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Abstract A new type of finite difference weighted essentially non-oscillatory (WENO)
schemes for hyperbolic conservation laws was designed in Zhu and Qiu (J Comput Phys
318:110–121, 2016), in this continuing paper, we extend such methods to finite volume
version in multi-dimensions. There are two major advantages of the new WENO schemes
superior to the classical finite volume WENO schemes (Shu, in: Quarteroni (ed) Advanced
Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathemat-
ics, CIME subseries, Springer, Berlin, 1998), the first is the associated linear weights can be
any positive numbers with only requirement that their summation equals one, and the second
is their simplicity and easy extension to multi-dimensions in engineering applications. The
new WENO reconstruction is a convex combination of a fourth degree polynomial with two
linear polynomials defined on unequal size spatial stencils in a traditional WENO fashion.
These new fifth order WENO schemes use the same number of cell average information as
the classical fifth order WENO schemes Shu (1998), could get less absolute numerical errors
than the classical same orderWENO schemes, and compress nonphysical oscillations nearby
strong shocks or contact discontinuities. Some benchmark tests are performed to illustrate
the capability of these schemes.
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1 Introduction

In this paper, we extend a new type of weighted essentially non-oscillatory (WENO) termed
as WENO-ZQ scheme in [36] from finite difference version to finite volume version for
solving hyperbolic conservation laws:{

ut + ∇ · f (u) = 0,
u(x1, . . . , xn, 0) = u0(x1, . . . , xn).

(1.1)

There are two major advantages of the new WENO schemes superior to the classical finite
volumeWENO schemes in [29], which is extended from the original finite differenceWENO
in [18], and in this paperwe also term it asWENO-JS. The first is the associated linearweights
can be set as any nonnegative parameters with the only limiting condition that their sum is
one, and the second is their simplicity and easy extension to multi-dimensions in engineering
applications.

In recent decades many numerical schemes were investigated to improve the first order
methods [13] to arbitrary numerical order. Harten et al. [14] gave aweaker version of the TVD
criterion and on which they introduced the basis for the reconstruction of high order essen-
tially non-oscillatory (ENO) type schemes for the purpose of achieving uniform high order
accuracy. Thereafter, Harten et al. [16] proposed ENO schemes to simulate one dimensional
test cases. Harten [15] first presented a two dimensional extension of the finite volume ENO
schemes. Then Casper [6] and together with Atkins [7] studied the finite volume approach in
developing multi-dimensional high order accurate ENO schemes for simulating hyperbolic
conservation laws. The crucial spirit of these ENO schemes [1,6,7,15,16] et al. is their appli-
cation of the smoothest stencil and should discard other candidate stencils for approximating
the variables at cell boundaries to a high order accuracy in smooth region while escaping
spurious oscillations adjacent to strong shocks or contact discontinuities. In 1994, based on
the spirit of ENO schemes, Liu et al. [22] proposed a finite volume WENO scheme that con-
structed from the rth order ENO scheme to gain (r+1)th order accuracy in smooth region.
In 1996, Jiang and Shu [18] introduced a finite difference scheme, termed as WENO-JS,
from the rth order ENO scheme to (2r-1)th order accuracy, and gave the new framework of
designing smoothness indicators and nonlinear weights. The framework works well for both
WENO reconstructions in the finite difference and finite volume version. Thereafter, many
WENO schemes were widely developed and applied, such as two dimensional finite volume
WENO schemes on unstructured meshes proposed by Hu and Shu [17], three dimensional
finite volumeWENO on structured meshes constructed by Titarev and Toro [32] and unstruc-
tured meshes designed by Zhang and Shu [34], Hermite WENO (HWENO) schemes and as
limiters for solving Runge–Kutta discontinuous Galerkin (RKDG) methods in [23,25].

The main idea of WENO schemes is a weighted combination of several local reconstruc-
tions based on different stencils and the usage of it as a final WENO reconstruction. The
combination coefficients (also called non-linear weights) depend on the linear weights and
smoothness indicators, are often chosen to increase the order of accuracy over that on each
small spatial stencil. The linear weights are mainly determined by local geometry of the
computing mesh, order of accuracy and the location of reconstruction point. When there are
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no linear weights, the WENO reconstruction will fail to increase the order of accuracy, and
for negative linear weights, the WENO reconstruction will become unstable. The problem
of non-existent linear weights for third order WENO reconstruction at the centre of the cell
was addressed in [20] by Levy, Puppo and Russo in 1999, where the technique called central
WENOwas introduced. The same technique, under the name of centralWENO or sometimes
compact WENO, was later exploited at fifth order by Capdeville [5], Semplice, Coco and
Russo [27] in two dimensions on unstructured grids, and studied in great details at third order
by Kolb [19], Cravero and Semplice [9]. For the sake of overcoming the drawback ofWENO
reconstruction that the linear weights may not exist, we developed a new fifth order finite
difference WENO-ZQ method [36] with the similar idea by Levy, Puppo and Russo [20,21]
for central WENO methods. A simple and effective technique for handling negative linear
weights in WENO reconstruction was presented by Shi et al. [28]. Following the idea of the
new fifth order finite difference WENO-ZQ scheme [36] and its development of adaptive
order finite difference WENO schemes [2], we extend the new WENO methods from finite
difference version to finite volume version in this paper. In the construction of this new finite
volumeWENOmethod, the associated linear weights can be any positive numbers on condi-
tion that their summation equals one. We also point out a fact that these new fifth order finite
volume WENO-ZQ schemes are more efficient than the classical fifth order finite volume
WENO-JS schemes [29], it is verified by our numerical tests in Sect. 3.

The organization of the paper is as follows. In Sect. 2, we emphasize the principle of
constructing the newfifth order finite volumeWENO-ZQ schemes in one and two dimensions
in detail, and give some remarks for three dimensional finite volume WENO-ZQ scheme
briefly since the extension of the reconstruction procedures from two to three dimensions is
not distinctly different and omitted for simplicity. In Sect. 3, some classical tests are proposed
to verify the simplicity and efficiency of these new schemes. Concluding remarks are given
in Sect. 4.

2 Description of Finite Volume WENO-ZQ Schemes

2.1 WENO-ZQ Scheme in One Dimension

We first consider finite volume method for one dimensional conservation laws:
{
ut + fx (u) = 0,
u(x, 0) = u0(x).

(2.1)

For simplicity, the computational mesh is distributed into some cells Ii = [xi−1/2, xi+1/2],
with the uniform cell size xi+1/2−xi−1/2 = h and associated cell centers are xi = 1

2 (xi+1/2+
xi−1/2). Taking the intervals Ii as our control volumes, the associated semidiscretization of
(2.1) can be reformulated as

dū(xi , t)

dt
+ 1

h
( f (u(xi+1/2, t)) − f (u(xi−1/2, t))) = 0, (2.2)

where ū(xi , t) = 1
h

∫ xi+1/2
xi−1/2

u(ξ, t)dξ is the cell average. We approximate (2.2) by the follow-
ing conservative formulation

dūi (t)

dt
= L(ui ) = − 1

h

(
f̂i+1/2 − f̂i−1/2

)
, (2.3)
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where ūi (t) is the numerical approximation to the cell average ū(xi , t), and the numerical
flux f̂i+1/2 is defined by f̂i+1/2 = f̂ (u−

i+1/2, u
+
i+1/2) with the values u±

i+1/2 which are
obtained by the WENO reconstruction procedures narrated latter. In this paper, we take the
Lax–Friedrichs flux:

f̂ (a, b) = 1

2
[ f (a) + f (b) − α(b − a)], (2.4)

where α = maxu | f ′(u)| is a constant and the maximum is taken over the whole range
of u. If we can reconstruct u±

i+1/2 = u(xi+1/2, t) + O(hr ), then (2.3) is the r − th order
approximation to (2.2).

Now we describe in detail for the reconstruction procedure of u−
i+ 1

2
to approximate

u(xi+1/2, t) up to 5th order, and the reconstruction procedure of u+
i+ 1

2
is mirror symmet-

ric with respect to xi+1/2 of that for u
−
i+ 1

2
.

Step 1. Choose the big stencil T1 = {Ii−2, Ii−1, Ii , Ii+1, Ii+2}. Then a quartic polynomial
based on the cell averages of T1 is obtained by requiring

1

h

∫
I j
p1(x)dx = ū j , j = i − 2, . . . , i + 2. (2.5)

Step 2. Choose the other two smaller stencils T2 = {Ii−1, Ii } and T3 = {Ii , Ii+1}. Then
two linear polynomials based on the cell averages of T2 and T3 are obtained by requiring

1

h

∫
I j
p2(x)dx = ū j , j = i − 1, i, (2.6)

and
1

h

∫
I j
p3(x)dx = ū j , j = i, i + 1. (2.7)

Step 3.With the similar idea by Levy et al. [20,21] for centralWENOmethods, we rewrite
p1(x) as:

p1(x) = γ1

(
1

γ1
p1(x) − γ2

γ1
p2(x) − γ3

γ1
p3(x)

)
+ γ2 p2(x) + γ3 p3(x). (2.8)

Note that (2.8) holds true for any choice of γ1, γ2, γ3 with γ1 �= 0. In this paper, we would
like to take positive linear weights γ1, γ2, γ3 with γ1 + γ2 + γ3 = 1 and p1(x) is the fifth
order approximation to u(x, t).

Step 4. Compute the smoothness indicators β�, � = 1, 2, 3, which measure how smooth
the functions p�(x), � = 1, 2, 3, are in the target cell Ii . The smaller these smoothness
indicators, the smoother the functions are in Ii . We use the same recipe for the smoothness
indicators as specified in [3,18,29]:

β� =
r∑

κ=1

∫
Ii
h2κ−1

(
dκ p�(x)

dxκ

)2

dx, � = 1, 2, 3, (2.9)

where r = 4 for � = 1 and r = 1 for � = 2, 3. The associated explicit expressions are

β1 = 1

144
(ūi−2 − 8ūi−1 + 8ūi+1 − ūi+2)

2

+ 1

15600
(−11ūi−2 + 174ūi−1 − 326ūi + 174ūi+1 − 11ūi+2)

2 (2.10)
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+ 781

2880
(−ūi−2 + 2ūi−1 − 2ūi+1 + ūi+2)

2

+ 1421461

1310400
(ūi−2 − 4ūi−1 + 6ūi − 4ūi+1 + ūi+2)

2,

β2 = (ūi−1 − ūi )
2, (2.11)

and
β3 = (ūi − ūi+1)

2. (2.12)

The expansions of (2.10) to (2.12) in Taylor series at xi are obtained as

β1 = h2(u′
i )
2 + h4

(
1

12
u′
i u

′′′
i + 13

12
(u′′

i )
2
)

+ h6
(
1043

960
(u′′′

i )2 − 21

320
u′
i u

(5)
i + 7

80
u′′
i u

(4)
i

)
+ O(h8), (2.13)

β2 = h2(u′
i )
2 − h3u′

i u
′′
i + h4

(
1

4
(u′′

i )
2 + 5

12
u′
i u

′′′
i

)
+ O(h5), (2.14)

and

β3 = h2(u′
i )
2 + h3u′

i u
′′
i + h4

(
1

4
(u′′

i )
2 + 5

12
u′
i u

′′′
i

)
+ O(h5). (2.15)

Step 5. Compute the nonlinear weights based on the linear weights and the smoothness
indicators. For instance, we use τ which is simply defined as the absolute deference between
β1, β2 and β3, and is different to the formula specified in [4,8,10] for the stencils used for
reconstruction are different. The formula of τ was first presented in [36] for finite difference
version and followed in [2]. The difference expansions in Taylor series are

β1 − β2 = h3u′
i u

′′
i + O(h4) = O(h3), (2.16)

and
β1 − β3 = −h3u′

i u
′′
i + O(h4) = O(h3). (2.17)

So it satisfies

τ =
( |β1 − β2| + |β1 − β3|

2

)2

= O(h6). (2.18)

Then the non-linear weights are defined as

ω� = ω̄�∑3
��=1 ω̄��

, ω̄� = γ�

(
1 + τ

ε + β�

)
, � = 1, 2, 3. (2.19)

Here ε is a small positive number to avoid the denominator of (2.19) to become zero. By the
usage of (2.13) to (2.15) and (2.18) in the smooth region, it satisfies

τ

ε + β�

= O(h4), � = 1, 2, 3, (2.20)

on condition that ε � β�. Therefore the nonlinear weights ω�, � = 1, 2, 3, satisfy the
order accuracy condition ω� = γ� + O(h4) [4,8,10], providing the fifth order accuracy
to the WENO scheme narrated in [18,29]. In this paper we simply take ε = 10−6 in our
computation.

Step 6. We replace the linear weights in (2.8) with nonlinear weights (2.19), and the new
final reconstruction formulation of conservative values u(x, t) at the point xi+1/2 of the target
cell Ii is given by
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u−
i+1/2 = ω1

(
1

γ1
p1(xi+1/2) − γ2

γ1
p2(xi+1/2) − γ3

γ1
p3(xi+1/2)

)
+ ω2 p2(xi+1/2)

+ω3 p3(xi+1/2). (2.21)

Remark 1 The u−
i+1/2 is the fifth order approximation to u(x, t) at the point xi+1/2 in the

smooth region of the solution.

u−
i+1/2 − u(xi+1/2, t) = ω1

(
1

γ1
p1(xi+1/2) − γ2

γ1
p2(xi+1/2) − γ3

γ1
p3(xi+1/2)

)

+ω2 p2(xi+1/2) + ω3 p3(xi+1/2) − u(xi+1/2, t)

= (γ1 + ω1 − γ1)

(
1

γ1
p1(xi+1/2) − γ2

γ1
p2(xi+1/2) − γ3

γ1
p3(xi+1/2) − u(xi+1/2, t)

)

+ (γ2 + ω2 − γ2)(p2(xi+1/2) − u(xi+1/2, t)) + (γ3 + ω3 − γ3)(p3(xi+1/2) − u(xi+1/2, t))

= p1(xi+1/2) − u(xi+1/2, t) + (ω1 − γ1)

(
1

γ1
(p1(xi+1/2) − u(xi+1/2, t))

− γ2

γ1
(p2(xi+1/2) − u(xi+1/2, t)) − γ3

γ1
(p3(xi+1/2) − u(xi+1/2, t))

)

+ (ω2 − γ2)(p2(xi+1/2) − u(xi+1/2, t)) + (ω3 − γ3)(p3(xi+1/2) − u(xi+1/2, t))

Since ωl = γl + O(h4), l = 1, 2, 3 , p1(xi+1/2) − u(xi+1/2, t) = O(h5), p2(xi+1/2) −
u(xi+1/2, t) = O(h2), p3(xi+1/2) − u(xi+1/2, t) = O(h2), we have:

u−
i+1/2 − u(xi+1/2, t) = O(h5).

Step 7. The semi-discretiztion scheme (2.3) is discretized in time by a third order TVD
Runge–Kutta method [30]⎧⎪⎪⎨

⎪⎪⎩
u(1)
i = uni + �t L(uni ),

u(2)
i = 3

4u
n
i + 1

4u
(1)
i + 1

4�t L(u(1)
i ),

un+1
i = 1

3u
n
i + 2

3u
(2)
i + 2

3�t L(u(2)
i ).

(2.22)

2.2 WENO-ZQ Scheme in Two Dimensions

Now we consider two dimensional conservation laws{
ut + f (u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y).

(2.23)

For simplicity, the grid meshes are uniformly divided into some cells. And the cell sizes
are xi+ 1

2
− xi− 1

2
= �x , yk+ 1

2
− yk− 1

2
= �y, (�x=�y=h), and cell centers (xi , yk) =

( 12 (xi− 1
2
+xi+ 1

2
), ( 12 (yk− 1

2
+yk+ 1

2
)).We denote the two dimensional cells by Ii,k = Ii × Ik =

[xi− 1
2
, xi+ 1

2
]×[yk− 1

2
, yk+ 1

2
] and define ūi,k(t) = 1

h2
∫
Ii,k

u(x, y, t)dxdy.We integrate (2.23)
over target cell Ii,k and obtain the semi-discrete finite volume scheme as

dūi,k(t)

dt
= L(ui,k) = − 1

h2

(∫ yk+1/2

yk−1/2

f (u(xi+1/2, y, t))dy −
∫ yk+1/2

yk−1/2

f (u(xi−1/2, y, t))dy

+
∫ xi+1/2

xi−1/2

g(u(x, yk+1/2, t))dx −
∫ xi+1/2

xi−1/2

g(u(x, yk−1/2, t))dx

)
. (2.24)
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We approximate (2.24) by the following conservative formulation

dūi,k(t)

dt
= − 1

h
( f̂i+1/2,k − f̂i−1/2,k) − 1

h
(ĝi,k+1/2 − ĝi,k−1/2), (2.25)

where the numerical fluxes f̂i+1/2,k and ĝi,k+1/2 are defined as

f̂i+1/2,k =
3∑

�=1

�� f̂
(
u−
i+1/2,k+σ�

, u+
i+1/2,k+σ�

)
,

ĝi,k+1/2 =
3∑

�=1

�� ĝ
(
u−
i+σ�,k+1/2, u

+
i+σ�,k+1/2

)
, (2.26)

to approximate 1
h

∫ yk+1/2
yk−1/2

f (u(xi+1/2, y, t))dy and 1
h

∫ xi+1/2
xi−1/2

g(u(x, yk+1/2, t))dx, respec-
tively. �� and σ� are three-point Gaussian quadrature weights and nodes in the cell
[− 1

2 ,
1
2 ], respectively. Here u±

i+1/2,k+σ�
and u±

i+σ�,k+1/2 are the fifth order approximation

of u(x±
i+1/2, yk + σ�h) and u(xi + σ�h, y±

k+1/2), respectively, which will be reconstructed

by WENO procedures. The numerical fluxes f̂ (a, b) and ĝ(a, b) are defined as the one
dimensional monotone flux (2.4).

Now we describe the reconstruction procedure of point values u∓
i±1/2,k+σ�

from cell aver-
ages {ui,k}, which is based on the dimension by dimension fashion.
• Along x direction, based on {ui,k}, we perform the WENO reconstruction procedure

which is described in the above for one dimensional case to reconstruct

u(x±
i∓1/2) j = 1

h

∫ y j+1/2

y j−1/2

u(x±
i∓1/2, y)dy, j = k − 2, . . . , k + 2,

where u(x±
i∓1/2) j are points value in x and cell average in y direction. In this WENO

reconstruction procedure, we only compute the nonlinear weights once for each j , for
we use the same linear weights and smoothness indicators at the reconstructed points
x±
i∓1/2, but for the classical WENO reconstruction, we have to compute the nonlinear

weights twice, for the linear weights are different at the points x±
i∓1/2.

• Along y direction, based on {u(x±
i∓1/2) j }, we perform the WENO reconstruction proce-

dure which is described in the above for one dimensional case to reconstruct the point
values u∓

i±1/2,k+σ�
. Again, we only compute the nonlinear weights once for all three

Gauss points at y direction, and for the classical WENO reconstruction we have to com-
pute the nonlinear weights at least three times, there is negative the linear weight at Gauss
point σ2 = 0 for the classical WENO reconstruction, and we should apply the technique
for handling negative linear weights in WENO reconstruction [28].

The reconstruction procedure of point values u∓
i+σ�,k±1/2 from cell averages {ui,k} is

similar to that for u∓
i±1/2,k+σ�

. In this procedure the role of x and y are reversed against
the previous procedure and in particular the intermediate results should be point value in y
direction but cell averages in x direction.

After doing above procedures, the semi-discretiztion scheme (2.25) is discretized in time
by a third order TVD Runge–Kutta method (2.22).

Remark 2 We can easily extend such fifth order finite volume WENO-ZQ scheme to three
dimensional case with a dimension by dimension fashion, which is similar to the two dimen-
sional case. Again, as for two dimensional case, it is obvious that the new fifth order finite
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volume WENO-ZQ scheme specified in this paper is superior to the classical finite volume
WENO-JS schemes in [29], for we can use the same linear weights at all Gaussian quadrature
points, thus we can reduce the cost of reconstruction procedures.

3 Numerical Tests

In this section we present the results of the new fifth order finite volumeWENO-ZQ schemes
in comparison with the classical fifth order finite volumeWENO-JS schemes narrated in [29]
in one, two and three dimensions. The CFL number is set as 0.6, except for the accuracy
tests where we set time step �t = h5/3 to guarantee that spatial error dominates. For Euler
equations, all of the reconstructions are performed in the local characteristic directions to
avoid spurious oscillations. For the purpose of evaluating whether the random choice of the
linear weights would pollute the optimal order accuracy of WENO-ZQ schemes or not, we
set three different type of linear weights in the numerical accuracy cases as: (1) γ1=0.98,
γ2=0.01 and γ3=0.01; (2) γ1=1.0/3.0, γ2=1.0/3.0 and γ3=1.0/3.0; (3) γ1=0.01, γ2=0.495 and
γ3=0.495. Following the practice in [11,35,36], we set the linear weights γ1 = 0.98 and
γ2 = γ3 = 0.01 in the latter examples, unless specified otherwise.

Example 3.1 We solve the following nonlinear scalar Burgers equation:

μt +
(

μ2

2

)
x

= 0, 0 < x < 2, (3.1)

with the initial condition μ(x, 0) = 0.5 + sin(πx) and periodic boundary condition. When
t = 0.5/π the solution is still smooth, the numerical errors between the numerical solution
and exact solution andorders by theWENO-ZQschemeare shown inTable 1. For comparison,
the numerical errors and orders by the classical WENO-JS scheme are shown in the same
table. We can see that both WENO-ZQ andWENO-JS schemes achieve their designed order

Table 1 μt + (
μ2

2 )x = 0. Initial data μ(x, 0) = 0.5+ sin(πx). WENO-ZQ scheme and WENO-JS scheme

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JS scheme

10 5.38E−3 1.87E−2 5.91E−3 1.71E−2

20 9.15E−4 2.56 4.35E−3 2.11 9.87E−4 2.58 7.12E−3 1.26

40 4.25E−5 4.43 4.37E−4 3.32 8.72E−5 3.50 8.04E−4 3.15

80 1.78E−6 4.58 2.22E−5 4.29 4.11E−6 4.40 4.11E−5 4.29

160 6.03E−8 4.88 7.93E−7 4.81 1.64E−7 4.64 1.45E−6 4.83

WENO-ZQ (2) scheme WENO-ZQ (3) scheme

10 3.07E−2 7.25E−2 3.28E−2 7.50E−2

20 3.05E−3 3.33 1.86E−2 1.96 3.61E−3 3.19 2.24E−2 1.74

40 6.88E−5 5.47 4.28E−4 5.44 8.15E−5 5.47 4.24E−4 5.72

80 1.85E−6 5.22 2.22E−5 4.27 1.89E−6 5.43 2.22E−5 4.25

160 6.03E−8 4.94 7.92E−7 4.81 6.03E−8 4.97 7.92E−7 4.81

T = 0.5/π . L1 and L∞ errors

123



1346 J Sci Comput (2017) 73:1338–1359
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Fig. 1 μt + (
μ2

2 )x = 0. Initial data μ(x, 0) = 0.5+ sin(πx). Computing time and error. Number signs and
a solid line denote the results of WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and
a solid line denote the results of WENO-JS scheme

of accuracy and WENO-ZQ scheme produces less numerical errors. Figure 1 shows that
WENO-ZQ scheme needs less CPU time than WENO-JS does to obtain the same quantities
of L1 and L∞ errors, so WENO-ZQ scheme is more efficient than WENO-JS scheme in this
test case.

Example 3.2 We solve the following two dimensional nonlinear scalar Burgers equation:

μt +
(

μ2

2

)
x

+
(

μ2

2

)
y

= 0, 0 < x, y < 4, (3.2)

with the initial condition μ(x, y, 0) = 0.5 + sin(π(x + y)/2) and periodic boundary con-
ditions in two directions. When t = 0.5/π the solution is still smooth, the numerical errors
between the numerical solution and exact solution and orders by the WENO-ZQ scheme in
comparison to that of WENO-JS scheme are shown in Table 2. We can see that the WENO-
ZQ scheme achieves close to its designed order of accuracy and generates less numerical
error. And the Fig. 2 shows that WENO-ZQ scheme needs less CPU time to obtain the same
quantities of L1 and L∞ errors.

Example 3.3 We solve the following three dimensional nonlinear scalar Burgers equation:

μt +
(

μ2

2

)
x

+
(

μ2

2

)
y
+

(
μ2

2

)
z
= 0, 0 < x, y, z < 6, (3.3)

with the initial condition μ(x, y, z, 0) = 0.5 + sin(π(x + y + z)/3) and periodic boundary
conditions in three directions.When t = 0.5/π the solution is still smooth, and the numerical
errors between the numerical solution and exact solution andorders by theWENO-ZQscheme
in comparison to that of WENO-JS scheme are shown in Table 3. And the Fig. 3 shows that
WENO-ZQ scheme needs less CPU time than WENO-JS scheme to get the same quantities
of L1 and L∞ errors. We can see that the WENO-ZQ scheme achieves close to its designed
order of accuracy.
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Table 2 μt + (
μ2

2 )x + (
μ2

2 )y = 0. Initial data μ(x, y, 0) = 0.5+ sin(π(x + y)/2). WENO-ZQ scheme and
WENO-JS scheme

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JS scheme

10 × 10 8.71E−3 2.83E−2 6.39E−3 1.77E−2

20 × 20 7.66E−4 3.51 3.22E−3 3.13 8.81E−4 2.86 5.72E−3 1.63

40 × 40 3.97E−5 4.27 3.62E−4 3.15 8.19E−5 3.43 6.73E−4 3.09

80 × 80 1.72E−6 4.53 2.11E−5 4.10 4.06E−6 4.33 3.91E−5 4.11

160 × 160 5.99E−8 4.85 7.70E−7 4.78 1.65E−7 4.62 1.42E−6 4.78

WENO-ZQ (2) scheme WENO-ZQ (3) scheme

10 × 10 3.20E−2 8.79E−2 3.52E−2 9.23E−2

20 × 20 3.82E−3 3.07 1.53E−2 2.52 4.50E−3 2.97 1.71E−2 2.43

40 × 40 7.87E−5 5.60 3.55E−4 5.43 9.63E−5 5.55 4.15E−4 5.36

80 × 80 1.79E−6 5.46 2.11E−5 4.07 1.83E−6 5.72 2.11E−5 4.30

160 × 160 5.98E−8 4.90 7.70E−7 4.78 5.99E−8 4.93 7.70E−7 4.78

T = 0.5/π , L1 and L∞ errors
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Fig. 2 μt + (
μ2

2 )x + (
μ2

2 )y = 0. Initial data μ(x, y, 0) = 0.5+ sin(π(x + y)/2). Computing time and error.
Number signs and a solid line denote the results of WENO-ZQ scheme with different linear weights (1), (2)
and (3); squares and a solid line denote the results of WENO-JS scheme

Example 3.4

∂

∂t

⎛
⎝ ρ

ρμ

E

⎞
⎠ + ∂

∂x

⎛
⎝ ρμ

ρμ2 + p
μ(E + p)

⎞
⎠ = 0. (3.4)

In which ρ is density, μ is the velocity in x−direction , E is total energy and p is pressure.
The initial conditions are: ρ(x, 0) = 1 + 0.2 sin(πx), μ(x, 0) = 1, p(x, 0) = 1, γ = 1.4.
The computing domain is x ∈ [0, 2]. Periodic boundary condition is applied in this test. The
final time is t = 1. The numerical errors between the numerical solution and exact solution
and orders of the density by the WENO-ZQ scheme and WENO-JS scheme are shown in
Table 4 and the numerical error against CPU time graphs are in Fig. 4. We can observe that
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Table 3 μt +(
μ2

2 )x +(
μ2

2 )y+(
μ2

2 )z = 0. Initial dataμ(x, y, z, 0) = 0.5+sin(π(x+ y+z)/3).WENO-ZQ

scheme and WENO-JS scheme. T = 0.5/π . L1 and L∞ errors

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JS scheme

10 × 10× 10 3.93E−3 1.20E−2 3.88E−3 1.26E−2

20 × 20× 20 5.41E−4 2.86 2.46E−3 2.30 7.28E−4 2.42 4.40E−3 1.48

40 × 40× 40 3.53E−5 3.94 3.44E−4 2.84 7.54E−5 3.27 6.49E−4 2.76

80 × 80× 80 1.65E−6 4.42 2.02E−5 4.09 3.90E−6 4.27 3.76E−5 4.11

160 × 160×160 5.85E−8 4.82 7.63E−7 4.73 1.61E−7 4.59 1.40E−6 4.75

WENO-ZQ (2) scheme WENO-ZQ (3) scheme

10 × 10× 10 2.46E−2 7.09E−2 2.65E−2 7.27E−2

20 × 20× 20 2.52E−3 3.29 1.53E−2 2.21 3.09E−3 3.10 1.90E−2 1.93

40 × 40× 40 6.06E−5 5.38 3.37E−4 5.51 7.26E−5 5.41 3.33E−4 5.84

80 × 80× 80 1.72E−6 5.13 2.01E−5 4.06 1.77E−6 5.36 2.01E−5 4.05

160 × 160×160 5.85E−8 4.88 7.63E−7 4.72 5.86E−8 4.92 7.63E−7 4.72
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Fig. 3 μt + (
μ2

2 )x + (
μ2

2 )y + (
μ2

2 )z = 0. Initial data μ(x, y, z, 0) = 0.5+ sin(π(x + y+ z)/3). Computing
time and error. Number signs and a solid line denote the results of WENO-ZQ scheme with different linear
weights (1), (2) and (3); squares and a solid line denote the results of WENO-JS scheme

the theoretical order is actually achieved and the WENO-ZQ scheme can get better results
and is more efficient in this test case. For this example, we can see the WENO-ZQ scheme
could get much less numerical error as in scalar examples.

Example 3.5 Two dimensional vortex evolution problem [29] for two dimensional Euler
equations

∂

∂t

⎛
⎜⎜⎝

ρ

ρμ

ρν

E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠ + ∂

∂y

⎛
⎜⎜⎝

ρν

ρνμ

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠ = 0. (3.5)
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Table 4 1D Euler equations: initial data ρ(x, 0) = 1 + 0.2 sin(πx), μ(x, 0) = 1 and p(x, 0) = 1

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JS scheme

10 5.91E−4 9.57E−4 3.03E−3 6.32E−3

20 1.00E−5 5.88 1.76E−5 5.76 9.44E−5 5.00 1.65E−4 5.25

30 1.23E−6 5.16 2.26E−6 5.06 1.06E−5 5.37 1.89E−5 5.35

40 2.83E−7 5.12 5.18E−7 5.12 2.20E−6 5.49 4.14E−6 5.27

50 9.10E−8 5.10 1.66E−7 5.09 7.03E−7 5.11 1.43E−6 4.76

WENO-ZQ (2) scheme WENO-ZQ (3) scheme

10 1.35E−2 2.09E−2 2.03E−2 3.90E−2

20 3.29E−5 8.68 8.17E−5 8.00 4.74E−5 8.74 1.14E−4 8.41

30 1.47E−6 7.66 4.60E−6 7.09 1.82E−6 8.03 6.29E−6 7.16

40 2.94E−7 5.59 5.84E−7 7.17 3.09E−7 6.16 7.30E−7 7.48

50 9.17E−8 5.22 1.68E−7 5.57 9.29E−8 5.40 1.90E−7 6.03

. WENO-ZQ scheme and WENO-JS scheme. T = 1. L1 and L∞ errors
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Fig. 4 1D Euler equations. Computing time and error. Number signs and a solid line denote the results of
WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and a solid line denote the results
of WENO-JS scheme

In which ρ is density; μ and ν are the velocities in the x and y-directions, respectively; E is
total energy; and p is pressure. The mean flow is ρ = 1.0, p = 1.0, μ = 1.0 and ν = 1.0.
We add an isentropic vortex (perturbations in μ, ν and the temperature T = p/ρ, and no
perturbation in the entropy S = p/ργ ) on the mean flow: (δμ, δν) = 5

2π e
0.5(1−r2)(−ȳ, x̄),

δT = − 25(γ−1)
8γπ2 e1−r2 and δS = 0. Where (x̄, ȳ) = (x − 5, y − 5) and r2 = x̄2 + ȳ2.

The computational domain is taken as (x, y) ∈ [0, 10] × [0, 10], and periodic boundary
conditions are used in both directions. It is obvious that the exact solution of this problem
is just the passive convection of the vortex with the mean velocity. We compute the solution
to t = 2 for the accuracy test with fifth order WENO schemes in Table 5 and the numerical
error against CPU time graphs are in Fig. 5. We can see that both WENO-ZQ andWENO-JS
schemes achieve their designed order of accuracy.

123



1350 J Sci Comput (2017) 73:1338–1359

Table 5 2D Euler equations of smooth vortex evolution problem

Grid points L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ(1) scheme WENO-JS scheme

30 × 30 3.58E−4 8.54E−3 5.27E−4 9.24E−3

40 × 40 1.07E−4 4.19 1.74E−3 5.53 1.73E−4 3.88 2.85E−3 4.08

50 × 50 3.92E−5 4.51 6.52E−4 4.40 6.55E−5 4.35 1.05E−3 4.45

60 × 60 1.71E−5 4.56 2.89E−4 4.45 2.83E−5 4.59 4.56E−4 4.62

70 × 70 8.41E−6 4.60 1.41E−4 4.63 1.37E−5 4.72 2.17E−4 4.79

WENO-ZQ(2) scheme WENO-ZQ(3) scheme

30 × 30 1.21E−3 2.74E−2 1.45E−3 3.14E−2

40 × 40 2.32E−4 5.76 4.59E−3 6.20 3.16E−4 5.29 6.77E−3 5.34

50 × 50 5.75E−5 6.25 1.17E−3 6.10 6.79E−5 6.90 1.38E−3 7.11

60 × 60 2.02E−5 5.71 4.00E−4 5.91 2.25E−5 6.05 4.44E−4 6.24

70 × 70 9.01E−6 5.27 1.71E−4 5.52 9.73E−6 5.44 1.74E−4 6.06

WENO-ZQ scheme and WENO-JS scheme. T = 2. L1 and L∞ errors
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Fig. 5 2D Euler equations of smooth vortex evolution problem. Computing time and error. Number signs and
a solid line denote the results of WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and
a solid line denote the results of WENO-JS scheme

Example 3.6

∂

∂t

⎛
⎜⎜⎜⎜⎝

ρ

ρμ

ρν

ρω

E

⎞
⎟⎟⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎜⎜⎝

ρμ

ρμ2 + p
ρμν

ρμω

μ(E + p)

⎞
⎟⎟⎟⎟⎠ + ∂

∂y

⎛
⎜⎜⎜⎜⎝

ρν

ρνμ

ρν2 + p
ρνω

ν(E + p)

⎞
⎟⎟⎟⎟⎠ + ∂

∂z

⎛
⎜⎜⎜⎜⎝

ρω

ρωμ

ρων

ρω2 + p
ω(E + p)

⎞
⎟⎟⎟⎟⎠ = 0. (3.6)

In which ρ is density;μ, ν andω are the velocities in the x y and z-directions, respectively; E
is total energy; and p is pressure. The initial conditions are: ρ(x, y, z, 0) = 1+0.2 sin(π(x+
y + z)), μ(x, y, z, 0) = 1/3, ν(x, y, z, 0) = 1/3, ω(x, y, z, 0) = 1/3, p(x, y, 0) = 1 and
γ = 1.4. The computing domain is (x, y, z) ∈ [0, 2] × [0, 2] × [0, 2]. Periodic boundary
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Table 6 3D Euler equations: initial data ρ(x, y, z, 0) = 1 + 0.2 sin(π(x + y + z)), μ(x, y, z, 0) = 1/3,
ν(x, y, z, 0) = 1/3, ω(x, y, z, 0) = 1/3 and p(x, y, z, 0) = 1

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

WENO-ZQ (1) scheme WENO-JS scheme

10 × 10×10 3.56E−3 6.07E−3 1.34E−2 1.85E−2

20 × 20×20 1.07E−4 5.05 1.76E−4 5.11 7.48E−4 4.17 1.13E−3 4.03

30 × 30×30 1.44E−5 4.94 2.31E−5 5.00 1.03E−4 4.89 1.70E−4 4.67

40 × 40×40 3.45E−6 4.98 5.46E−6 5.02 2.43E−5 5.03 4.29E−5 4.80

50 × 50×50 1.13E−6 4.99 1.79E−6 4.99 7.98E−6 4.99 1.43E−5 4.91

WENO-ZQ (2) scheme WENO-ZQ (3) scheme

10 × 10×10 8.45E−3 1.77E−2 9.70E−3 2.06E−2

20 × 20×20 1.38E−4 5.93 4.44E−4 5.32 1.92E−4 5.66 5.67E−4 5.18

30 × 30×30 1.44E−5 5.58 3.91E−5 5.99 1.44E−5 6.38 4.71E−5 6.14

40 × 40×40 3.46E−6 4.97 7.21E−6 5.88 3.46E−6 4.97 8.09E−6 6.12

50 × 50×50 1.13E−6 5.00 2.19E−6 5.34 1.13E−6 5.00 2.38E−6 5.47

WENO-ZQ scheme and WENO-JS scheme. T = 1. L1 and L∞ errors
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Fig. 6 3D Euler equations. Computing time and error. Number signs and a solid line denote the results of
WENO-ZQ scheme with different linear weights (1), (2) and (3); squares and a solid line denote the results
of WENO-JS scheme

conditions are applied in three directions.We compute the solution up to t = 1. The numerical
errors between the numerical solution and exact solution and orders of the density by the
WENO-ZQ scheme and WENO-JS scheme are shown in Table 6 and the numerical error
against CPU time graphs are in Fig. 6. WENO-ZQ scheme is better than WENO-JS scheme
in this three dimensional test case.

Remark 3 The finite volume WENO-ZQ schemes could obtain the fifth order accuracy in
smooth regions with three different type of linear weights. Among which, we find the first
type of linear weights could approach best numerical approximations. So it is a principle for
us to choose as large linear weights as possible for the first term of (2.21) to get less truncation
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Fig. 7 The Lax problem. T = 0.16. From left to right density; density zoomed in. Solid line the exact solution;
plus signs the results of WENO-ZQ scheme; squares the results of WENO-JS scheme. Grid cells: 100

errors in smooth region simultaneously avoiding spurious oscillations near discontinuities.
We find that the first type of linear weights γ1 = 0.98, γ2 = 0.01 and γ3 = 0.01 works well
for all examples in this paper.

Example 3.7 We solve the 1D Euler equations with Riemann initial condition for the Lax
problem:

(ρ, μ, p, γ )T =
{
(0.445, 0.698, 3.528, 1.4)T , x ∈ [−0.5, 0),
(0.5, 0, 0.571, 1.4)T , x ∈ [0, 0.5]. (3.7)

For t = 0.16, we present in Fig. 7 the exact solution and the computed density ρ obtained
with theWENO-ZQ scheme comparing to theWENO-JS scheme. The results and zoomed in
picture for different schemes are shown in Fig. 7. The exact solution is a solid line, the results
of numerical solutions of WENO-ZQ and WENO-JS schemes are shown as plus signs and
squares, respectively. The results of WENO-ZQ scheme are more closer to the exact solution
and give sharp shock transitions nearby strong discontinuities.

Example 3.8 A higher order scheme would show its advantage when the solution con-
tains both shocks and complex smooth region structures. A typical example for this is the
problem of shock interaction with entropy waves [29]. We solve the Euler equations (3.4)
with a moving Mach = 3 shock interacting with sine waves in density: (ρ, μ, p, γ )T =
(3.857143, 2.629369, 10.333333, 1.4)T for x ∈ [−5,−4); (ρ, μ, p, γ )T = (1+0.2 sin(5x),
0, 1, 1.4)T for x ∈ [−4, 5]. The computed density ρ is plotted at t=1.8 against the referenced
“exact” solution which is a converged solution computed by the finite difference fifth order
WENO scheme [18] with 2000 grid cells in Fig. 8. The results and zoomed in picture for
different schemes are also shown in Fig. 8. The referenced “exact” solution is a solid line,
the results of numerical solutions of WENO-ZQ and WENO-JS schemes are shown as plus
signs and squares, respectively. The results of WENO-ZQ scheme are more closer to the
referenced “exact” solution which contains shocks and complex smooth region structures,
in comparison with the results of the WENO-JS scheme whose amplitudes of the entropy
waves behind the shock are attenuated very much.
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Fig. 8 The shock density wave interaction problem. T = 1.8. From left to right density; density zoomed in.
Solid line the referenced “exact” solution; plus signs the results of WENO-ZQ scheme; squares the results of
WENO-JS scheme. Grid cells 200
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Fig. 9 The blast wave problem. T = 0.038. From left to right density; density zoomed in. Solid line the
referenced “exact” solution; plus signs the results of WENO-ZQ scheme; squares the results of WENO-JS
scheme. Grid cells 400

Example 3.9 We now consider the interaction of two blast waves. The initial conditions are:

(ρ, μ, p, γ )T =
⎧⎨
⎩

(1, 0, 103, 1.4)T , 0 < x < 0.1,
(1, 0, 10−2, 1.4)T , 0.1 < x < 0.9,
(1, 0, 102, 1.4)T , 0.9 < x < 1.

(3.8)

The computed density ρ is plotted at t=0.038 against the reference “exact” solution which is
a converged solution computed by the finite difference fifth order WENO scheme [18] with
2000 grid cells in Fig. 9. The results and zoomed in picture for different schemes are shown
in Fig. 9. The reference “exact” solution is a solid line, the results of numerical solutions of
WENO-ZQ and WENO-JS schemes are shown as plus signs and squares, respectively. The
results of WENO-ZQ scheme are more closer to the reference “exact” solution and give a
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Fig. 10 The shock reflection problem. 15 equally spaced contours from 1.10 to 2.58. Top the results of
WENO-ZQ scheme; bottom the results of WENO-JS scheme. Grid cells 120 × 30

very sharp shock transitions adjacent to strong shocks. So we draw the conclusion that the
WENO-ZQ scheme can get better results than WENO-JS scheme does in this test case.

Example 3.10 Shock reflection problem. The computational domain is a rectangle of length
4 and height 1. This domain is divided into a 120 × 30 rectangular grids. The boundary
conditions are that of a reflection condition along the bottom boundary, supersonic outflow
along the right boundary and Dirichlet conditions on the other two sides:

(ρ, μ, ν, p)T ) =
{
(1.0, 2.9, 0, 1.0/1.4)T |(0,y,t)T ,

(1.69997, 2.61934,−0.50632, 1.52819)T |(x,1,t)T .

Initially, we set the solution in the entire domain to be that at the left boundary. We show
the density contours with 15 equal spaced contour lines from 1.10 to 2.58 in Fig. 10. The
WENO-ZQ scheme gives very sharp shock transitions for this problem in comparison with
the WENO-JS scheme.

Example 3.11 A Riemann problem [26] of two dimensional Euler equations. Let’s consider

(3.5) and give initial condition:

⎧⎪⎪⎨
⎪⎪⎩

(ρ1, p1, μ1, ν1)
T = (0.5313, 0.4, 0, 0)T , x > 1, y > 1,

(ρ2, p2, μ2, ν2)
T = (1, 1, 0, 0.7276)T , x > 1, y < 1,

(ρ3, p3, μ3, ν3)
T = (1, 1, 0.7276, 0)T , x < 1, y > 1,

(ρ4, p4, μ4, ν4)
T = (0.8, 1, 0, 0)T , x < 1, y < 1,

in a computational domain of [0, 2] × [0, 2]. This Riemann problem is defined according to
the combination of the four elementary planar waves. The initial pressure states satisfy the
condition that p1 < p2 = p3 = p4. The solutions are symmetric to the leading diagonal.
And the slip lines meet the sonic circle of the constant state in the third quadrant, continue
as straight lines and result in a quarter of the sonic circle lies in the middle of the region. The
shocks interact with each other like the pair of shocks in Configuration 4 which is defined
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Fig. 11 The Riemann problem of 2D Euler equations. T = 0.52. 30 equally spaced density contours from
0.56 to 1.67. Left the results ofWENO-ZQ scheme; right the results ofWENO-JS scheme.Grid cells 240×240
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Fig. 12 Double Mach reflection problem. 30 equally spaced density contours from 1.5 to 22.7. Top the results
of WENO-ZQ scheme; bottom the results of WENO-JS scheme. Grid cells 1600 × 400

in [26] in detail. Finally, the associated slip lines bend and appear in a fashion of spirals in
the subsonic area. We compute the solution up to t = 0.52. We can see that the WENO-
ZQ scheme and WENO-JS scheme give non-oscillatory shock transitions and show fruitful
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Fig. 13 Double Mach reflection problem. Zoomed in. 30 equally spaced density contours from 1.5 to 22.7.
Left the results of WENO-ZQ scheme; right the results of WENO-JS scheme. Grid cells 1600 × 400
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Fig. 14 A Mach 3 wind tunnel with a step problem. 30 equally spaced density contours from 0.32 to 6.15.
Top the results of WENO-ZQ scheme; bottom the results of WENO-JS scheme. Grid cells 600 × 200

structures in the smooth region for this problem in Fig. 11, respectively. The comparisons
with the classical WENO-JS scheme indicate that the finer details of each interaction remain
are better captured by the WENO-ZQ scheme.

Example 3.12 Double Mach reflection problem. We solve the Euler equations (3.5) in a
computational domain of [0, 4] × [0, 1]. A reflection wall lies at the bottom of the domain
starting from x = 1

6 , y = 0, making a 60o angle with the x-axis. The reflection boundary
condition is used at the wall, which for the rest of the bottom boundary (the part from x = 0
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Fig. 15 3D explosion problem. The density distribution on the plane z = 0 at t = 0.2. 30 equally spaced
density contours from 0.14 to 0.98. Left: the results of WENO-ZQ scheme; right the results of WENO-JS
scheme. Bottom the density as a function of radius for all cells on the plane z = 0 at t = 0.2 by WENO-ZQ
scheme (plus signs) and WENO-JS scheme (squares) with the comparison of the 1D reference solution and
zoomed in figure. Grid cells 200 × 200 × 200

to x = 1
6 ), the exact post-shock condition is imposed. At the top boundary is the exact

motion of the Mach 10 shock. The results shown are at t = 0.2. We present both the pictures
of region [0, 3] × [0, 1] and the blow-up region around the double Mach stems in Figs. 12
and 13, respectively. All pictures are the density contours with 30 equal spaced contour lines
from 1.5 to 22.7. TheWENO-ZQ scheme could gain better density resolutions than the same
order WENO-JS scheme.

Example 3.13 A Mach 3 wind tunnel with a step problem. The setup of the problem is as
follows: The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length
units high and is located 0.6 length units from the a right going Mach 3 flow. Reflective
boundary conditions are applied alone the walls of the tunnel and in flow and out flow
boundary conditions are applied at the entrance and the exit. The results are shown at t = 4.
We present the pictures of whole region [0, 3] × [0, 1] in Fig. 14. We can clearly observe
that the new finite volume WENO-ZQ scheme could offer better numerical results than the
classical finite volume WENO-JS scheme, especially for the good resolution of the physical
instability and roll-up of the contact line in the computational field on the same mesh level.

Example 3.14 3D explosion problem. In order to evaluate the new scheme’s ability of simu-
lation in three dimensional problems, we perform the computation of an explosion problem
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in the domain of (x, y, z) ∈ [−1, 1] × [−1, 1] × [−1, 1]. The setup represents a multi-
dimensional extension of the classical Sod problem [31], together with the initial conditions:

(ρ, μ, ν, ω, p)T =
{
(1, 0, 0, 0, 1)T , r ≤ 0.5,
(0.125, 0, 0, 0, 0.1)T , r > 0.5,

(3.9)

where r = √
x2 + y2 + z2 is the radial coordinate. The equation of state is assumed to be

an ideal gas with adiabatic index γ = 1.4. It is an important test case for the reason that
it harbors the propagation of waves which are not aligned with the uniformed meshes. And
the reference solution can be obtained by solving an equivalent one dimensional PDE in the
radial direction with geometric source terms in [33]. The results are shown at t = 0.2. We
present the pictures of whole region and the density as a function of radius for all cells on the
plane z = 0 at t = 0.2 by WENO-ZQ scheme and WENO-JS scheme with the comparison
of the one dimensional reference solution in Fig. 15, respectively.

4 Concluding Remarks

In this paper we investigate using a new type of fifth order finite volumeWENO-ZQ schemes
in multi-dimensions on structured meshes. The main advantages of the new WENO-ZQ
schemes are their easy implementation to higher dimensions and could keep high order
of numerical accuracy in smooth region simultaneously escaping nonphysical oscillations
in nonsmooth region. It is very difficult for us to directly use the finite volume WENO
schemes in a similar dimension-by-dimension fashion which is successfully used in the
finite difference WENO reconstruction procedures for simulating two and three dimensional
problems mainly because of the sophisticated computation of the linear weights at different
Gaussian quadrature points of line segments and surface elements of the boundaries of the
target cell and its twenty-four neighboring cells in two dimensions and one hundred and
twenty-four neighboring cells in three dimensions. To remedy such difficulty, we put forward
a new way to artificially set positive linear weights other than the optimal ones on condition
that their sum is one without loosing fifth order accuracy in the finite volume framework.
The numerical tests show that the schemes can achieve uniform high order accuracy and get
sharp, non-oscillatory shock transitions robustly.
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