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Abstract A novel finite element discretization for nonlinear potential flow water waves is
presented. Starting from Luke’s Lagrangian formulation we prove that an appropriate finite
element discretization preserves the Hamiltonian structure of the potential flow water wave
equations, even on general time-dependent, deforming and unstructured meshes. For the
time-integration we use a modified Störmer–Verlet method, since the Hamiltonian system is
non-autonomous due to boundary surfaces with a prescribed motion, such as a wave maker.
This results in a stable and accurate numerical discretization, even for large amplitude non-
linear water waves. The numerical algorithm is tested on various wave problems, including
a comparison with experiments containing wave interactions resulting in a large amplitude
splash.

Keywords Finite element method · Hamiltonian systems · Nonlinear potential flow water
wave equations · Symplectic time integration · Moving meshes
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1 Introduction

The numerical simulation of nonlinear water waves is a challenging problem. These waves
appear naturally in the ocean, rivers and lakes and greatly affect the motion of ships and
induce significant forces on floating and fixed structures. Since inmany cases thewavemotion
can be considered as nearly inviscid and irrotational, we model the water waves using the
nonlinear potential flow water wave equations. Any amount of numerical dissipation, either
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added explicitly to stabilize the numerical scheme or implicitly present in the numerical
discretization, will then significantly influence the accuracy of the wave computations, in
particular for long time simulations.

The potential flow water wave equations, when expressed in terms of the free surface
potential and wave height, have a Hamiltonian structure, but this structure is generally lost
in the numerical discretization. The main topic of this article is to develop a finite element
discretization for which we can explicitly prove that it preserves the Hamiltonian structure,
even on time-dependent meshes that are needed to follow the free surface motion. This
will directly result in an energy preserving numerical discretization that is stable for large
amplitude nonlinear waves.

The starting point for the derivation of the Hamiltonian finite element discretization for
nonlinear potential flow water waves is Luke’s variational formulation [16]. After introduc-
ing time-dependent basis functions in the variational formulation, we can prove in several
steps that the numerical discretization exactly preserves the Hamiltonian structure, even on
time-dependently deforming unstructured meshes suitable for large amplitude waves. This
Hamiltonian structure, when combined with a symplectic time integration scheme, prevents
energy drift. A crucial subtlety in maintaining the Hamiltonian structure stems from the mesh
movement. Any movement of the free surface needs to be accommodated by a mesh move-
ment in the interior of the domain, which results in an intricate coupling between the free
surface motion and the solution of the Laplace equation for the velocity potential.

Many numerical discretizations have been proposed for the solution of the potential flow
water wave equations. Themost popular approach for solving these equations is the boundary
element method, starting with the work by Longuet-Higgins and Cokelet [15]. More recent
works in this direction include [3,4,8,9,11,13], while the older works are covered by the
review paper by Tsai and Yue [26]. These methods, however, typically require evaluating a
singular integration kernel and tend to require the evaluation of densematrix–vector products,
which have to be solved with a fast multipole method to keep the computational complexity
approximately linear.Moreover, thesemethodsdonot automatically preserve theHamiltonian
structure of the potential flow water wave equations.

An alternative approach is to use the finite element method, computing the solution in the
entirety of the domain. This is not necessarily more expensive, since all interesting physical
phenomena still happen at the free surface, allowing the use of a limited number of elements
in the vertical direction. The finite element discretization gives rise to a sparse system of
equations, meaning it is much easier to solve in linear time. However, all previous attempts
to use a finite element discretization require additional numerical stabilization or specially
constructed meshes to prevent numerical instabilities [17–19,21,24,25,27–30,32].

The direct precursor to this work is the work byGagarina et al. [10]. Themain difference is
that we prove that the discrete equations retain the Hamiltonian structure of the potential flow
water wave equations, even on unstructured, time dependent meshes, and that we provide
explicit equations for the dependence of the unknowns on general mesh movement, thereby
generalizing the result in [10].

In the remainder of this article, we will introduce the potential flow equations and a
suitable Lagrangian in Sect. 2. In Sect. 3 we will use this Lagrangian to construct a discrete
Hamiltonian formulation. We will introduce a time stepping scheme for the resulting non-
autonomous Hamiltonian system in Sect. 4 and discuss an efficient technique to solve the
resulting algebraic equations. Finally, in Sect. 5 we present some results that numerically
verify the stability and accuracy of the numerical scheme.
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2 Governing Equations

The equations describing water wave motions are defined on a time-dependent domainΩt ⊆
R
3, t ∈ (0, T ). Its boundary ∂Ωt is split into two parts, ∂Ωt = ∂Ωt,s ∪ ∂Ωt,R , with ∂Ωt,s

the free surface. The other boundary ∂Ωt,R may consist e.g. of a wave maker, a beach or a
bottom surface. Each point R ∈ ∂Ωt,R has a prescribed velocity ∂R

∂t . The position of the free
surface ∂Ωt,s is unknown a priori and is to be determined as part of the initial-boundary-value
problem describing wave motions.

We assume that the free surface is single-valued. This allows us to define

Ωt,η = {
(x, y, z) ∈ R

3|(x, y) ∈ Dt,s ⊆ R
2, 0 < z < η(t, x, y)

}
, (1)

with x, y, z the coordinates in a Cartesian system, with the undisturbed water surface equal
to z = z0 and η : (0, T ) × Dt,s → R representing the free surface ∂Ωt,s .

The dynamics of inviscid potential flow water waves is now governed by the following
initial-boundary-value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δφ = 0 in Ωt , (2a)
∂η

∂t
= (−∂xη,−∂yη, 1) · (∂xφ, ∂yφ, ∂zφ) ∀(x, y) ∈ Dt,s , (2b)

∂φ

∂t
+ 1

2
|∇φ|2 + g · (x, y, η) = 0 ∀(x, y) ∈ Dt,s , (2c)

ν · ∇φ = ν · ∂R

∂t
at ∂Ωt,R , (2d)

with initial conditions
{

η(0, x, y) = η0(x, y), (2e)

φ(0, x, y, η) = φ0(x, y, η), (2f)

where the operators ∇ and Δ are, respectively, the gradient and Laplace operator, g =(
gx , gy, gz

)T ∈ R
3 the gravity vector, ν the unit outward normal vector at ∂Ωt , and φ is the

velocity potential.

2.1 Lagrangian and Hamiltonian Approach

The variational formulation of (2) using dimensionless variables is based on the Lagrangian

L0(φ, η) = −
∫ T

0

∫

Ωt

g · x̄ + ∂φ

∂t
+ 1

2
|∇φ|2 dΩ dt, (3)

with x̄ = (
x, y, z

)T
, which was presented by Luke [16]. To compute the variations of this

functional we use Reynolds transport theorem [7] in the form of the identity

d

dt

∫

Ωt

φ dΩ =
∫

Ωt

∂φ

∂t
dΩ +

∫

∂Ωt

φv · ν dS

=
∫

Ωt

∂φ

∂t
dΩ +

∫

∂Ωt,R

∂R

∂t
· νφ dS +

∫

Dt,s

∂η

∂t
φ dx dy,

(4)

123



J Sci Comput (2017) 73:366–394 369

where v(t, x) = dx̄
dt is the velocity of the domain boundary ∂Ωt . The continuum equations

can readily be recovered by computing variations with respect to η and φ. That is, we require

0 = δηL0 = lim
ε↓0

L0(φ, η + εδη) − L0(φ, η)

ε

and

0 = δφL0 = lim
ε↓0

L0(φ + εδφ, η) − L0(φ, η)

ε
.

The free surface height function η only appears in the functional L0 in the description of the
free surface boundary (1), so if we compute the functional derivative using Leibniz’ theorem
[7], we obtain

δηL0 = −
∫ T

0

∫

Dt,s

(
g · (x, y, η

) + ∂tφ + 1

2
|∇φ|2)δη dx dy dt.

Since δη is arbitrary, this recovers (2c) when δηL0 = 0. Before computing variations with
respect to φ we rewrite (3) using (4)

L0(φ, η) = −
∫ T

0

∫

Ωt

g · x̄ + ∂φ

∂t
+ 1

2
|∇φ|2 dΩ dt

= −
∫ T

0

∫

Ωt

g · x̄ + 1

2
|∇φ|2 dΩ dt +

∫

Ω0

φ(0, ·) dΩ −
∫

ΩT

φ(T, ·) dΩ

+
∫ T

0

∫

∂Ωt,R

∂R

∂t
· νφ dS dt +

∫ T

0

∫

Dt,s

∂η

∂t
φ dx dy dt,

where in the integrands over Dt,s we have z = η. The variations of L0 with respect to φ,
after integration by parts, are equal to

δφL0 =
∫ T

0

∫

Ωt

Δφδφ dΩ dt

+
∫ T

0

∫

∂Ωt,R

δφ

(
∂R

∂t
· ν − ∇φ · ν

)
dS dt

+
∫ T

0

∫

Dt,s

δφ

(
∂η

∂t
− ∇φ ·

(
− ∂η

∂x , − ∂η
∂y , 1

))
dx dy dt,

where the variations δφ at t = 0 and t = T are taken to be zero and we used the relation
ν|∂Ωt,s = ∇(z−η)

|∇(z−η)| . Considering the arbitrary variations in the interior and at the different
sections of the domain boundary separately, this recovers the other three equations in (2)
after setting δφL0 = 0.

Moreover, the governing equations in (2) can be recognized as a Hamiltonian system with
respect to the unknown free surface height and free surface potential [33]. Preserving this
Hamiltonian structure in the finite element discretization significantly improves the accuracy
of free surface wave computations, but currently there are only a few attempts to preserve
the Hamiltonian structure in a discretization [5]. Another benefit of a Hamiltonian (Galerkin)
semidiscretization is that we canmake use of thewell-developed geometric integration theory
[12] to construct an energy-preserving numerical discretization.

123



370 J Sci Comput (2017) 73:366–394

3 Discretization of the Variational Principle

The finite element discretization is based on a tessellation Th of the domain Ωt . The tessel-
lation Th is changing in time to accommodate for the free surface motion and other moving
boundaries, such as a wave maker.

Using a nodal Lagrangian basis, the set of nodes in Ω t is denoted withN . Within this set
the nodes on ∂Ωt,s are denoted with Ns , those on ∂Ωt,R with NR , while the other nodes are
denoted with Nr . Note that Ns ∩ NR is in general non-empty, these nodes correspond to grid
points located at the interface of the free surface and the other boundaries.

Using the various sets of nodes,
{
φt
j

}

j∈N denotes the set of basis functions used to

approximate the velocity potential φ and with a slight abuse of notation
{
ηtj

}

j∈Ns
the basis

functions for the free surface height η.
With these basis functions we approximate the free surface height and velocity potential,

respectively, as

η(t, x, y) ∼= ηh(t, x, y) =
∑

j∈Ns

a j (t)η
t
j (x, y),

and

φ(t, x, y, z) ∼= φh(t, x, y, z) =
∑

j∈N
b j (t)φ

t
j (x, y, z).

The computational domain determined by the numerical approximations at time t is denoted
with Ωt,h and the corresponding numerical approximation of the free surface and other
boundary surfaces with ∂Ωt,s,h and ∂Ωt,R,h , respectively.

It is of critical importance to note that the tessellation Th , and therefore also the basis func-
tions, have an explicit dependency on both the free surface height η and the prescribed domain
boundary movement of ∂Ωt,R . This also implies that the basis functions have a dependency
on t and each of the expansion coefficients a of the free surface height approximation.

We require that the basis functions
{
φt
j

}

j∈N and
{
ηtj

}

j∈Ns
satisfy the following compat-

ibility condition at the free surface ∂Ωt,s,h

ηtj (x, y) = φt
j (x, y, z) for (x, y, z) ∈ ∂Ωt,s,h, j ∈ Ns . (5)

At the domain boundaries ∂Ωt,s and ∂Ωt,R the discretization φh can be given as

φh(t, x, y, z) =
∑

j∈Ns

b j (t)φ
t
j (x, y, z) for (x, y, z) ∈ ∂Ωt,s,h

and

φh(t, x, y, z) =
∑

j∈NR

b j (t)φ
t
j (x, y, z) for (x, y, z) ∈ ∂Ωt,R,h .

With these approximations, the Lagrangian functional (3) can be (semi)-discretized as

Lh(φh, ηh) = −
∫ T

0

∫

Ωt,h

g · x̄ + ∂

∂t

⎛

⎝
∑

j∈N
b jφ

t
j

⎞

⎠ + 1

2

∣∣∣∣∣∣

∑

j∈N
b j (t)∇φt

j

∣∣∣∣∣∣

2

dΩ dt

:=
∫ T

0
M1(t) + M2(t) + M3(t) dt.

(6)
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Wewill compute the variations separately fora j (t) and b j (t). Towrite the corresponding vari-
ational derivatives in a more compact form, we introduce the matrices Φ t

a ∈ R
|N |×|N |, E t ∈

R
|Ns |×|Ns |, E t

R ∈ R
|Ns |×|Ns | andDt ∈ R

|Ns |×|Ns | and the vectorsΦ t
a,R ∈ R

|N | andG ∈ R
|Ns |,

which are defined as

Φ t
a[i, j] =

∫

Ωt,h

∇φt
i · ∇φt

j dΩ, E t [i, j] =
∫

Dt,s,h

ηtiη
t
j dx dy,

Dt [i, j] =
∫

Dt,s,h

ηti

∂ηtj

∂t
dx dy,

E t
R[i, j] =

∫

∂Ωt,s,h∩∂Ωt,R,h

ηtiη
t
j
∂R

∂t
· νR((τ × νR) · ez) dl

and

Φ t
a,R[i] =

∫

∂Ωt,R,h

∂R

∂t
· νφt

i dS, Gt [i] =
∫

Dt,s,h

g · (x, y, 0
)
ηti dx dy,

where τ is the tangential vector along the interface ∂Ωt,s,h∩∂Ωt,R,h, ez = (0, 0, 1)T , and the
indices a and t denote explicit, but hidden dependencies on the free-surface parametrization
and time. Furthermore, we use the following decompositions:

Φ t
a =

(
Φ11 Φ12

Φ21 Φ22

)
, (7)

where the submatrix Φ11 ∈ R
|Ns |×|Ns | is Φ t

a[i, j] with i, j ∈ Ns and Φa,R is split into

Φa,R = (
ΦT

1,a,R ΦT
2,a,R

)T
, (8)

where Φ1,a,R is Φa,R[i] with i ∈ Ns . We use without further reference the following:

Proposition 1 The matrices and vectors introduced above satisfy the following statements.

(i) Both Φ t
a and E t are symmetric, Φ t

a is positive semidefinite, with Φ21 = ΦT
12, and E t is

positive definite.
(ii) The matrix E t

R has only non-zero elements if i, j ∈ Ns ∩ NR, hence this matrix has a
non-zero block of size |Ns ∩ NR | × |Ns ∩ NR |, the remaining elements are zero.

(iii) The non-zero components of Φ t
a,R[i] are those with i ∈ NR.

For simplicity, we usually do not denote the dependence of Φ t on a and the time-
dependence of the submatrices Φi j i, j = 1, 2. We will also use the notations a, b and bs for
the vectors composed of the coefficients {a j } j∈Ns , {b j } j∈N and {b j } j∈Ns , respectively.

Lemma 1 The variational principle for theLagrangianLh (6)with semidiscretized variables
a and b, and t ∈ (0, T ), can be given in the following matrix-vector form

0 = E ḃs(t) + Dbs(t) + ERbs(t) + Ea(t)gz

+ ∂a

(
1

2
b(t)TΦb(t) − ΦR · b(t)

)
+ G, (9a)

0 = E ȧ(t) + Da(t) − [Φ11 Φ12] b(t) + Φ1,a,R, (9b)

0 = − [Φ21 Φ22] b(t) + Φ2,a,R . (9c)

Here, an overdot represents differentiation with respect to time.
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Proof We compute variations of the discrete functional Lh with respect to a j and b j , which
are assumed to be zero for t = 0 and t = T . We consider the contributions in (6) one by one,
starting with partial derivatives with respect to a j

∂a j M1 = −∂a j

∫

Ωt,h

g · x̄ dΩ = −∂a j

∫

Dt,s,h

∫ ηh

z=0
g · (x, y, z) dz dx dy.

Applying Leibniz’ theorem we obtain

∂a j M1 = −
∫

Dt,s,h

g · (x, y, ηh
)
ηtj dx dy = −gz(E t a)[ j] − Gt [ j], (10)

where we used the fact that in this integral only the free surface boundary depends on a j .
The second term introduces an additional complication, since not only the boundary, but

also the integrand depends on a j . Split the domain according to partition (1). We can now
make the dependency of the boundary on η explicit by splitting the integral into two parts

∫ T

0
∂a j M2(t) dt = −

∫ T

0
∂a j

∫

Dt,s,h

∫ ηh

z=0

∂φt
h

∂t
(x, y, z) dz dx dy dt

−
∫ T

0

∫

Ωt,h\Ωt,η

∂

∂a j

(
∂φt

h

∂t

)
dΩ dt,

(11)

where we used (1) to represent the free surface with the height functions ηlh . Next, we apply
first Leibniz’ theorem to the first term on the right hand side in (11) and then Reynolds
transport theorem to the second term

∫ T

0
∂a j M2(t) dt = −

∫ T

0

∫

Dt,s,h

∂φt
h

∂t
(x, y, ηh)η

t
j (x, y) dx dy dt

−
∫

ΩT

∂φT

∂a j
dΩ +

∫

Ω0

∂φ0

∂a j
dΩ +

∫ T

0

∫

∂Ωt,h

∂φt
h

∂a j
v · ν dS dt,

with v = dx
dt |∂Ωt . Since we assume that δφ(0, ·) = δφ(T, ·) = 0 the integrals over ΩT and

Ω0 vanish. We also use the relations

v · ν|∂Ωt,s,h dS = d

dt
(x, y, ηh) ·

(
−∂ηh

∂x
,−∂ηh

∂y
, 1

)
dx dy = ∂ηh

∂t
dx dy

and

v · ν|∂Ωt,R,h = ∂R

∂t
· νR,

with νR = ν|∂Ωt,R,h , resulting in

∫ T

0
∂a j M2(t) dt = −

∫ T

0

∫

Dt,s,h

∂φt
h

∂t
(x, y, ηh)η

t
j (x, y) dx dy dt

+
∫ T

0

∫

∂Ωt,R,h

∂φt
h

∂a j

∂R

∂t
· νR dS dt

+
∫ T

0

∫

Dt,s,h

∂φt
h

∂a j
(x, y, ηh)

∂ηh

∂t
(t, x, y) dx dy dt. (12)
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It is beneficial to further evaluate the second term on the right hand side in (12) using (7.2)
in Flanders [7], splitting this contribution into a line integral that will be used when applying
(7.2) in [7] to the integrals overDt,s,h and an expression where ∂

∂a j
is the outermost operator,

which is convenient when constructing the Hamiltonian. This results in

∫

∂Ωt,R,h

∂φh

∂a j

∂R

∂t
· νR dS = −

∫

∂Ωt,R,h

∇ ·
(

φh
∂R

∂t

)
∂x

∂a j
· νR dS

+
∫

∂Ωt,R,h∩∂Ωt,s,h

(
∂x

∂a j
× φh

∂R

∂t

)
· τ dl (13)

+ ∂

∂a j

∫

∂Ωt,R,h

φh
∂R

∂t
· νR dS,

with τ the unit tangential vector at the interface ∂Ωt,R,h ∩ ∂Ωt,s,h . Note that τ is orthogonal
to νR . The vector ∂x

∂a j
links the mesh velocity to the free surface velocity. Since the mesh is a

tessellation of the domain, the mesh at ∂Ωt,R,h can only move parallel to ∂Ωt,R,h , hence the
first integral on the right hand side in (13) is zero. At the solid wall-free surface intersection
∂Ωt,R,h ∩ ∂Ωt,s,h we need to enforce that the free surface moves tangentially to the solid
wall, hence we have to apply the correction

∂x

∂a j
= ∂xs,R

∂a j
−
(

∂xs,R
∂a j

· νR

)
νR, (14)

with xs,R = (
x, y, ηh

)
. An alternative interpretation of this is that an infinitesimally small

sliver ofDt,s,h nearest to thewavemaker is rotated, such that it aligns correctly.By introducing
tR = τ × νR (14) can also be written as

∂x

∂a j
=
(

∂xs,R
∂a j

· τ

)
τ +

(
∂xs,R
∂a j

· tR
)
tR .

The second integral on the right hand side in (13) is then equal to

∫

∂Ωt,R,h∩∂Ωt,s,h

(
∂x

∂a j
× φh

∂R

∂t

)
· τ dl

=
∫

∂Ωt,R,h∩∂Ωt,s,h

(
τ ×

((
∂xs,R
∂a j

· τ

)
τ +

(
∂xs,R
∂a j

· tR
)
tR

))
· φh

∂R

∂t
dl

=
∫

∂Ωt,R,h∩∂Ωt,s,h

−
(

∂xs,R
∂a j

· tR
)(

νR · ∂R

∂t

)
φh dl.

Since ∂xs,R
∂a j

= (
0, 0, ηtj

)
we obtain tR · ∂xs,R

∂a j
= (τ × νR) · ezηtj with ez = (0, 0, 1)T . After

collecting all terms, the final result for (13) then becomes

∫

∂Ωt,R,h

∂φh

∂a j

∂R

∂t
· νR dS = −

∫

∂Ωt,R,h∩∂Ωt,s,h

(
∂R

∂t
· νR

)
(τ × νR) · ezηtjφt

h dl

+ ∂

∂a j

∫

∂Ωt,R,h

φh
∂R

∂t
· νR dS.
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Using the compatibility condition at the free surface (5) we obtain then

∂a j M2 = −
∫

Dt,s,h

∂t

⎛

⎝
∑

k∈Ns

bkηk

⎞

⎠ η j dx dy

+ ∂a j

∫

∂Ωt,R,h

∂R

∂t
· νR

∑

i∈N
biφi dS

−
∫

∂Ωt,R,h∩∂Ωt,s,h

(
∂R

∂t
· νR

)
(τ × νR) · ezη j

∑

k∈N
bkηk dl

+
∫

Dt,s,h

∂

∂a j

⎛

⎝
∑

k∈Ns

bkη
t
k

⎞

⎠ ∂ηh

∂t
dx dy.

(15)

Since the basis functions ηtk do not depend on a j the last integral in (15) is zero and ∂a j M2

can be expressed as

∂a j M2 = (−E ḃs − Dbs − ERbs
) [ j] + ∂a j (ΦR · b).

For the third term we simply write

∂a j M3 = −∂a j

∫

Ωt,h

1

2

∣∣∣∣∣

∑

i∈N
bi∇φt

i

∣∣∣∣∣

2

dΩ = −∂a j

(
1

2
bTΦb

)
.

Combining the three terms we obtain for the variations of Lh with respect to a j

0 = −E ḃs(t) − Dbs(t) − ERbs(t) − Ea(t)gz

− ∂a

(
1

2
b(t)TΦb(t) − ΦR · b(t)

)
− G,

which is equivalent to (9a). For Eqs. (9b) and (9c) consider the variations with respect to b j .
The first term does not depend on b j , hence

∂b j M1 = 0.

For the second term use (4) again to obtain

∂b j M2 = ∂b j

⎛

⎝
∫

∂Ωt,R,h

∂R

∂t
· ν

∑

i∈NR

biφi dS

+
∫

Dt,s,h

∂t

⎛

⎝
∑

k∈Ns

akηk

⎞

⎠
∑

i∈Ns

biφi dx dy

⎞

⎠

=
∫

∂Ωt,R,h

∂R

∂t
· νφ j dS +

∫

Dt,s,h

∂t

⎛

⎝
∑

k∈Ns

akηk

⎞

⎠ η j dx dy

=
{

(Φ1,a,R + E ȧ + Da)[ j] j ∈ Ns,

Φ2,a,R[ j] j /∈ Ns .
(16)
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Finally, the third term is just a straightforward differentiation. We have

∂b j M3 = −
∫

Ωt,h

∑

i∈N
bi∇φi · ∇φ j dΩ = −(Φb)[ j].

After applying the decompositions (7) and (8) the terms can be combined to give (9b) and
(9c). ��

To express the discretized variational principle in (9) as aHamiltonian systemwe introduce
the variable

b̃s = Ebs . (17)

We will also use the notation S = Φ11 − Φ12Φ
−1
22 Φ21 for the Schur complement, possibly

with an upper index to indicate its dependence on time.

Lemma 2 Using the variable b̃s , the system in (9) can be recasted as

ȧ(t) = E−1
(
−Da(t) + SE−1b̃s − Φ1,a,R + Φ12Φ

−1
22 Φ2,a,R

)
, (18a)

˙̃bs(t) = DT E−1b̃s(t) − Ea(t)gz − ∂a

(
1

2
b̃s(t)

T E−1SE−1b̃s(t)

−ΦT
1,a,RE

−1b̃s + Φ2,a,RΦ−1
22 Φ21E−1b̃s − 1

2
ΦT

2,a,RΦ−1
22 Φ2,a,R

)

−G. (18b)

Proof First, we note that (9c) immediately implies

b =
(

bs
−Φ−1

22 (Φ21bs − Φ2,a,R)

)
=
(

E−1b̃s
−Φ−1

22 (Φ21E−1b̃s − Φ2,a,R)

)
.

Now focus on (9b)

0 = ȧ + E−1Da

− E−1[Φ11 Φ12]
(

E−1b̃s
−Φ−1

22 (Φ21E−1b̃s − Φ2,a,R)

)
+ E−1Φ1,a,R .

Expand the vector product

0 = ȧ + E−1Da − E−1Φ11E−1b̃s + E−1Φ12Φ
−1
22 (Φ21E−1b̃s − Φ2,a,R) + E−1Φ1,a,R,

which can be reordered to form (18a). The other equality requires amore elaborate derivation.
Split (9a) into two parts. The first part of (9a) becomes

E ḃs + Dbs + ERbs + Eagz + G = E ḃs + Ėbs − DT bs + Eagz + G, (19)

using the relation
Ė = D + DT + ER,

which can be derived with help of (7.2) in [7] in a manner similar to obtain (13). For details,
see “Appendix 2”. Now use the product rule and the definition (17) to rewrite (19) in terms
of b̃s to obtain

E ḃs + Dbs + ERbs + Eagz + G = ˙̃bs − DT E−1b̃s + Eagz + G. (20)
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Next, consider the second part of (9a)

∂a

(
1

2
bTΦb − ΦT

R b

)
= ∂a

(
−ΦT

R

(
E−1b̃s

−Φ−1
22 (Φ21E−1b̃s − Φ2,a,R)

)

+ 1

2

(
E−1b̃s

−Φ−1
22 (Φ21E−1b̃s − Φ2,a,R)

)T

Φ

(
E−1b̃s

−Φ−1
22 (Φ21E−1b̃s − Φ2,a,R)

))

= ∂a

(
−ΦT

1,a,RE
−1b̃s + ΦT

2,a,RΦ−1
22

(
Φ21E−1b̃s − Φ2,a,R

)

+ 1

2
b̃Ts E−1Φ11E−1b̃s −

(
b̃Ts E−1Φ12 − ΦT

2,a,R

)
Φ−1

22 Φ21E−1b̃s

+ 1

2

(
b̃Ts E−1Φ12 − ΦT

2,a,R

)
Φ−1

22

(
Φ21E−1b̃s − Φ2,a,R

))
.

Here, in the second step the block structuredmatrix is expanded into its components. Expand-
ing the products and adding up similar terms finally results in

∂a

(
1

2
bTΦb − ΦT

R b

)
= ∂a

(
− ΦT

1,a,RE
−1b̃s + ΦT

2,a,RΦ−1
22 Φ21E−1b̃s

− 1

2
ΦT

2,a,RΦ−1
22 Φ2,a,R + 1

2
b̃Ts E−1SE−1b̃s

)
,

(21)

which can be combined with (20) to obtain the statement of the Lemma. ��
Theorem 1 The discrete variational form corresponding to the Lagrangian (6) is equivalent
with the forced Hamiltonian system

ȧ(t) = ∂b̃s
H(t, a, b̃s)

˙̃bs(t) = −∂aH(t, a, b̃s),
(22)

where

H(t, a, b̃s) = aT Ea
2

gz − b̃Ts E−1Da − ΦT
1,a,RE

−1b̃s + ΦT
2,a,RΦ−1

22 Φ21E−1b̃s

− 1

2
ΦT

2,a,RΦ−1
22 Φ2,a,R + 1

2
b̃Ts E−1SE−1b̃s + G · a.

(23)

Proof Obviously,

∂aH = Eagz − DT E−1b̃s + ∂a

(
− ΦT

1,a,RE
−1b̃s + ΦT

2,a,RΦ−1
22 Φ21E−1b̃s

− 1

2
ΦT

2,a,RΦ−1
22 Φ2,a,R + 1

2
b̃Ts E−1SE−1b̃s

)
+ G.

On the other hand

∂b̃s
H = −E−1Da − E−1Φ1,a,R + E−1Φ12Φ

−1
22 Φ2,a,R + E−1SE−1b̃s .

��
Remark 1 We note that the only explicit dependence on time in the discrete Hamiltonian is
caused by the wave maker motion. Therefore this semi-discrete formulation is energy con-
servative, viz. dH

dt = 0 without a wave-maker, even on unstructured meshes. This motivates
to integrate (22)–(23) with a symplectic time integrator, since this will then result in a stable
numerical discretization without the need for the addition of any stabilization terms.
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In order to simplify the derivation of the time discretization, which will be discussed in
the next section, we use the following relation

∂a j

(
− ΦT

1,a,RE
−1b̃s + ΦT

2,a,RΦ−1
22 Φ21E−1b̃s

− 1

2
ΦT

2,a,RΦ−1
22 Φ2,a,R + 1

2
b̃Ts E−1SE−1b̃s

)

= ∂a j

(
−ΦT

1,a,Rbs + ΦT
2,a,RΦ−1

22 Φ21bs − 1

2
ΦT

2,a,RΦ−1
22 Φ2,a,R + 1

2
bTs Sbs

)

= −∂a j Φ
T
1,a,Rbs + ∂a j (Φ

T
2,a,R)Φ−1

22 Φ21bs − ΦT
2,a,RΦ−1

22 ∂a j (Φ22)Φ
−1
22 Φ21bs

+ ΦT
2,a,RΦ−1

22 ∂a j (Φ21)bs − 1

2
∂a j (Φ

T
2,a,R)Φ−1

22 Φ2,a,R

+ 1

2
ΦT

2,a,RΦ−1
22 ∂a j (Φ22)Φ

−1
22 Φ2,a,R − 1

2
ΦT

2,a,RΦ−1
22 ∂a j (Φ2,a,R)

+ 1

2
bTs ∂a j Φ11bs − 1

2
bTs ∂a j (Φ12)Φ

−1
22 Φ21bs

+ 1

2
bTs Φ12Φ

−1
22 ∂a j (Φ22)Φ

−1
22 Φ21bs − 1

2
bTs Φ12Φ

−1
22 ∂a j (Φ21)bs

= −∂a j Φ
T
R b + 1

2
bT ∂a j Φb, (24)

where we have used the identity ∂
∂t A

−1 = A−1 ∂A
∂t A

−1. Equation (24) greatly shortens

expressions whenever E and b̃s are to be evaluated at the same time levels in the time
integration method. This expansion appears to be redundant in view of (21). However, the
interior component of b represents a solution of the Laplace equation. This could cause a
dependency of b on the boundary shape, so we do need (24) to show that this dependency is
fully factored in Φ.

4 Time Integration for the Discrete Variational Formulation

The time discretization of theHamiltonian finite element discretization (22) is performedwith
the second order accurate Störmer–Verlet time integration method. The Hamiltonian system
(22) is, however, non-autonomous. This requires amodification of the Störmer–Verlet scheme
for which we follow the procedure outlined in [14]. Given the non-autonomous Hamiltonian
system {

ṗ = ∂q H(t, p, q)

q̇ = −∂pH(t, p, q),

we introduce the new variables P = (p, τ0) and Q = (q, τ ) and the Hamiltonian H̃ with
H̃(P, Q) = H(τ, p, q)−τ0. Here τ corresponds to time and the fictitious variable τ0 ensures
that P and Q are of the same dimension. The Störmer–Verlet scheme for a non-autonomous
Hamiltonian system can now be expressed as

⎧
⎪⎪⎨

⎪⎪⎩

Pn+ 1
2

= Pn + Δt
2 ∂Q H̃(Pn+ 1

2
, Qn)

Qn+1 = Qn − Δt
2

(
∂P H̃(Pn+ 1

2
, Qn) + ∂P H̃(Pn+ 1

2
, Qn+1)

)

Pn+1 = Pn+ 1
2

+ Δt
2 ∂Q H̃(Pn+ 1

2
, Qn+1),
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which in the original variables gives

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pn+ 1
2

= pn + Δt
2 ∂q H(tn, pn+ 1

2
, qn)

qn+1 = qn − Δt
2

(
∂pH(tn, pn+ 1

2
, qn) + ∂pH(tn+1, pn+ 1

2
, qn+1)

)

τn+1 = τn + Δt

pn+1 = pn+ 1
2

+ Δt
2 ∂q H(tn+1, pn+ 1

2
, qn+1).

(25)

The update for τn ensures that τ indeed represents time and will be taken for granted in
the following. The fictitious variable τ0 is of no interest to us, so its update scheme is not
presented.

The non-autonomous Störmer–Verlet scheme applied to the Hamiltonian finite element
discretization (22) using p = a and q = b̃s in (25) is now equal to

an+ 1
2

= an + Δt

2

(
−E−1

n Dnan+ 1
2

− E−1
n Φ1,a

n+ 1
2
,Rn

+ E−1
n Φ12,n,a

n+ 1
2
Φ−1

22,n,a
n+ 1

2

Φ2,a
n+ 1

2
,Rn + E−1

n Sn,a
n+ 1

2
E−1
n b̃s,n

)

b̃s,n+1 = b̃s,n − Δt

2

(
gz(En + En+1)an+ 1

2
− DT

n E−1
n b̃s,n − DT

n+1E
−1
n+1b̃s,n+1

+ 1

2
bTn,a

n+ 1
2

∂aΦn,a
n+ 1

2
bn,a

n+ 1
2

+ 1

2
bTn+1,a

n+ 1
2

∂aΦn+1,a
n+ 1

2
bn+1,a

n+ 1
2

− ∂aΦa
n+ 1

2
,Rn · bn,a

n+ 1
2

− ∂aΦa
n+ 1

2
,Rn+1 · bn+1,a

n+ 1
2

+ Gn + Gn+1
)

an+1 = an+ 1
2

+ Δt

2

(
−E−1

n+1Dn+1an+ 1
2

− E−1
n+1Φ1,a

n+ 1
2
,Rn+1

+ E−1
n+1Φ12,n+1,a

n+ 1
2
Φ−1

22,n+1,a
n+ 1

2

Φ2,a
n+ 1

2
,Rn+1

+ E−1
n+1Sn+1,a

n+ 1
2
E−1
n+1b̃s,n+1

)
,

where relation (24) has been used to shorten the expressions. In terms of the original variables
a, b and bs we obtain now the algebraic equations

Enan+ 1
2

= Enan + Δt

2

(
−Dnan+ 1

2
− Φ1,a

n+ 1
2
,Rn

+Φ12,n,a
n+ 1

2
Φ−1

22,n,a
n+ 1

2

Φ2,a
n+ 1

2
,Rn + Sn,a

n+ 1
2
bs,n

)

En+1bs,n+1 = Enbs,n − Δt

2

(
gz(En + En+1)an+ 1

2
− DT

n bs,n − DT
n+1bs,n+1

+ 1

2
bTn,a

n+ 1
2

∂aΦn,a
n+ 1

2
bn,a

n+ 1
2

+ 1

2
bTn+1,a

n+ 1
2

∂aΦn+1,a
n+ 1

2
bn+1,a

n+ 1
2

− ∂aΦ
T
a
n+ 1

2
,Rn

bn,a
n+ 1

2
− ∂aΦ

T
a
n+ 1

2
,Rn+1

bn+1,a
n+ 1

2
+ Gn + Gn+1

)
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En+1an+1 = En+1an+ 1
2

+ Δt

2

(
−Dn+1an+ 1

2
− Φ1,a

n+ 1
2
,Rn+1

+Φ12,n+1,a
n+ 1

2
Φ−1

22,n+1,a
n+ 1

2

Φ2,a
n+ 1

2
,Rn+1 + Sn+1,a

n+ 1
2
bs,n+1

)
,

(26)

Since the time stepping in (26) is implicit, we first solve the equation for an+ 1
2
with a

Newton method, followed by the equation for bs,n+1. Finally, an+1 can be obtained in an
explicit way. A full derivation that prepares (26) for numerical treatment can be found in
Appendix 1.

The full numerical scheme can be summarized as follows:

– Interpolate the initial surface data. For simulations using a wave maker, a still free water
surface is used.

– Evaluate the matrices Et ,Dt , Φt,ah , ΦR,t,ah and Gt on the current mesh.
– while t < tend

– Iterate the Newton algorithm (33) until it converges, while moving the mesh using
the new free surface height ηh in (28) and updating Φt,ah and ΦR,t,ah to account for
the new free surface position.

– Increase t = t + dt , update the mesh to satisfy the new position of the wave maker
and reevaluate the matrices Et ,Dt , Φt,ah , ΦR,t,ah and Gt .

– Iterate the Newton algorithm (35) until it converges.
– Solve the third equation from (26).
– Move the mesh and update Φt,ah and ΦR,t,ah to account for the new free surface

position.

A more detailed description of the mesh movement, which is done after the free surface or
the wavemaker updates, is given at the end of Sect. 4.2.

4.1 Computing Derivatives ∂aΦ and ∂aΦR

In the derivation of the discrete Hamiltonian the derivatives ∂aΦ and ∂aΦR have been left
untreated, since this was beneficial for arriving at Eq. (23). In this section we will discuss the
computation of the derivatives with respect to the free surface coefficients a. Consider ∂aΦ

element-wise, as a summation on the finite element tessellation Th :
∂

∂ak

∑

K∈Th

∫

K
∇φi · ∇φ j dK ,

where the shape of the element and the basis functions depend on the free surface ηh , hence
implicitly on the coefficients a. Introduce a reference element K̂ . We will denote the image
of the basis functions on K̂ as φ̂, the reference coordinates as (x̂, ŷ, ẑ) and the gradient
operator with respect to reference coordinates as ∇̂. Assume, for every element K ∈ Th , that
there is an invertible mapping FK : K̂ → K . Since we use nodal basis functions, we have
x = ∑

l x̂l φ̂l , where x̂l are the coordinates of the nodal points of element K . The Jacobian

of FK with respect to the reference element coordinates is given by J = ∑
l x̂l ∇̂φ̂l

T
.

Perform the coordinate transformation,

∂

∂ak

∫

K
∇φi · ∇φ j dK =

∫

K̂

∂

∂ak

(
J−T ∇̂φ̂i

)T (
J−T ∇̂φ̂ j

)
|J | dK̂ .
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Using the matrix identities
∂

∂t
A−1 = −A−1 ∂A

∂t
A−1

and
∂

∂t
|A| = Tr

(
A−1 ∂A

∂t

)
|A|,

with |A| = det(A), we obtain

∂

∂ak

∫

K
∇φi · ∇φ j dK =

∫

K̂

⎡

⎣−
(

J−T ∇̂φ̂l

(
∂ x̂l
∂ak

)T

J−T ∇̂φ̂i

)T

J−T ∇̂φ̂ j

−
(
J−T ∇̂φ̂i

)T
J−T ∇̂φ̂l

(
∂ x̂l
∂ak

)T

J−T ∇̂φ̂ j

+
(
J−T ∇̂φ̂i

)T
J−T ∇̂φ̂ jTr

(
∂ x̂l
∂ak

∇̂φ̂T
l J−1

)⎤

⎦ |J | dK̂ ,

where the summation convention is used on repeated indices. Transforming back to the
elements K ∈ Th we obtain the relation

∂

∂ak

∫

K
∇φi · ∇φ j dK =

∫

K

(
−
(

∇φi · ∂ x̂l
∂ak

) (∇φl · ∇φ j
)

−
(

∇φ j · ∂ x̂l
∂ak

)
(∇φl · ∇φi )

+
(

∇φl · ∂ x̂l
∂ak

) (∇φi · ∇φ j
))

dK .

The coupling between the node locations and the free surface parametrization ∂ x̂l
∂ak

has to be
constructed depending on the choice of the mesh movement algorithm.

For the computation of ∂aΦR we can use (13). We have

∂akΦR = ∂

∂ak

∫

∂Ωt,R,h

φi
∂R

∂t
· νR dS

=
∫

∂Ωt,R,h

∂φi

∂ak

∂R

∂t
· νR dS

+
∫

∂Ωt,R,h∩∂Ωt,s,h

(
∂R

∂t
· νR

)
(τ × νR) · ezηkφi dl.

For the first term use the chain rule and the mapping FK and for the second term the com-
patibility condition (5) to find

∂akΦR =
∫

∂Ωt,R,h

(
∂R

∂t
· νR

)
φl

∂ x̂l
∂ak

· ∇φi dS + ER .

We would like to consider the mesh deformation and the rest of the time stepping scheme
separately. To this end, we introduce the matrices
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[C] j,l = bi
∑

K∈Th

∫

K

(−∇φi (∇φl · ∇φ j ) − ∇φ j (∇φl · ∇φi )

+∇φl(∇φi · ∇φ j )
)
dK

and

[B]i,l =
∫

∂Ωt,R,h

(
∂R

∂t
· νR

)
φl∇φi dS

and we obtain the relations

bi
∂

∂ak

∑

K∈Th

∫

K
∇φi · ∇φ j dK = C j,l

∂ x̂l
∂ak

and

∂akΦR, j = ER + Bj,l
∂ x̂l
∂ak

.

The matrices C and B are separated into free surface and interior parts

C =
(
C11 C12

C21 C22

)
B =

(
B11 B12

B21 B22

)
,

similar to Φ. The node velocity ∂ x̂i
∂a j

follows from the mesh movement algorithm. Assume
that the mesh movement algorithm, with free surface node positions fixed, is either based on
maintaining a force balance or based on solving an additional PDE, see Sect. 4.2. In both
cases, the node displacements u are given by

(
I 0
F21 F22

)(
us
ui

)
=
(
a
0

)
,

where F is the Jacobian with respect to the node displacements of the mesh movement
algorithm. Inverting the Jacobian gives

(
us
ui

)
=
(

I 0
−F−1

22 F21 F−1
22

)(
a
0

)
.

The node displacements and the node position are linked by a constant offset, hence we
directly obtain

∂ x̂i
∂a j

=
(

I
−F−1

22 F21

)

i, j
(27)

4.2 Mesh Deformation Algorithm

We base the mesh deformation algorithm onMasud and Hughes [20]. The idea is to compute
a displacement field u ∈ R

d and apply the computed displacements to the node coordinates.
We use the still-water domain to provide an initial grid corresponding to the zero displacement
field. The displacement field is the solution of the boundary value problem

⎧
⎪⎨

⎪⎩

∇ · ((1 + τ) ∇u) = 0 on Ωz

n · u = η on ∂Ωz,s,h

n · u = R on ∂Ωz,R,h,

(28)

where τ is a bounded nonnegative function and the zero displacement domainΩz is also used
to compute the displacements. The free surface height η is the instantaneous wave height,
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hence (28) computes, contrary to [20], the displacements with respect to the original mesh
for every update in the free surface height η. While this is given as a continuous system of
equations, they are discretized using linear basis functions on Th in order to guarantee that
the computed nodal displacements u can directly be used to deform the mesh. The parameter
τ is typically large in areas where the elements are small, to prevent grid inversion. It is also
large near the free surface to ensure that the gridlines closely follow the free surface and
wave maker motion. To compute ∂ x̂l

∂ak
we take the derivative ∂a of (28). Since (28) is solved

on a fixed domain, there are no hidden dependencies and we can directly write
⎧
⎪⎪⎨

⎪⎪⎩

∇ ·
(
(1 + τ) ∇

(
∂ x̂
∂ak

))
= 0 on Ωz

n · ∂ x̂
∂ak

= φk on ∂Ωz,s,h

n · ∂ x̂
∂ak

= 0 on ∂Ωz,R,h,

with the understanding that these equations have to be discretized in the same way as the
equations for the displacement. The derivative ∂ x̂

∂t can be approximated in a similar manner.
In our simulations, the small elements reside mostly near the free surface, so we choose

τ = e1+cz , where c ∼= 1 can be tuned to prevent inversion for very shallow water simulations
and simulations involving very steep waves or tuned to improve conditioning for very deep
water simulations.

For more general problems the variable τ in element K can be computed as

τK = 1 − Δmin/Δmax

ΔK /Δmax
,

with Δmin,Δmax the area (or volume) of the smallest and largest elements in the mesh and
ΔK the area (or volume) of element K . In [20] it is shown that this results in τK -values
that are essentially independent of the ratio Δmin/Δmax . A more detailed way to compute
the τ -values is presented in [1], where the ratio of the inverse of the element Jacobian at the
quadrature points to a reference quantity, e.g. the minimum of the inverse Jacobian in the
mesh, is used to control the mesh deformation. This helps to ensure that the Jacobian remains
positive inside the element, which prevents grid inversion.

During the mesh updates we keep the background mesh fixed where we solve (28) with a
conforming nodal finite element method, using ah and R(t) as inputs. Next, we reconstruct
the mesh by displacing the actual nodes from the background nodes with the computed
displacements.

This algorithm is a simplified form of the mesh deformation algorithms based on the
elasticity equations. These algorithms are widely used for complex fluid-structure interaction
problem and allow complex mesh deformations, see e.g. [1,2,22,23].

5 Results

5.1 Fenton and Rienecker Wave

As a first model problem we consider the two-dimensional semi-analytical steady wave
solution of (2), computed by Fenton and Rienecker [6] using a combination of Fourier
expansions and numerical methods. This solution provides a correction to the Stokes wave
[31]. The Fenton wave is a standard test case suitable to investigate the accuracy of numerical
methods for nonlinearwaterwaves. See Fig. 1 for an impression.We compute the steadywave
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Fig. 1 Wave profile of the Fenton and Rienecker wave

Table 1 L2-norm of the error in
the free surface height and the
difference between the maximum
and minimum energy measured
for various numbers of elements

Nx × Ny Δt Triangular elements Order

η ΔE η ΔE

32 × 4 1
12 1.4 × 10−1 3.1 × 10−5 – –

64 × 8 1
24 3.7 × 10−2 2.4 × 10−6 1.95 3.72

128 × 16 1
48 9.4 × 10−3 1.8 × 10−7 1.98 3.73

256 × 32 1
96 2.4 × 10−3 1.4 × 10−8 1.99 3.67

Nx × Ny Δt Rectangular elements Order

η ΔE η ΔE

32 × 4 1
12 6.1 × 10−2 3.6 × 10−6 – –

64 × 8 1
24 1.5 × 10−2 2.7 × 10−7 2.00 3.73

128 × 16 1
48 2.8 × 10−3 1.9 × 10−8 2.44 3.87

256 × 32 1
96 9.5 × 10−4 1.2 × 10−9 1.56 3.93The time step is given as a

fraction of the wave period

solution for a water depth H = 1, gravity coefficient g = 1 and domain length X ∼= 4.9636.
The zero displacement grid is a regular grid of Nx by Ny rectangles, see Table 1. This grid
was further split into triangles by subdividing the rectangles along their diagonals in an
alternating manner. We performed a convergence test for linear basis functions by simulating
a water wave for 10 periods, with 12Nx

32 time steps per period, comparing the free surface
height ηh computed with the Hamiltonian finite element discretization with the free surface
height computed with the semi-analytical method proposed by Fenton and Rienecker [6].
Since the focus of the Hamiltonian finite element method is on energy conservation, we also
compute the difference between the minimum and the maximum Hamiltonian energy during
the simulation. The results in Table 1 show that second order accuracy for the free surface
height is obtained.

Next, we also performed a long simulation for 100 wave periods attempting to detect if
there exists a systematic drift in the Hamiltonian energy. The results of the energy variation
in this simulation can be found in Fig. 2.
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Fig. 3 Absolute relative energy deviation for a traveling wave on various meshes

5.2 Soliton

The second test case for code verification is provided by a traveling wave solution. The initial
wave profile in a 2D domain of depth 0.5 is given by

η0 = 0.215 sech(1.18x),

φ0 = 0.

After moving away from the boundary, this initial wave profile will deform into a traveling
wave closely resembling

η(x, t) = 0.1 sech2
(
x + c − √

0.6gt√
2

)
,

for some offset c. A close approximation of this solution is depicted in Fig. 4. This test case
was also considered byWesthuis [30], who used a combined finite difference—finite element
discretization of (2). The travelling wave will be simulated for 120 s, with Δt = 0.05. The
domain has a reflecting wall at x = 150m. In order to verify numerically the stability of
our new scheme, we choose a sequence of mesh sizes Δx ∈ {2m, 1m, 0.5m, 0.25m}. In
the vertical direction, we reproduce the choices made in [30]. That is, we use 6 elements in
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Fig. 4 Snapshots of the solution of the soliton experiment at t = 40

Fig. 5 Mesh used during simulation of MARIN Run 202002. See text for details: a transition zone (t = 95.5)
and b splash zone (t = 109.5)

the vertical direction, placing the mesh lines at z = 0.5
(
cosh(−0.1π{0:1/6:1})−cosh(−0.1π)

1−cosh(−0.1π)
− 1

)
.

The coarsest of these meshes is unable to sufficiently resolve the traveling wave profile, while
the choiceΔx = 1mcan resolve the travelingwave, but not the high frequencymodes that are
required to keep the wave stable. In these cases, we cannot expect to solve the equations with
any accuracy, but we still find reasonable bounds on the energy. See Fig. 3 for an overview of
the behavior of the energy. Figure 4 shows snapshots of the wave profile for various meshes.
SinceΔx is the only parameter changed in these computations we expect that any changes in
the energy are caused by the nonlinear exchange of energy with under-resolved wave modes.
This is confirmed by the dip in the energy when the wave interacts with the wall, where the
high frequency modes play a larger role.
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Fig. 6 Time domain comparison at various wave probe positions with laboratory experiments. a x = 20, b
x = 40 and c x = 50

5.3 Comparison with Experiments

Finally, we made a comparison with experiments. For this purpose, we used the data set
from Run 202002, which was provided by the Maritime Research Institute Netherlands
(MARIN). In this experiment a piston wave maker generates a wave train of successively
faster moving waves that focus into a splash near x = 50m in a model wave basin with
dimension 195.4m × 1m. The wave maker motion in the computations is identical to the
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Fig. 7 Frequency domain comparison at various wave probe positions with laboratory experiments. a x = 20,
b x = 40 and c x = 50

wave maker motion used in the experiments. At time t = 0 there are no waves present in the
basin. Since we are only interested in the first part of the domain, we use a numerical basin
of 90m × 1m, which is still large enough to ensure that no spurious reflections from the

123



388 J Sci Comput (2017) 73:366–394

end wall interfere with the computed waves of interest. From the Fenton wave test case we
know that rectangular elements offer greater accuracy, so we use rectangles near the surface.
Further away from the surface we use triangles. Moreover, since we already know in advance
that there will be localized phenomena near x = 50m we refine the mesh in that area. We
note that in practice 3N iterations are usually enough. Snapshots of the mesh in the transition
zone and in the splash zone are provided in Fig. 5. Following [10] we used Δx = 0.0027
near the splash zone and Δx = 0.016 away from the splash. Comparing the measured wave
height to the computed wave height at various locations in the model basin, both in the time
domain, see Fig. 6, and in the frequency domain, see Fig. 7, we conclude that they are in
good agreement with experiments.
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Appendix 1: Solution of Algebraic Equations

Solving the algebraic equations for the Hamiltonian finite element discretization requires
some special care. The first two equations in (26) are nonlinear and are solved with a Newton
method. The equations for the Newton updates Δan+ 1

2
and Δbs,n+1 are, respectively,

(
En − Δt

2
∂a

[
S(k)
n,a

n+ 1
2

bs,n − Φ
(k)
1,a

n+ 1
2
,Rn

+Φ
(k)
12,n,a

n+ 1
2

(
Φ

(k)
22,n,a

n+ 1
2

)−1

Φ
(k)
2,a

n+ 1
2
,Rn

]

+ Δt

2
Dn

)

Δa(k)
n+ 1

2

= −
(
Ena(k)

n+ 1
2

− Enan − Δt

2

(
−Dna

(k)
n+ 1

2
− Φ

(k)
1,a

n+ 1
2
,Rn

+Φ
(k)
12,n,a

n+ 1
2

(
Φ

(k)
22,n,a

n+ 1
2

)−1

Φ
(k)
2,a

n+ 1
2
,Rn

+ S(k)
n,a

n+ 1
2

bs,n

))

,

(29)

with Δa(k)
n+ 1

2
= a(k+1)

n+ 1
2

− a(k)
n+ 1

2
and

(
En+1 + Δt

2

[
∂aΦ11,n+1,a

n+ 1
2
b(k)
s,n+1 + ∂aΦ12,n+1,a

n+ 1
2
bi,n+1,a

n+ 1
2

− ∂aΦ1,a
n+ 1

2
,Rn+1 − Dn+1

]T)

Δb(k)
s,n+1

= −
{
En+1b

(k)
s,n+1 − Enbs,n + Δt

2

(
gz(En + En+1)an+ 1

2
− DT

n bs,n
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−DT
n+1b

(k)
s,n+1 + 1

2
bTn,a

n+ 1
2

∂aΦn,a
n+ 1

2
bn,a

n+ 1
2

+ 1

2
b(k) T
n+1,a

n+ 1
2

∂aΦn+1,a
n+ 1

2
b(k)
n+1,a

n+ 1
2

− ∂aΦa
n+ 1

2
,Rn · bn,a

n+ 1
2

− ∂aΦa
n+ 1

2
,Rn+1 · b(k)

n+1,a
n+ 1

2

+ Gn + Gn+1
)}

,

(30)

with Δb(k)
s,n+1 = b(k+1)

s,n+1 − b(k)
s,n+1 and where a(0)

n+ 1
2

= an and b(0)
s,n+1 = bs,n . The non-linear

algebraic Eqs. (29) and (30) are iterated until convergence is reached. In the Jacobian in (29)
we use that ∂ai and ∂bs, j commute. Recall that S = Φ11 − Φ12Φ

−1
22 Φ21.

For numerical efficiency reasons it is crucial to avoid explicitly forming Φ−1
22 . The fol-

lowing auxiliary equation is therefore introduced

Φ
(k)
22,n,a

n+ 1
2

b(k)
i,n,a

n+ 1
2

= −
(

Φ
(k)
21,n,a

n+ 1
2

bs,n − Φ
(k)
2,a

n+ 1
2
,Rn

)
.

Substituting this into (29), we find

(
A11 A12

A21 A22

)⎛

⎝
Δa(k)

n+ 1
2

Δb(k)
i,n,a

n+ 1
2

⎞

⎠ =
(

v1
v2

)
, (31)

A11 = En − Δt

2
∂a

[
Φ

(k)
11,n,a

n+ 1
2

bs,n + Φ
(k)
12,n,a

n+ 1
2

b(k)
i,n,a

n+ 1
2

− Φ1,a
n+ 1

2 ,k
,Rn

]

+ Δt

2
Dn,

A12 = −Δt

2
Φ

(k)
12,n,a

n+ 1
2

,

A21 = −Δt

2
∂a

[
Φ

(k)
21,n,a

n+ 1
2

bs,n + Φ
(k)
22,n,a

n+ 1
2

b(k)
i,n,a

n+ 1
2
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n+ 1

2 ,k
,Rn

]
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A22 = −Δt

2
Φ

(k)
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2
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(
Ena(k)
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− Enan − Δt
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(
−Dna
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n+ 1

2
− Φ
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2
,Rn
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(k)
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n+ 1
2

bs,n + Φ
(k)
12,n,a

n+ 1
2

b(k)
i,n,a

n+ 1
2

))
,

v2 = −Δt

2

(
Φ

(k)
2,a

n+ 1
2
,Rn

− Φ
(k)
21,n,a

n+ 1
2

bs,n − Φ
(k)
22,n,a

n+ 1
2

b(k)
i,n,a

n+ 1
2

)
,

where Δb(k)
i,n+1,a

n+ 1
2

= b(k+1)
i,n+1,a

n+ 1
2

− b(k)
i,n+1,a

n+ 1
2

and the auxiliary equations are scaled to be

of the same magnitude as the original equations. In (30) the Schur complement has already
been reverted, but the value of bi,n+1,a

n+ 1
2
depends on b(k)

s,n+1, so it is better to update both

bi,n+1,a
n+ 1

2
and b(k)

s,n+1 every Newton step. The combined update looks like
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(
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Ã21 Ã22
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Substituting (27) into (31) then results in

(
Â11 A12

Â21 A22

)⎛
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.

This introduces the inverse matrix F−1
22 for which we introduce the auxiliary equation

F22ui = −F21a. (32)

We can now write (29) in a form that does not require explicit inverses of matrices
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. Following the same steps for (30) as for (29) we obtain
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(34)

We again introduce an auxiliary equation

F22d = −
(
(C12 − 2B12)

T bs + (C22 − 2B22)
T bi

)
.

123



392 J Sci Comput (2017) 73:366–394

This allows us to remove the inverses from (34), resulting in
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n+ 1
2

− B11,n+1,a
n+ 1

2
− Dn+1

]
,

Ă13 = Δt

2

(
C (k)
12,n+1,a

n+ 1
2

− B12,n+1,a
n+ 1

2

)
,

Ă21 = Δt

2

(
C (k)
21,n+1,a

n+ 1
2

− B21,n+1,a
n+ 1

2

)
,

Ă23 = Δt

2

(
C (k)
22,n+1,a

n+ 1
2

− B22,n+1,a
n+ 1

2

)
,

Ă31 = Δt

4
F21,

Ă33 = Δt

4
F22,

v̆1 = −
{
En+1b

(k)
s,n+1 − Enbs,n + Δt

2

(
gz(En + En+1)an+ 1

2
− DT

n bs,n

− DT
n+1b

(k)
s,n+1 + 1

2
CT
11,n,a

n+ 1
2

bs,n + 1

2
CT
21,n,a

n+ 1
2

bi,n,a
n+ 1

2

+ 1

2
C (k) T
11,n+1,a

n+ 1
2

b(k)
s,n+1 + 1

2
C (k) T
21,n+1,a

n+ 1
2

b(k)
i,n+1,a

n+ 1
2

+ FT
21dn,a

n+ 1
2

+ FT
21d

(k)
n+1,a

n+ 1
2

− BT
11,n,a

n+ 1
2

bs,n − BT
21,n,a

n+ 1
2

bi,n,a
n+ 1

2

− BT
11,n+1,a

n+ 1
2

b(k)
s,n+1 − BT

21,n+1,a
n+ 1

2

b(k)
i,n+1,a

n+ 1
2

+ Gn + Gn+1
)}

,

v̆3 = −Δt

4

((
C (k)
12,n+1,a

n+ 1
2

− 2B12,n+1,a
n+ 1

2

)
b(k)
s,n+1

+
(
C (k)
22,n+1,a

n+ 1
2

− 2B22,n+1,a
n+ 1

2

)
b(k)
i,n+1,a

n+ 1
2

+ F22d
(k)
n+1,a
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2

)
, (35)

where Δd(k)
n+1,a

n+ 1
2

= d(k+1)
n+1,a

n+ 1
2

− d(k)
n+1,a

n+ 1
2

.

Appendix 2: Time Derivative of the Mass Matrix

The time derivative of themassmatrix can be constructed similar to the free surface derivative
of thewavemaker boundary integral. Thismatrix is introduced in (10), (11) and (16).Acareful
look at these equations reveals that the mass matrix is more accurately represented as a flux
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trough a surface
∫

Dl
t,s,h

ηtiη
t
j dx dy =

∫

Dl
t,s,h

⎛

⎝
0
0

ηtiη
t
j

⎞

⎠ · ez dx dy.

We can now apply (7.2) from [7] to find

d

dt

m∑

l=1

∫

Dl
t,s,h

ηtiη
t
j dx dy =

m∑

l=1

⎛

⎝
∫

Dl
t,s,h

∇ ·
⎛

⎝
0
0

ηtiη
t
j

⎞

⎠ (v · ez) dx dy

+
∫

Dl
t,s,h

∂

∂t

⎛

⎝

⎛

⎝
0
0

ηtiη
t
j

⎞

⎠ · ez
⎞

⎠ dx dy (36)

+
∫

∂Dl
t,s,h

⎛

⎝

⎛

⎝
0
0

ηtiη
t
j

⎞

⎠ × v

⎞

⎠ · τ dl

⎞

⎠ .

Since ηtj does not depend on z, the first term in (36) vanishes. In addition, the internal

contributions from two adjacent patchesDl
t,s,h cancel, so the third term reduces to an integral

over the boundary of the free surface. At the boundary we know the patch velocity v = ∂R
∂t

and we have applied the correction (14) to ensure that the free surface moves tangentially to
the solid wall. These considerations reduce (36) to

d

dt

m∑

l=1

∫

Dl
t,s,h

ηtiη
t
j dx dy =

m∑

l=1

∫

Dl
t,s,h

∂ηti

∂t
η j + ∂ηtj

∂t
ηi dx dy

+
∫

∂Ωt,R,h∩∂Ωt,s,h

ηiη j

[
((ez · τ)τ + (ez · tR)tR) × ∂R

∂t

]
· τ dl.

From here we use tR = τ × νR and expand all products to arrive at

d

dt
E = D + DT + ER .
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