmm,uuu) − αmmm × σσσ(mmm)Heff(mmm,uuu) = (
Id − ασσσ(mmm)

)
σσσ(mmm)Heff(mmm,uuu)

= 



(
mmm)

( − Jmmm − Dmmm + Cext uuu
)
, (2.1)

where




(mmm) = (
Id − ασσσ(mmm)

)
σσσ(mmm) . (2.2)

The matrix


(mmm) ∈ R
3N×3N is block-diagonal, with its i-th block


i (mi ) =
⎛
⎝

α (m2
i,2 + m2

i,3) −mi,3 − α mi,1mi,2 mi,2 − α mi,1mi,3

mi,3 − α mi,1mi,2 α (m2
i,1 + m2

i,3) −mi,1 − α mi,2mi,3

−mi,2 − α mi,1mi,3 mi,1 − α mi,2mi,3 α (m2
i,1 + m2

i,2)

⎞
⎠ .

For mi ∈ S
2, one has


i (mi ) = (
Id − α σ(mi )

)
σ(mi ) = σ(mi ) + α

(
Id − mi ⊗ mi

) = σ(mi ) + α P(mi ) ,

where P(mi ) is the orthogonal projection onto the tangent plane of S2 at mi . Note that the
diffusion term ν mi (s)×(◦dWi (s)) in (1.2) can be re-written as ν σ(mi (s))◦dWi (s). To state
the dynamic programming equation, we introduce a family of stochastic Landau–Lifschitz–
Gilbert equations with different initial times t ∈ [0, T ] and states mmm ∈ M:

dm(s) = f(m(s),u(s)) ds + ν σσσ(m(s)) ◦ dW(s) (t < s ≤ T ) ,

m(t) = mmm ∈ M ,
(2.3)

where f is defined in (2.1). The solutionsm = mt,mmm of (2.3) thus depend on t andmmm; however,
we shall drop the superscript ofmt,mmm in the subsequent text for the ease of notation. For every
0 ≤ t ≤ T ,m(t) = mmm, andu ∈ L2{Fs }

(
�; L2(t, T ; (R3)N )

)
, there exists a unique strong solu-

tion m = (m1, . . . , m N ) ∈ L2{Fs }
(
�; C(t, T ; (R3)N )

)
of (2.3). Indeed by considering the
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truncation of the control and then using the stochastic version of the Arzela-Ascoli theorem,
Prohorov’s lemma and Jakubowski-Skorokhod representation theorem (cf. [14]), we have
existence of a weak solution of (2.3). Moreover, an application of Gyöngy-Krylov’s charac-
terization of convergence in probability introduced in [12] along with pathwise uniqueness
of weak martingale solutions gives existence of a unique strong solution, see [6, Appendix].
Furthermore, by applying Itô’s formula to the functional x → ‖x‖2

R3 for mi and using the

vector identity 〈a, a × b〉 = 0 for any a,b ∈ R
3, we have P-a.s.,

‖mi (s)‖2R3 = ‖mi (t)‖2R3

+
∫ s

t

[
ν2 ‖mi (r)‖2

R3 + 2
〈
fi (m(r),u(r)), mi (r)〉 − ν2 ‖mi (r)‖2

R3

]
dr

+ 2ν
∫ s

t
〈mi (r) × dWi (r), mi (r)〉 = ‖mi (t)‖2R3 .

Since mi (t) ∈ S
2, we see that P-a.s., each mi is S2-valued, and thus m ∈ L2{Fs }

(
�; C(t, T ;

(S2)N )
)
.

Because the paths of the Landau–Lifschitz–Gilbert process stay on the manifold M, the
natural domain for the value function of the control problem is [0, T ]×M. In order to make
the connection between the controlled processm on the one hand and the Hamilton–Jacobi–
Bellman PDE posed on [0, T ]×M on the other hand, it is convenient to describe properties
of m purely in terms of quantities that are intrinsically defined on M, without referring to
the ambient space (R3)N . Of particular interest is Dynkin’s formula.

We begin by rewriting Itô’s formula with tangential derivatives. For 1 ≤ � ≤ 3N , let
σσσ(mmm)� be the �th row of σσσ(mmm), for mmm ∈ M. Then ∂σσσ(mmm)� denotes the tangential derivative in
the direction σσσ(mmm)�, and ∂σσσ(mmm) := (

∂σσσ(mmm)1 , . . . , ∂σσσ(mmm)3N

) ∈ [TmmmM]3N . Similarly, ∂f(mmm,uuu) is
the tangential derivative in the direction f(mmm,uuu).

We wish to apply Itô’s formula to ψ(s,m(s)) for any ψ ∈ C1,2
([0, T ] × M)

. One may
directly return to the standard formula on (R3)N , cf. [13, Chapter V.1], by extending ψ via

ψ̂(s, m̂mm) = ψ
(

s,
( m̂1

‖m̂1‖R3
, . . . ,

m̂ N

‖m̂ N ‖R3

))

to [0, T ] × (R3 \ {0})N , for any m̂mm = (
m̂1, . . . , m̂ N

) ∈ (R3 \ {0})N . Then P-a.s.:

ψ
(
s,m(s)

) − ψ
(
t,mmm

) =
∫ s

t
∂tψ

(
r ,m(r)

)
dr +

∫ s

t
∂
f
(
m(r),u(r)

)ψ(
r ,m(r)

)
dr

+ ν

∫ s

t
∂
σσσ
(
m(r)

)ψ(
r ,m(r)

) ◦ dW(r) (t ≤ s ≤ T ) . (2.4)

For ψ ∈ C1,2([0, T ] × M), we associate the generator of the Markov processm as

Auuu ψ(s,mmm) = ν2

2
Mψ(s,mmm) + ∂

f
(
mmm,uuu

)ψ(s,mmm) ,

where M denotes the Laplace-Beltrami operator on M, and define the operator

Auuu
1 ψ(s,mmm) := ∂tψ(s,mmm) + Auuu ψ(s,mmm) . (2.5)

Lemma 2.1 For any ψ ∈ C1,2
([0, T ] × M)

the process ψ(t,mmm) satisfies Dynkin’s formula

Et,mmm

[
ψ

(
T ,m(T )

)] − ψ(t,mmm) = Et,mmm

[ ∫ T

t
Au(r)

1 ψ
(
r ,m(r)

)
dr

]
. (2.6)
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Proof Re-writing (2.4) with s = T in Itô form, we have

ψ
(
T ,m(T )

) − ψ
(
t,mmm

)

=
∫ T

t

[
∂tψ

(
r ,m(r)

) + ∂
f
(
m(r),u(r)

)ψ(
r ,m(r)

) + ν2

2
∂
σσσ
(
m(r)

)∂
σσσ
(
m(r)

)ψ(
r ,m(r)

)]
dr

+ ν

∫ T

t
∂
σσσ
(
m(r)

)ψ(
r ,m(r)

)
dW(r) .

As in the proof of [18, Proposition 3.2] we conclude that

∂
σσσ
(
m(r)

)∂
σσσ
(
m(r)

)ψ(
r ,m(r)

) = Mψ
(
r ,m(r)

)
.

Taking the expectation then leads to (2.6), recalling that the Itô integral is a martingale. ��

3 Dynamic Programming and HJB Equation

For any (t,mmm) ∈ [0, T ] × M, we consider problem (2.3) to now construct the associated
Hamilton–Jacobi–Bellman equation, following the formal rules of dynamic programming.
We then use the Hopf–Cole transformation to replace the nonlinear HJB equation by a linear
PDE and show the existence of a unique classical solution, which then implies existence
of a unique classical solution of the original nonlinear HJB equation. Next, we present a
verification theorem which shows that the value function is indeed equal to the solution of
the HJB equation. We describe the optimal control through an optimal feedback function
which is written explicitly in terms of the value function.

Let us define the Lagrangian

L
(
mmm,uuu

) = δ‖mmm − m̃‖2
(R3)N + λ

2
‖uuu‖2

(R3)N , (3.1)

where the parameters δ, λ are given in Problem 1.1, and L
(
mmm,uuu

)
appears in the cost func-

tional.
Let

(
�,P,F, {Fs}t≤s≤T

)
be a given filtered probability space satisfying the usual

hypotheses, and W is a {Fs}t≤s≤T -adapted (R3)N -valued Wiener process on it. We denote
by Usss

mmm[t, T ] the set of all admissible pairs (m,u) such that u ∈ L2{Fs }
(
�; L2(t, T ; (R3)N )

)
,

and m(·) is the unique {Fs}t≤s≤T -adapted M-valued strong solution of (2.3). In fact,
the superscript sss refers to the fact that we search an optimal admissible pair on the
given filtered probability space. It follows for admissible (m,u) that L

(
m(·),u(·)) ∈

L1{Fs }
(
�; L1(t, T ;R)

)
and h(m(T )) ∈ L1

FT
(�;R), recalling that h is a continuous function

on a compact manifold. As a further consequence, Dynkin’s formula (2.6) then holds for all
ψ ∈ C1,2([t, T ] × M) and (m,u) ∈ Usss

mmm[t, T ].
Our aim is to achievem close to a reference configuration m̃ ∈ C2([t, T ];M) by selecting

an optimal control u∗. The cost functional on Usss
mmm[t, T ] is

J (
t, mmm; (m,u)

) = Et,mmm

[∫ T

t
L(m(r),u(r)) dr + h

(
m(T )

)]
. (3.2)

We write the value function of J as

V (t,mmm) = inf
(m,u)∈Usss

mmm [t,T ]
J (

t, mmm; (m,u)
)
. (3.3)
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Note that, thanks to [3, Proposition 1.33], there exists a unique strong solution m of (2.3)
for u = 0, and hence the value function is uniformly bounded since h is a given continuous
function and ‖m‖2

(R3)N = N .

3.1 The Hamilton–Jacobi–Bellman Equation

We define the Hamiltonian

H : C2(M) → C(M)

ψ �→ −ν2

2
Mψ − δ ‖mmm − m̃‖2

(R3)N + sup
uuu∈(R3)N

(
− ∂

f
(
mmm,uuu

)ψ − λ

2
‖uuu‖2

(R3)N

)
.

Note that in the definition ofH, the lettermmm stands for the identity mapmmm �→ mmm. Using (2.1),
we evaluate the supremum analytically. We have for the tangential gradient ∇Mψ

sup
uuu∈(R3)N

(
− ∂

f
(
mmm,uuu

)ψ − λ

2
‖uuu‖2

(R3)N

)

= sup
uuu∈(R3)N

(
− f(mmm,uuu) · ∇Mψ(mmm) − λ

2
‖uuu‖2

(R3)N

)

= sup
uuu∈(R3)N

(
− 


(mmm)(− Jmmm − Dmmm + Cextuuu) · ∇Mψ(mmm) − λ

2
‖uuu‖2

(R3)N

)

= 


(mmm)
(
Jmmm + Dmmm

) · ∇Mψ(mmm) + sup
uuu∈(R3)N

(
− Cext


(mmm)uuu · ∇Mψ(mmm) − λ

2
‖uuu‖2

(R3)N

)

= 


(mmm)Qmmm · ∇Mψ(mmm) + sup
uuu∈(R3)N

(
uuu · ( − Cext




(mmm)∇Mψ(mmm)
) − λ

2
‖uuu‖2

(R3)N

)

= 


(mmm)Qmmm · ∇Mψ(mmm) + (λ

2
‖ · ‖2

(R3)N

)∗( − Cext



(mmm)∇Mψ(mmm)

)

= 


(mmm)Qmmm · ∇Mψ(mmm) + 1

2λ
‖ − Cext




(mmm)∇Mψ(mmm)‖2
(R3)N , (3.4)

where ∗ denotes the convex conjugate function, and Q is the 3N × 3N matrix given by

Q := J + D . (3.5)

Since ∇Mψ(mmm) belongs to the tangent space TmmmM, it follows that

−


(mmm)∇Mψ(mmm) = σσσ(mmm)∇Mψ(mmm) + ασσσ(mmm)σσσ(mmm)∇Mψ(mmm)

= mmm × ∇Mψ(mmm) + α mmm × (mmm × ∇Mψ(mmm))

= mmm × ∇Mψ(mmm) − α ∇Mψ(mmm) .

Note that for anymmm ∈ M, ‖mmm ×∇Mψ(mmm)‖(R3)N = ‖∇Mψ(mmm)‖(R3)N . Thus by Pythagoras’
theorem, we have

‖ − 


(mmm)∇Mψ(mmm)‖2
(R3)N = ‖mmm × ∇Mψ(mmm) − α ∇Mψ(mmm)‖2

(R3)N

= ‖mmm × ∇Mψ(mmm)‖2
(R3)N + ‖α∇Mψ(mmm)‖2

(R3)N = (1 + α2)‖∇Mψ(mmm)‖2
(R3)N . (3.6)

Let us denote

b(mmm) := 


(mmm)Qmmm = 


(mmm)
(
Jmmm + Dmmm

)
. (3.7)
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Then, in summary, we have

Hψ(mmm) = − ν2

2
Mψ(mmm) + C2

ext(1 + α2)

2λ
‖∇Mψ(mmm)‖2

(R3)N

+ b(mmm) · ∇Mψ(mmm) − δ ‖mmm − m̃‖2
(R3)N .

Wepoint out that (3.6) ensures that the quadratic term in theHamiltonian is isotropic, which is
crucial for theHopf–Cole transformation below.We now state theHamilton–Jacobi–Bellman
equation, whose solution we denote by W :

−∂t W (t,mmm) + HW (t,mmm) = 0 in [0, T ) × M ,

W (T ,mmm) = h(mmm) on M .
(3.8)

The Hopf–Cole transformation: The HJB equation (3.8) is a second-order nonlinear PDE
on a high-dimensional domain and therefore without further understanding of its structure
computationally expensive to solve; the study of its wellposedness as well as the regularity
of its solution is non-trivial. We use the Hopf–Cole transformation w = exp

(−β W
)
, β ∈ R

given below, to substitute (3.8) by the linear PDE (3.12).

We span the tangent space of M at any point mmm by the orthonormal tangent vectors

∂1,1, ∂1,2, . . . , ∂N ,1, ∂N ,2 .

It is convenient to conceptually let ∂i,1, ∂i,2 span the local coordinates associated to the i th
sphere. Then we have the following relations: for j ∈ {1, 2} and i ∈ {1, 2, · · · , N },

∂i, j w = −β w ∂i, j W ⇔ ∂i, j W = − 1

β w
∂i, j w ,

∂2i, j;i, j w = −β w
(−β |∂i, j W |2 + ∂2i, j;i, j W

) ⇔ ∂2i, j;i, j W = − 1

β w
∂2i, j;i, j w + β |∂i, j W |2 .

We see that

MW =
∑

i

[
∂2i,1;i,1W + ∂2i,2;i,2W

]

=
∑

i

[(
− 1

β w
∂2i,1;i,1w + β |∂i,1W |2

)
+

(
− 1

β w
∂2i,2;i,2w + β |∂i,2W |2

)]

= −Mw

β w
+ β

∑
i

[
|∂i,1W |2 + |∂i,2W |2

]
.

Therefore, we have the following correspondences:

−∂t W = 1

β w
∂tw (3.9)

−ν2

2
MW = ν2

2β w
Mw − ν2

2
β

∑
i

[|∂i,1W |2 + |∂i,2W |2] (3.10)

b · ∇MW = − 1

β w
b · ∇Mw. (3.11)

Recalling ‖∇MW‖2
(R3)N = ∑

i

[|∂i,1W |2 + |∂i,2W |2], we choose β = C2
ext(1 + α2)

λν2
to obtain a cancellation of the quadratic nonlinearity via (3.10). Substituting the respective
terms in (3.8) and multiplying by −β w �= 0, we arrive at the second-order linear equation
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− ∂tw(t,mmm) − ν2

2
Mw(t,mmm) + b(mmm) · ∇Mw(t,mmm)

+ c(t,mmm)w(t,mmm) = 0 in [0, T ) × M ,

w(T ,mmm) = exp
( − β h(mmm)

)
on M , (3.12)

where c(t,mmm) = β δ ‖mmm − m̃(t)‖2
(R3)N . The following theorem shows that weak solutions w

may be examined in the Sobolev-Bochner space

W 1,2,2([0, T ]; H1(M), H−1(M)
)

=
{

u ∈ L2 ([0, T ]; H1(M)
) ; du

dt
∈ L2 ([0, T ]; H−1(M)

)}
.

A weak solution of (3.12) is a w ∈ W 1,2,2
([0, T ]; H1(M), H−1(M)

)
such that for all

ψ ∈ L2
(
0, T ; H1(M)

)
:

∫ T

0

∫

M
−∂tw ψ + ν2

2
∇Mw · ∇Mψ + b · ∇Mw ψ + c w ψ dmmm dt = 0 . (3.13)

Theorem 3.1 There exists a unique classical solution w ∈ C1,2
([0, T ]×M)

of (3.12)which
is also the unique weak solution in W 1,2,2

([0, T ]; H1(M), H−1(M)
)
. The function

W (t,mmm) = − 1

β
log

(
w(t,mmm)

)
(3.14)

is the unique classical solution of the Bellman equation (3.8).

Proof The existence of a unique solution w of (3.13) in W 1,2,2
([0, T ]; H1(M), H−1(M)

)
is for instance given in [19, p. 224]. Using charts of M and a partition of unity to represent
(3.13) locally on the flat space, and an application of parabolic regularity theory ensures that
w belongs to C1,2

([0, T ] × M)
.

We shall now establish that w is positive so that (3.14) may be applied. Let φ(t, x) =
exp(γ t)[w(t, x) − ε] with ε := minx̃ w(T , x̃) > 0 and γ := ‖divb‖∞ + 1. In (3.13) we
substitute ψ by exp(γ t)ψ and then add and subtract γφ · ψ . Applying the product rule one
obtains

∫ T

0

∫

M
−∂tφ ψ + ν2

2
∇Mφ · ∇Mψ + b · ∇Mφ ψ + (c + γ ) φ ψ dmmm dt = 0 .

Now let ψ = min{0, φ}. Where ψ �= 0 one has φ = ψ so that

(∂tφ)ψ = 1

2
∂tφ

2 , b · (∇Mφ)ψ = 1

2
b · ∇Mψ2 .

Thus

1

2

∫

M
ψ2(0) − ψ2(T ) dmmm +

∫ T

0

∫

M

ν2

2
∇Mψ · ∇Mψ

− 1

2
div(b)ψ2 + (c + γ )ψ2 dmmm dt = 0 .

By construction ψ(T ) ≡ 0. We conclude that ψ ≡ 0 and therefore φ ≥ 0. Thus w ≥ ε > 0.
The above implies that the nonlinear HJB equation (3.8) has a classical solution W .

Moreover, the construction of the Hopf–Cole transformation directly ensures that a function
w ∈ C1,2

([0, T ] × M)
is a classical solution of (3.12) if and only if W of (3.14) solves
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(3.8) classically, which then implies the existence of a unique classical solution W , given by
(3.14), of the HJB equation (3.8). ��

It is easy to see that additional smoothness of the terminal condition h directly translates into
additional regularity of w and W .

3.2 TheVerification Theorem

In this subsection,we show thatV = W , i.e., the value function of the optimal control problem
is equal to the solution of the above HJB equation (3.8). The following verification theorem
also provides an explicit formula for the optimal control, which inherits the smoothness of
∇MW .

Theorem 3.2 The value function V (t,mmm) in (3.3) is the unique classical solution of the
nonlinear HJB equation (3.8):

V (t,mmm) = W (t,mmm) = − logw(t,mmm)

β
, ∀ (t,mmm) ∈ [0, T ] × M.

Problem 1.1 admits a minimizer (m∗,u∗) ∈ Usss
mmm[t, T ] such thatJ (

t,mmm; (m∗,u∗)
) = V (t,mmm)

and u∗(s) = ū
(
s,m∗(s)

)
, where

ū(t,mmm) = Cext

λ

(
mmm × ∇MW (t,mmm) − α ∇MW (t,mmm)

)
. (3.15)

Proof The proof is divided into two steps.
Step 1: First we show that W ≤ V . Let (m,u) ∈ Usss

mmm[t, T ] be any admissible pair. Now, for
any ψ ∈ C1,2

([0, T ) × M)
, we have, thanks to the definition of the Hamiltonian H, (3.1),

and (2.5),

Hψ(t,mmm) ≥ −ν2

2
Mψ(t,mmm) − δ‖mmm − m̃‖2

(R3)N − ∂f(mmm,uuu)ψ(t,mmm) − λ

2
‖uuu‖2

(R3)N

= −L(mmm,uuu) − ν2

2
Mψ(t,mmm) − ∂f(mmm,uuu)ψ(t,mmm)

= ∂tψ(t,mmm) − Auuu
1ψ(t,mmm) − L(mmm,uuu) , (3.16)

and therefore one has

−∂tψ(t,mmm) + Hψ(t,mmm) ≥ −Auuu
1ψ(t,mmm) − L(mmm,uuu) . (3.17)

Because W is a smooth classical solution, we may substitute ψ by W , in which case the
left-hand side of (3.17) vanishes. In other words,

Au(s)
1 W

(
s,m(s)

) + L
(
m(s),u(s)

) ≥ 0 . (3.18)

Indeed, the existence of a classical solution W avoids a more complicated construction to
arrive at a bound like (3.18), which would be necessary in a setting with viscosity solutions.
Applying now Dynkin’s formula (2.6) with W in place of ψ and recalling the final time
conditions, we conclude from (3.18),
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W (t,mmm) = Et,mmm

[∫ T

t
−Au(r)

1 W
(
r ,m(r)

)
dr + W

(
T ,m(T )

)]

≤ Et,mmm

[∫ T

t
L
(
m(r),u(r)

)
dr + h

(
m(T )

)] = J (
t, mmm; (m,u)

)
. (3.19)

Because this result holds for all admissible pairs (m,u) ∈ Usss
mmm[t, T ], it follows that W ≤ V .

Step 2: Now we show that there exists an admissible pair (m∗,u∗) ∈ Usss
mmm[t, T ] such that

W (t,mmm) = J (
t, mmm; (m∗,u∗)

)
. Recalling (3.4), we find that the supremum in the definition

of the Hamilton–Jacobi–Bellman operator is attained by the control

ū(s,mmm) := −Cext

λ



(mmm)∇MW (s,mmm) = Cext

λ

(
mmm × ∇MW (s,mmm) − α∇MW (s,mmm)

)
.

Since W is a C1,2-solution of (3.8), we see that ū is continuously differentiable and bounded
on [0, T ] × M. Moreover, M � mmm �→ ū(t,mmm) is Lipschitz. Indeed, for any mmm1, mmm2 ∈ M

‖ū(t,mmm1) − ū(t,mmm2)‖(R3)N

= Cext

λ

∥∥(mmm1 − mmm2) × ∇MW (t,mmm1) + mmm2 × (∇MW (t,mmm1) − ∇MW (t,mmm2)
)

− α
(∇MW (t,mmm1) − ∇MW (t,mmm2)

)∥∥
(R3)N .

Since W ∈ C1,2
([0, T ] × M)

, by the mean-value theorem, either applied in combination
with Whitney’s extension theorem [8, Section 6.5] in the ambient space (R3)N or directly to
the geodesics of M, we have

‖∇MW (t,mmm1) − ∇MW (t,mmm2)‖(R3)N ≤ C‖mmm1 − mmm2‖(R3)N .

Thus,

‖ū(t,mmm1) − ū(t,mmm2)‖(R3)N ≤ C‖mmm1 − mmm2‖(R3)N ∀mmm1, mmm2 ∈ M .

Now, on the given stochastic basis (�,P,F, {Fs}t≤s≤T ) and for the {Fs}t≤s≤T -adapted
Brownian motionW(s), the stochastic differential equation

dm∗(s) = f(m∗(s), ū(s,m∗(s))) ds + ν σσσ(m∗(s)) ◦ dW∗(s) s ∈ (t, T ] , m∗(t) = mmm

has a pathwise unique M-valued solution, recall the argument for (2.3). Then the process

u∗ = u∗(s) := {
ū(s,m∗(s)); t ≤ s ≤ T

}

belongs to L2{Fs }
(
�; L2(t, T ; (R3)N )

)
. Thus (m∗,u∗) ∈ Usss

mmm[t, T ]. With this admissible pair
(m∗,u∗), the inequality in (3.16) turns into equality. Again, by using Dynkin’s formula along
with initial data m∗(t) = mmm, we see that

W (t,mmm) = Et,mmm

[∫ T

t
L
(
m∗(r),u∗(r)

)
dr + h

(
m∗(T )

)] = J (
t, mmm; (m∗,u∗)

) = V (t,mmm) .

Recalling that by Theorem 3.1 the HJB equation (3.8) has a unique solution W , we conclude
from the above that V = W . ��

Nowwe show the uniqueness of the optimal admissible pair (m∗,u∗), and thus in particular
of the strong solution of Problem1.1.We remark that the uniqueness of the optimal admissible
pair is not automatically provided from the uniqueness of solutions of theHJBequation,which
instead was used to characterize the value function through the differential equation (2.3).
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Theorem 3.3 The pair (m∗,u∗) ∈ Usss
mmm[t, T ] constructed in Theorem 3.2 is the unique min-

imizer of J (
t,mmm; (·, ·)) in the sense that if there exists any other optimal pair (m∗

1,u
∗
1) ∈

Usss
mmm[t, T ], then m∗(s) = m∗

1(s) and u∗(s) = u∗
1(s) for a.e. s ∈ [t, T ], P-a.s.

Proof Step 1: Let (m∗,u∗) ∈ Usss
mmm[t, T ] be an optimal pair. Similar to [20, Chapter 5, Theo-

rem 5.1], we note that then (3.19) holds as equality with (m∗,u∗) in place of (m,u). This
implies that also (3.16) holds with equality for a.e. s ∈ [t, T ], P-a.s. Hence (m∗,u∗) and
thus every optimal pair satisfies

u∗(s) = Cext

λ

(
m∗(s) × ∇MV (s,m∗(s)) − α ∇MV (s,m∗(s))

)
, (3.20)

for a.e. s ∈ [t, T ], P-a.s.
Step 2:Suppose there exists another optimal pair (m∗

1,u
∗
1) ∈ Usss

mmm[t, T ] and let m̃∗ = m∗−m∗
1.

Then m̃∗ is a strong solution to the following SDE: for s ∈ (t, T ]
dm̃∗(s) =

{(



(m∗(s)) − 


(m∗

1(s))
)[ − Qm∗

1(s) + Cextu∗
1(s)

] + 


(m∗(s))
[ − Qm̃∗(s)

+ Cext
(
u∗(s) − u∗

1(s)
)]}

ds + ν
(
σσσ(m∗(s)) − σσσ(m∗

1(s))
) ◦ dW(s) (3.21)

with m̃∗(t) = 0. In view of (2.2), we observe that




(m∗(s)) − 


(m∗
1(s)) = (

σσσ(m∗(s)) − σσσ(m∗
1(s))

) − ασσσ(m∗(s))
(
σσσ(m∗(s)) − σσσ(m∗

1(s))
)

− α
(
σσσ(m∗(s)) − σσσ(m∗

1(s))
)
σσσ(m∗

1(s))

= [
Id − ασσσ(m∗(s))

]
σσσ(m̃∗(s)) − ασσσ(m̃∗(s))σσσ(m∗

1(s)) .

Thus, the Eq. (3.21) reduces to

dm̃∗(s) =
[



(m∗(s))

[ − Qm̃∗(s) + Cext
(
u∗(s) − u∗

1(s)
)]

+
{[
Id − ασσσ(m∗(s))

]
σσσ(m̃∗(s))

− ασσσ(m̃∗(s))σσσ(m∗
1(s))

}( − Qm∗
1(s) + Cextu∗

1(s)
)]

ds + ν σσσ(m̃∗(s)) ◦ dW(s) ,

m̃∗(t) = 0 .

We now apply Itô’s formula to the functional x �→ ‖x‖2
(R3)N for the above equation, and then

use (3.20) to have

E
[‖m̃∗(s)‖2

(R3)N

] ≤ C
∫ s

t
E

[‖m̃∗(r)‖2
(R3)N

]
dr

for some constant C > 0. An application of Gronwall’s lemma then implies P-a.s.,m∗(s) =
m∗

1(s), and therefore from (3.20) we get u∗(s) = u∗
1(s) for a.e. s ∈ [t, T ]. Thus, the optimal

control problem admits a unique strong solution, which is an improvement over [7]. ��
Remark 3.4 In [7], P-a.s. the orthogonality of an optimal state and control was shown both
theoretically and numerically. In our approach, we also see P-a.s. the orthogonality of m∗
and u∗. Indeed, by using the vector identity 〈a, a × b〉 = 0 for any a,b ∈ (R3)N , and the
fact that mmm ∈ M and ∇MW (·,mmm) are orthogonal, we have P-a.s., from (3.15)

〈m∗(s),u∗(s)〉 = Cext

λ

〈
m∗(s), m∗(s) × ∇MW (s,m∗(s)) − α∇MW (s,m∗(s))

〉 = 0 .

For its computational evidence, see Fig. 3 for an ensemble of N = 3 particles.
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4 Probabilistic Representation of the Value Function

To solve the linear PDE (3.12) numerically by deterministic methods is still demanding
since it is posed on M ⊂ (R3)N . Therefore, we choose a probabilistic representation of
the solution of (3.12) which requires to solve the following forward stochastic differential
equation, defined on a given stochastic basis (�,P,F, {Fs}t≤s≤T ) with 3N -dimensional
Brownian motionW,

dmmm(s) = −b
(
mmm(s)

)
ds + ν σσσ

(
mmm(s)

) ◦ dW(s) t < s ≤ T ,

mmm(t) = mmm ∈ M ,
(4.1)

where b(·) is defined in (3.7). Equation (4.1) has a strong solution mmm taking values in M.

Let G(s) = exp
(

−
∫ s

t
R
(
r ,mmm(r)

)
dr

)
where R(r ,mmm(r)) = β δ‖mmm(r) − m̃(r)‖2

(R3)N . By

using the Itô product rule applied to G(s)w
(
s,mmm(s)

)
, where w is the classical solution

of the linear parabolic PDE (3.12), we arrive at the following Feynman–Kac representa-
tion [15, Theorem 7.6] for the solution of (3.12) with terminal datum exp(−β h(mmm)) =
exp(−C2

ext(1 + α2)(λν2)−1 h(mmm)):

w(t,mmm) = Et,mmm

[
exp

( − β h(mmm(T ))
)
exp

(
− β δ

∫ T

t
‖mmm(r) − m̃(r)‖2

(R3)N dr
)]

. (4.2)

We note that because of the linearity of (3.12) the Feynman–Kac representation can be
used in place of a backward SDE.

4.1 A Numerical Scheme for (4.1)

To approximate the solutionmmm of (4.1), we use the semi-implicit method proposed in [17].
Now b(mmm) from (3.7) can be re-written as

b(mmm) = mmm × Qmmm − α mmm × (
mmm × Qmmm

)
,

where Q is defined in (3.5). Let T > 0 be fixed. For J ∈ N, let I 0J := {t j }J
j=0 be a

partition of [0, T ] with time step size τ = T /J > 0. Let I �
J ⊂ I 0J be the sub-partition on

[t�, T ], where � ∈ {0, 1, . . . , J − 1}. Let {ξξξ j }J
j=� is a (R3)N -valued random walk of I �

J with

ξξξ j := (ξ
j
1 , . . . , ξ

j
N ), where (1 ≤ i ≤ N ) ξ

j
i = (

ξ
j

i,l

)
1≤l≤3 are i.i.d. R3-valued (discrete)

random variables such that each

i) ξ
j

i,l satisfies E
[
ξ

j
i,l

] = 0 and E
[∣∣ξ j

i,l

∣∣2∣∣] = τ ,

ii) for every integer p ≥ 1, there exists C p > 0 such that E
[|ξ j

i,l |2p
] ≤ C pτ

p .

Let now � be fixed andmmm� = mmm ∈ M be given.We determine theM-valued randomvariables
{mmm j }J

j=� via
(
i = 1, 2, . . . , N

)

e
j
i = m

j
i + τ

e
j
i + m

j
i

2
× āi

(
mmm j ) + ν

e
j
i + m

j
i

2
× ξ

j
i , (4.3a)

m
j+1
i = m

j
i + τ

m
j+1
i + m

j
i

2
× āi

(
mmm j + eee j

2

)
+ ν

m
j+1
i + m

j
i

2
× ξ

j
i , (4.3b)

where eee j = (
e

j
1, e

j
2, . . . , e

j
N

)
, and the function āi for each i = 1, 2, . . . , N is given by
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āi (mmm) := −(Qmmm)i + αmi × (Qmmm)i .

Note that (4.3a)–(4.3b) is a system of linear equations, leading to fast simulation times.
Furthermore, the numerical schemes ensuresmmm j takes values onM. This is exploited when
applying arguments from [3] in this finite ensemble setting to conclude weak convergence
of iterates {mmm j }J

j=�+1, which here are driven by a random walk, towards the strong solution
of (4.1) for τ → 0.

5 An Algorithm to Approximate an Optimal Pair (m∗,u∗)

In order to simulate the optimal pair (m∗,u∗), we need to solve the equations (4.1), (3.15)
and (2.3) numerically. To solve (2.3) numerically, we replace u by ū(s, ·) defined in (3.15).

5.1 HJB Solution

The classical solution w of (3.12) is given by (4.2). In order to approximate it, and hence the
classical solution W of the nonlinear HJB equation (3.8), we proceed as follows:

a) Compute all the iterates {mmm j }J
j=� via (4.3a)–(4.3b) along I �

J and store them.
b) Approximate the integral in (4.2) by Gauss-Legendre quadrature [16, Section 10.3],

where we use the piecewise affine interpolation of the iterates {mmm j }J
j=� via

mmm(r) := r − t j

τ
mmm j+1 + t j+1 − r

τ
mmm j (

r ∈ [t j , t j+1)
)
. (5.1)

c) Since m̃ ∈ C2([t�, T ];M), we use the piecewise affine interpolation m̃(r) of the iterates
m̃ j ≡ m̃(t j ).

d) Approximate Et,mmm in (4.2) via Monte-Carlo estimation along with the variance reduction
method of antithetic variates (see e.g. [11, Subsection 4.2]).

Thus, we can simulate the quantitiesw(t�,mmm�), and hence W (t�,mmm�) = − 1

β
log(w(t�,mmm

�)).

5.2 Optimal Feedback Transformation

To approximate the function ū at any point (t,mmm), we need to approximate ∇MW (t,mmm),
which again demands to approximate ∇Mw(t,mmm) thanks to the Hopf–Cole transformation.
For the latter, we may proceed in two different ways:

i) Method A: We take the expectation first and then use the central difference quotient to
approximate the tangential gradient. More precisely, for any mmm = (

m1, m2, . . . , m N
) ∈

M and h̄ > 0, define for i = 1, 2, . . . , N ,

mmm+
h̄,i,l

:=
(

m1, . . . ,
mi + h̄el

‖mi + h̄el‖R3
, . . . , m N

)
,

mmm−
h̄,i,l

:=
(

m1, . . . ,
mi − h̄el

‖mi − h̄el‖R3
, . . . , m N

)
,

(5.2)

where el is the l-th identity vector in R
3, 1 ≤ l ≤ 3. Recall that, by using Sect. 5.1, we

can calculate w(t,mmm+
h̄,i,l

) and w(t,mmm−
h̄,i,l

) for any t ∈ [0, T ]; therefore, we approximate
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∇Mw(t,mmm) by ∇Mw(t,mmm) �
(

D1w(t,mmm), . . . , DN w(t,mmm)
)
, where for any i =

1, 2, . . . , N , and l = 1, 2, 3,

Diw(t,mmm) :=
(

d1,iw(t,mmm), d2,iw(t,mmm), d3,iw(t,mmm)
)

,

dl,iw(t,mmm) := 1

2h̄

[
w(t,mmm+

h̄,i,l
) − w(t,mmm−

h̄,i,l
)
]
.

Hence, we approximate ∇MW (t�,mmm�) by

∇MW (t�,mmm
�) � − 1

βw(t�,mmm�)

(
D1w(t�,mmm

�), . . . , DN w(t�,mmm
�)

)
. (5.3)

ii) Method B: In contrast to Method A, we first use the central difference quotient and then
take the expectation to approximate the gradient ∇Mw. For all (t,mmm) ∈ [0, T )×M, we
define the random variable

H(t,mmm) := exp
( − β h(mmm(T ))

)
exp

(
− β δ

∫ T

t
‖mmm(r) − m̃(r)‖2

(R3)N dr
)

, (5.4)

wheremmm solves (4.1) withmmm(t) = mmm. Letmmm+
h̄,i,l

andmmm−
h̄,i,l

be the points inM as defined
above. We compute the central difference quotients component-wise, and use (4.3a)–
(4.3b) to approximate related solutions from (4.1) in (5.4). For i = 1, 2, . . . , N , and
l = 1, 2, 3, we define

dl,i H(t,mmm) := 1

2h̄

[
H(t,mmm+

h̄,i,l
) − H(t,mmm−

h̄,i,l
)
]
,

di H(t,mmm) :=
(
E

[
d1,i H(t,mmm)

]
, E

[
d2,i H(t,mmm)

]
, E

[
d3,i H(t,mmm)

])
.

(5.5)

We approximate the expectation in (5.5) via Monte-Carlo estimation together with the
method of antithetic variates. We then approximate ∇Mw(t,mmm) (hence ∇MW (t,mmm))
as

∇Mw(t,mmm) �
(

d1H(t,mmm), . . . , dN H(t,mmm)
)

,

∇MW (t,mmm) � − 1

βw(t,mmm)

(
d1H(t,mmm), . . . , dN H(t,mmm)

)
.

Thus, we simulate the transformation function ū(t�,mmm�) from (3.15) by using one of the
above methods, where the sequence (t�,mmm�) is described in Sect. 4.1. Therefore, while the
approximationofw depends only on the numerical parameter M , for∇Mw the approximation
depends on the numerical parameters M and h̄.

5.3 Optimal State

We use again the semi-implicit method proposed in [17] to approximate the solution in
(2.3) in which each realization takes values in M. For any mmm = (m1, . . . , m N ) ∈ M, and
i = 1, 2, . . . , N , define

ai
(
mmm, ū(t,mmm)

): = −(Qmmm)i + Cextūi (t,mmm) − α mi × [ − (Qmmm)i + Cextūi (t,mmm)
]
, (5.6)

where Q is defined in (3.5). We use again the scheme (4.3a)–(4.3b), and Sect. 5.2 to find a
M-valued random variables {m j }J

j=� along I �
J withm

� = mmm ∈ M and � ∈ {0, 1, . . . , J −1},
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where āi
(
mmm j

)
resp. āi

(mmm j +eee j

2

)
in (4.3a) resp. (4.3b) is replaced by ai

(
m j , ū(t j ,m j )

)
resp.

ai

(m j + eee j

2
, ū

(
t j ,

( g j
1

‖g j
1‖R3

, . . . ,
g j

N

‖g j
N ‖R3

)))
with g j

i := e j
i + m j

i

2
(1 ≤ i ≤ N ),

such that the iterates {m j }J
j=� converge towards aweak solution of (2.3) for τ → 0.Moreover,

the iterates {u j = ū(t j ,m j )}J
j=� defines the discrete optimal control along I �

J .
In summary, we have the following algorithm to compute the optimal solution and control

along with Method B.

Algorithm 5.1 Let m0 ∈ (S2)N , T > 0, M ∈ N be given. For J ∈ N, let I 0J := {t j }J
j=0 be a

partition of [0, T ] with time step size τ = T
J > 0. Denote by I �

J ⊂ I 0J the sub-partition on
[t�, T ], where � ∈ {0, 1, . . . , J − 1}. Let now � be fixed and m� = mmm ∈ M be given.

(I) Compute M-samples S�
ξξξ := {S�,k

ξξξ }M
k=1, S�,k

ξξξ := {ξξξ j (ωk)}J
j=� on I �

J .
(II) For i = 1, . . . , N do:

For l = 1, 2, 3 do:

(1) Based on mmm := m�, compute mmm+
h̄,i,l

and mmm−
h̄,i,l

as in (5.2).
(2) For k = 1, . . . , M do:

(a) Compute S+,�,k
mmm := {mmm j (ωk)}J

j=� resp. S−,�,k
mmm := {mmm j (ωk)}J

j=� on I �
J via

scheme (4.3a)–(4.3b) for āi (mmm
j ) and āi

(mmm j +eee j

2

)
using {+ξξξ j (ωk)}J

j=� resp.

{−ξξξ j (ωk)}J
j=�.

(b) Compute H(t�,mmm+
h̄,i,l

, ωk) resp. H(t�,mmm−
h̄,i,l

, ωk) in (5.4) based on S+,�,k
mmm resp.

S−,�,k
mmm to determine dl,i H(t�,mmm, ωk) in (5.5) and store it.

(3) Approximate E[dl,i H(t�,mmm)] in (5.5) via Monte-Carlo estimation along with the
variance reduction method of antithetic variates.

(III) Set ∇Mw(t�,mmm) ≈ (
d1H(t�,mmm), . . . , dN H(t�,mmm)

)
with di H(t�,mmm) as in (5.5), and

compute ū(t�,m�) as in (3.15).
(IV) Compute e� ∈ (R3)N via Scheme (4.3a) with ai

(
m�, ū(t�,m�)

)
defined in (5.6).

(V) Define g� :=
(

g�
1

‖g�
1‖R3

, . . . ,
g�

N

‖g�
N ‖

R3

)
with g�

i := m�
i +e�

i
2 (1 ≤ i ≤ N ).

(VI) For i = 1, . . . , N do:
For l = 1, 2, 3 do:

(4) Based on ggg := g�, compute ggg+
h̄,i,l

and ggg−
h̄,i,l

as in (5.2).
(5) For k = 1, . . . , M do:

(c) Compute S+,�,k
mmm := {mmm j (ωk)}J

j=� resp. S−,�,k
mmm := {mmm j (ωk)}J

j=� on I �
J via

scheme (4.3a)–(4.3b) for āi (mmm
j ) and āi

(mmm j +eee j

2

)
using {+ξξξ j (ωk)}J

j=� resp.

{−ξξξ j (ωk)}J
j=� with initial condition mmm� = ggg.

(d) Compute H(t�,ggg+
h̄,i,l

, ωk) resp. H(t�,ggg−
h̄,i,l

, ωk) in (5.4) based on S+,�,k
mmm resp.

S−,�,k
mmm to determine dl,i H(t�,ggg, ωk) in (5.5) and store it.

(6) Approximate E[dl,i H(t�,ggg)] in (5.5) via Monte-Carlo estimation along with the
variance reduction method of antithetic variates.

(VII) Set ∇Mw(t�,ggg) ≈ (
d1H(t�,ggg), . . . , dN H(t�,ggg)

)
with di H(t�,ggg) as in (5.5), and

compute ū(t�, g�) as in (3.15), and m�+1 via scheme (4.3b) with ai
(
g�, ū(t�, g�)

)
.
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We now approximate the optimal pair (m∗,u∗) by piecewise constant processes (indexed
by the time interval [0, T ]), whose value on [t j , t j+1), j ∈ {0, 1, . . . , J − 1} are respec-
tively m j and ū(t j ,m j ), where the iterates {m j }J

j=0 and {ū(t j ,m j )}J
j=0 are computed via

Algorithm 5.1. To be more precise,

m∗(s) =
J−1∑
j=0

1[t j ,t j+1)(s)m
j , and u∗(s) =

J−1∑
j=0

1[t j ,t j+1)(s)ū(t j ,m j ) , ∀s ∈ [0, T ] .

6 Computational Experiments

We computationally study the behavior of the optimal state and control for the switching
dynamics of an ensemble of N particles by using the algorithms from Sect. 5. For this
purpose, we employ discretely distributed random numbers from the GNU Scientific Library
[10]. All computations are performed on an Intel Core i5-4670 3.40GHz processor with
16GB RAM in double precision arithmetic. The arising linear algebraic systems are solved
by the Gaussian elimination method [10].

6.1 Test Studies

We start with test problems to compare the two methods from Sect. 5.2. For this purpose,
we omit certain energy contributions in (1.1), and allow only one or two spins such that an
exact solution of (3.12) becomes available.
Test problem 1: Consider the controlled problem for a single spin (J = 0) of an isotropic
material (D = 0), and δ = 0 in the cost functional; all other parameters (Cext, λ, ν, α) are
equal to 1. Then (3.12) is the backward heat equation

−∂tw(t,mmm) − 1

2
S2w(t,mmm) = 0 . (6.1)

We shall use spherical harmonics to describe the exact solution of (6.1). Note that for any
mmm = (m1, m2, m3) ∈ S

2, the spherical harmonic w0,1(mmm) = m3 is an eigen-function of the
Laplace-Beltrami operator with eigenvalue −2 [9, Lemma 4.3.26], i.e.,

S2w0,1(mmm) + 2w0,1(mmm) = 0 ∀mmm ∈ S
2 .

As w = exp(−W ), we know that w has to be positive, while w0,1 may also take negative
values. Therefore we also use the constant spherical harmonic w0,0(mmm) := 1. Consider the
problem (6.1) with final time condition w(T ,mmm) = w0,1(mmm) + 2. We obtain this terminal
condition by choosing the terminal payoff h(mmm) = − 1

2 log
(
w0,1(mmm) + 2

)
. Then the solution

of (6.1) is

w(t,mmm) = exp(t − T )w0,1(mmm) + 2 .

Moreover, we have the explicit formula for ∇S2w(t,mmm), and hence for ∇S2W (t,mmm):

∇S2w(t,mmm) = exp(t − T )
( − m1m3,−m2m3, 1 − m2

3

)
,

∇S2W (t,mmm) = −1

2

exp(t − T )

exp(t − T )w0,1(mmm) + 2

( − m1m3,−m2m3, 1 − m2
3

)
.

(6.2)
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Let ūexct(t,mmm) resp. ūapp(t,mmm) be the function defined in (3.15) associated to (6.2) resp.
(4.2), and m∗

exct(t) resp. m
∗
app(t) be the solution of (2.3) with ūexct

(
t,m∗

exct(t)
)
resp.

ūapp
(
t,m∗

app(t)
)
. By denoting the error

err(t) := ‖m∗
exct(t) − m∗

app(t)‖2(R3)N ,

we show the behavior of err(t) for different values of Monte-Carlo realizations with sample
size M . For the simulation, we use T = 0.5, τ = 10−2, h̄ = 1√

M
, m̄ = e1, and other

parameters as specified at the beginning of this subsection. We observe that the error err(t)
for Method B is significantly smaller (by a factor of 1

20 in our simulations) if compared to
Method A, see Fig. 1. Moreover, at least M ≈ 106 realizations are needed to balance the
approximate computation via Method B with the remaining error sources.

Remark 6.1 Computational studies with respect to the parameters
(
τ, h̄, M

)
show that, inde-

pendent of τ , it is beneficial to choose h̄ = O( 1√
M

)
to approximate the∇Mw (hence∇MW )

accurately. For choice h̄ � O( 1√
M

), irrespective of the Method A or Method B, we observe

a strongly oscillatory behavior of the solution when M ≤ 104.

Test problem 2: We study the interaction of two isotropic (D = 0) spins for α = 0 = δ, and
other parameters (Cext, λ, ν) are equal to 1. Let us first recall how the spherical harmonics
on a single sphere S

2 generalize to the manifold M = (S2)N = (S2)2 most naturally.
Indeed, because M is a tensor product of spheres, and the spherical harmonics form an
orthogonal basis on the single sphere, the tensor products of spherical harmonics form an
orthogonal basis onM. It is therefore reasonable to expect that the simplest meaningful test
problems on (S2)2 can be constructed with terminal time conditions which are products of
low-order spherical harmonics and which are eigen-functions of the transformed Bellman
equation. Because of the spin interaction, the first order coefficient b in (3.12) does not vanish
any more. Therefore, we combine the functions w0,0(mmm1)w0,0(mmm2), w0,0(mmm1)w0,1(mmm2) and
w0,1(mmm1)w0,0(mmm2) with mmm1 = (m1,1, m1,2, m1,3) ∈ S

2 and mmm2 = (m2,1, m2,2, m2,3) ∈ S
2

to pose a test problem on (S2)2. Denoting by

w00,00(mmm1,mmm2) := 1 , w01,00(mmm1,mmm2) = m1,3 , and w00,01(mmm1,mmm2) = m2,3 ,

we consider the following version of (3.12),

−∂tw
(
t,mmm1,mmm2

) − 1

2
(S2)2w

(
t,mmm1,mmm2

) + b(mmm1,mmm2) · ∇(S2)2w
(
t,mmm1,mmm2

) = 0 ,

w
(
T ,mmm1,mmm2

) = w01,00(mmm1,mmm2) + w00,01(mmm1,mmm2) + 2w00,00(mmm1,mmm2) ,

(6.3)

with the positive semi-definite matrix J: for any μ > 0,

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ 0 0 −μ 0 0
0 μ 0 0 −μ 0
0 0 μ 0 0 −μ

−μ 0 0 μ 0 0
0 −μ 0 0 μ 0
0 0 −μ 0 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since α = 0, we have
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b(mmm1,mmm2) =
(

− μ
(
m1,2m2,3 − m1,3m2,2

)
, μ

(
m1,1m2,3 − m1,3m2,1

)
,

− μ
(
m1,1m2,2 − m1,2m2,1

)
,

μ
(
m1,2m2,3 − m1,3m2,2

)
,−μ

(
m1,1m2,3 − m1,3m2,1

)
,

μ
(
m1,1m2,2 − m1,2m2,1

))
.

We compute the tangential gradient of the functions w00,00, w01,00 and w00,01:

∇(S2)2w00,00(mmm1,mmm2) = (
0, 0, 0, 0, 0, 0

)
,

∇(S2)2w01,00(mmm1,mmm2) = ( − m1,1m1,3, −m1,2m1,3, 1 − m2
1,3, 0, 0, 0

)
,

∇(S2)2w00,01(mmm1,mmm2) = (
0, 0, 0, −m2,1m2,3, −m2,2m2,3, 1 − m2

2,3

)
.

Observe that

b(mmm1,mmm2) · ∇(S2)2 [w01,00(mmm1,mmm2) + w00,01(mmm1,mmm2)] = 0 ,

and w01,00 and w00,01 are eigen-functions of the Laplace-Beltrami operator on (S2)2 with
eigenvalue −2. Thus the exact solution of (6.3) is given by

w
(
t,mmm1,mmm2

) = exp(t − T )
{
w01,00(mmm1,mmm2) + w00,01(mmm1,mmm2)

}
+ 2w00,00(mmm1,mmm2).

Moreover, we compute ∇(S2)2W
(
t,mmm1,mmm2

)
as

∇(S2)2W
(
t,mmm1,mmm2

) = − exp(t − T )

exp(t − T )
(
m1,3 + m2,3

) + 2

×
(

− m1,1m1,3, −m1,2m1,3, 1 − m2
1,3,

− m2,1m2,3, −m2,2m2,3, 1 − m2
2,3

) ∈ R
6. (6.4)

Note that the choice of W corresponds to the terminal payoff

h(m(T )) = −1

2
log

(
w01,00(m1(T ),m2(T )) + w00,01(m1(T ),m2(T )) + 2

)

for m = (m1,m2).

Similar to test problem 1, we define err(t) and study its behavior in time t for different
Monte-Carlo realizations with sample size M by usingMethod B, see Fig. 1c. The simulation
is made for the following choice of parameters: T = 0.5, τ = 10−2, h̄ = 1√

M
, m̄ = (

e1, e2
)
,

and other parameters as specified in the problem.We observe that the error err(t) decreases
if one increases the sample size M .

Weobserve that the errorerr(t) for the both test problems1 and2 is of the samemagnitude
as the error made in the approximation of ∇Mw (hence ∇MW ).
Optimal control of two interacting isotropic spins. Remaining in the setting of test problem
2 we next study the time evolution of a single trajectory of the optimal state, as well as the
magnitude and direction of the optimal control. In this case, the trajectory of the optimal
control lies in x1-x2 plane to balance the random influences; see Fig. 2.

Remark 6.2 Computational studies for both test problems suggest stability of the scheme
(4.3a)–(4.3b). However, convergence resp. termination of the scheme depends crucially on
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(A) Method A: t �→ err(t)

0 0.1 0.2 0.3 0.4 0.5
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(B) Method B: t �→ err(t)
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(C) Method B: t �→ err(t)

Fig. 1 Time evolution of a single trajectory of the error t �→ err(t) : a by using Method A, b by using
Method B for test problem 1, and c by using Method B for test problem 2. Note the different ranges on the
axes

(A) 1st spin

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

(B) t ‖→� u∗
1(t)‖2R3 (C) 2nd spin

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

(D) t ‖→� u∗
2(t)‖2R3

Fig. 2 Test problem 2: time evolution of a single trajectory of the optimal state t �→ m∗
i (t) (red), the direction

of the optimal control t �→ u∗
i (t)‖u∗

i (t)‖−1
R3 (blue), and the magnitude of the optimal control t �→ ‖u∗

i (t)‖2
R3

for i = 1, 2 (Color figure online)

the given parameters in Problem 1.1. For choices

λν2 � min{δ, 1}C2
ext(1 + α2),

an exponential overflow occurs during truncation in simulations, and therefore the computed
value of w

(
t,mmm

)
in (4.2) is set to zero then. Hence, in this case, log

(
w(t,mmm)

)
is not defined,

and thus the approximation procedure to approximate ∇MW (t,mmm) terminates. This is one
reason that Examples 5.1 and 5.2 from [7] may not directly be simulated here. Notice that
no exponential overflow occurs for both test problems above, since δ = 0.

6.2 Optimal Control of Three Interacting Spins

We now study an ensemble of N = 3 particles, which additionally are subjected to exchange
forces. We are interested in the switching control for one (i = 2) of these particles from m̄2

(at initial time) to −m̄2 at given final time T . Take h(m(T )) = 1
2‖m(T ) − m̃(T )‖2

(R3)N ,

where the deterministic target profile m̃ : [0, T ] → (S2)3 is given by

m̃1(t) = e1 , m̃2(t) =
⎛
⎝

− cos(π t
T )

sin(π t
T )

0

⎞
⎠ , m̃3(t) = e1 .

Weuse againMethodB to approximate∇MW . To simulate the optimal pair of the underlying
problem, we have used the methodology described in Sects. 4.1 and 5.1–5.3, along with the
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following set of parameters: with the positive semi-definite matrix J such that for any

T (α, δ) (λ, ν) m̄ Cext
(
h̄, τ, M

)
Di (i = 1, 2, 3)

0.5 (0.1, 0) (10−3, 0.3) (e1, −e1, e1) 0.1
(
10−3, 10−2, 106

)
diag(−5.0, 1.0, 3.5)

m = (m1, m2, . . . , m N ) ∈ (S2)N

(Jm)i = −mi+1 + 2mi − mi−1 (i = 1, 2, . . . , N ) ,

m N+1 = m1 , m0 = m N .
(6.5)

In this case, the minimum value of the cost functional is J ∗
sto ≡ 0.9078. Though the first

and third spins start already at the desired state, it is due to the noise, and the exchange forces
in particular, that the optimal control is acting on the whole time interval and on all spins.
For the second spin, we observe that at the beginning and end, less control is needed opposed
to the applied control at the intermediate times; see Fig. 3. The orthogonality of the optimal
pair (m∗,u∗) (e.g. Remark 3.4) is shown in Fig. 3g–i by displaying the temporal evolution

t �→� m∗
i (t), u∗

i (t) �:=
∣∣〈m∗

i (t), u∗
i (t)〉(R3)

∣∣
‖m∗

i (t)‖R3 ‖u∗
i (t)‖R3

(i = 1, 2, 3) .

6.3 Optimal Control of Four Interacting Spins

We consider here the switching control for an ensemble of N = 4 particles.
Set-up 1: We use the parameters as in Sect. 6.2 with m̄ = (

e1,−e1, e1,−e1
)
, and m̃(t) =(

e1, m̃2(t), e1, m̃2(t)
)
. In this case, the first and third spins start already at the desired state;

the associated optimal controls are acting on the whole time interval. Moreover, for the
second and fourth spins, significant controls are required to approximately meet the terminal
state profile. The time evolution of t �→ ‖u∗

2(t)‖2R3 is similar to the results for N = 3 spin

constellations (see Fig. 3e), while ‖u∗
4(t)‖2R3 is delayed in time for the fourth spin.We observe

a loop of the orientation of u∗
i (t)‖u∗

i (t)‖−1
R3 (i = 2, 4) close to the terminal time; see Fig. 4.

Set-up 2: We use same parameters as in set-up 1 with m̄ = (
e1,−e1,−e1, e1

)
and m̃(t) =(

e1, m̃2(t), m̃2(t), e1
)
. For the second and third spins, significantly synchronous controls at

intermediate times are required to meet approximately the desired target profile. Like in Set-
up 1, we also observe the formation of loops of the orientation of u∗

i (t)‖u∗
i (t)‖−1

R3 (i = 2, 3)
close to the terminal time; see Fig. 5.

6.4 Optimal Control of Ten Interacting Spins

We consider here an ensemble of N = 10 particles to optimally control the dynamics to
reach a deterministic target profile

m̃ = (m̃1, . . . , m̃10) : [0, T ] → (S2)10 with m̃i (t) = e1 (i = 1, 2, . . . , 10)

within finite time T at minimized expected external energy with initial configuration

m̄ = (
m̄1, . . . , m̄10

)
, where m̄i =

(
0, sin(

2π i

10
), cos(

2π i

10
)
)

(i = 1, . . . , 10) .
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(A) 1st spin (B) 2nd spin (C) 3rd spin
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∗
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Fig. 3 Time evolution of a single trajectory of the optimal state t �→ m∗
i (t) (red), the direction of the optimal

control t �→ u∗
i (t)‖u∗

i (t)‖−1
R3 (blue), the magnitude of the optimal control t �→ ‖u∗

i (t)‖2
R3 , and the angle

between optimal pair t �→� u∗
i (t), m∗

i (t) � for i = 1, 2, 3 (Color figure online)

To simulate the optimal pair of the underlying problem, we take again D = 0, J as in (6.5),

h(m(T )) = 1

2
‖m(T ) − m̃(T )‖2

(R3)N , and the following set of parameters: In Fig. 6a, we

T (α, δ) (λ, ν) Cext
(
h̄, τ, M

)

0.5 (1.0, 0) (1.0, 0.5) 1.0
(
10−2, 10−2, 104

)

visualize the behavior of the optimal statem∗. Due to the large damping coefficient α = 1.0,
we observe fast switching dynamics of the optimal state. With the choice λ = 1 the control
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Fig. 4 Time evolution of a single trajectory of the optimal state t �→ m∗
i (t) (red), the direction of the optimal

control t �→ u∗
i (t)‖u∗

i (t)‖−1
R3 (blue), and the magnitude of the optimal control t �→ ‖u∗

i (t)‖2
R3 with set-up 1

for i = 1, 2, 3, 4 (Color figure online)
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Fig. 5 Time evolution of a single trajectory of the optimal state t �→ m∗
i (t) (red), the direction of the optimal

control t �→ u∗
i (t)‖u∗

i (t)‖−1
R3 (blue), and the magnitude of the optimal control t �→ ‖u∗

i (t)‖2
R3 with set-up 2

for i = 1, 2, 3, 4 (Color figure online)

is penalized more strongly than in the previous experiments, which has a noticeable effect
on the magnitude of u∗, compare Figs. 5e–h and 6c, e. At the beginning a stronger control is
applied to move towards the desired target profile. Because of the large noise intensity ν, and
the less control, some particles of this ensemble do not reach the target profile appropriately.
For illustration, we plotted the behavior of the optimal state t �→ m∗

i (t) (red), the direction
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(A) Initial state (gray), target profile (green) and optimal solution (red)

(B) 3rd spin
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(C) t ‖→� u∗
3(t)‖2R3 (D) 7th spin
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(E) t ‖→� u∗
7(t)‖2R3

Fig. 6 A single realization of the optimal state m∗ (red) at final time T , the time evolution of the optimal state
t �→ m∗

i (t) (red), the direction of the optimal control t �→ u∗
i (t)‖u∗

i (t)‖−1
R3 (blue), and the magnitude of the

optimal control t �→ ‖u∗
i (t)‖2

R3 for i = 3, 7 (Color figure online)

of the optimal control t �→ u∗
i (t)‖u∗

i (t)‖−1
R3 (blue), and the magnitude of the optimal control

t �→ ‖u∗
i (t)‖2R3 for i = 3, 7; see Fig. 6.

Let us specify the cost of the proposed method in terms of computations and storage. In
the definition of Jsto resp. w in Problem 1.1 resp. (4.2), we approximate the expectation
via Monte-Carlo estimation along with the variance reduction method of antithetic variates.
There, each realization of the integrals requires to store the iterates {m j }J

j=0 resp. {mmm j }J
j=0

with O(N J ) storage complexity due to the necessity of piecewise interpolation as in (5.1).
The latter iterates are computed via scheme (4.3a)–(4.3b) by solving 2N linear 3×3 systems,
which can be done analytically in O(1) time and in parallel, cf. the discussion in [17, Sec-
tion 2.3]. The most computationally intensive part is to approximate ∇Mw(t j ,m j ), whose
accuracy has a direct impact on both, the optimal solution and control. Comparative computa-
tional studies show that at leastO(106) realizations are needed to approximate∇Mw(t j ,m j ),
whereasO(104) realizations are sufficient to approximate the cost function. This dependence
on the sample size M ∈ N to approximate the optimal control is strengthened in the case of
fast changing optimal states.
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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