
J Sci Comput (2017) 73:980–1027
DOI 10.1007/s10915-017-0398-7

Computational Complexity Study on Krylov Integration
Factor WENOMethod for High Spatial Dimension
Convection–Diffusion Problems

Dong Lu1 · Yong-Tao Zhang1

Received: 28 July 2016 / Revised: 13 February 2017 / Accepted: 20 February 2017 /
Published online: 13 March 2017
© Springer Science+Business Media New York 2017

Abstract Integration factor (IF) methods are a class of efficient time discretization methods
for solving stiff problems via evaluation of an exponential function of the corresponding
matrix for the stiff operator. The computational challenge in applying the methods for par-
tial differential equations (PDEs) on high spatial dimensions (multidimensional PDEs) is
how to deal with the matrix exponential for very large matrices. Compact integration fac-
tor methods developed in Nie et al. (J Comput Phys 227:5238–5255, 2008) provide an
approach to reduce the cost prohibitive large matrix exponentials for linear diffusion oper-
ators with constant diffusion coefficients in high spatial dimensions to a series of much
smaller one dimensional computations. This approach is further developed in Wang et al. (J
Comput Phys 258:585–600, 2014) to deal withmore complicated high dimensional reaction–
diffusion equations with cross-derivatives in diffusion operators. Another approach is to
use Krylov subspace approximations to efficiently calculate large matrix exponentials. In
Chen and Zhang (J Comput Phys 230:4336–4352, 2011), Krylov subspace approximation is
directly applied to the implicit integration factor (IIF) methods for solving high dimensional
reaction–diffusion problems. Recently the method is combined with weighted essentially
non-oscillatory (WENO) schemes in Jiang and Zhang (J Comput Phys 253:368–388, 2013)
to efficiently solve semilinear and fully nonlinear convection–reaction–diffusion equations.
A natural question that arises is how these two approaches may perform differently for vari-
ous types of problems. In this paper, we study the computational power of Krylov IF-WENO
methods for solving high spatial dimension convection–diffusion PDE problems (up to four

Dedicated to Professor Chi-Wang Shu on the occasion of his 60th birthday.

Research supported by NSF Grant DMS-1620108.

B Yong-Tao Zhang
yzhang10@nd.edu

Dong Lu
dlv1@nd.edu

1 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0398-7&domain=pdf
http://orcid.org/0000-0002-0831-6590


J Sci Comput (2017) 73:980–1027 981

spatial dimensions). Systematical numerical comparison and complexity analysis are carried
out for the computational efficiency of the two different approaches. We show that although
the Krylov IF-WENO methods have linear computational complexity, both the compact IF
method and the Krylov IF method have their own advantages for different type of problems.
This study provides certain guidance for using IF-WENO methods to solve general high
spatial dimension convection–diffusion problems.

Keywords Implicit integration factor methods · Weighted essentially non-oscillatory
schemes · Krylov subspace approximation · High spatial dimensions · Convection–diffusion
equations

1 Introduction

Efficient and accurate temporal numerical schemes are important for the performance of high
order accuracy numerical simulations. A number of state-of-the-art high order time-stepping
methods were developed in the literature. Here we just give a few examples and do not
provide a complete list. For example, the total variation diminishing (TVD) Runge–Kutta
(RK) schemes [11,12,41,42]; spectral deferred correction (SDC) methods [4,8,16,26,34];
high order implicit–explicit (IMEX)multistep/RKmethods [1,23,25,48,53]; hybridmethods
of SDC and high order RK schemes [6]; etc.

Integration factor (IF) methods are a class of “exactly linear part” time discretization
methods for the solution of nonlinear partial differential equations (PDEs) with the linear
highest spatial derivatives. This class of methods performs the time evolution of the stiff
linear operator via evaluation of an exponential function of the corresponding matrix. Hence
the integration factor type time discretization can remove both the stability constrain and time
direction numerical errors from the high order derivatives [3,7,22,24,33]. Here time direction
numerical errors are numerical errors for solving the semi-discretized ODE system resulting
from spatial discretizations of the PDE. In [37], a class of efficient implicit integration factor
(IIF) methods were developed for solving systems with both stiff linear and nonlinear terms.
A novel property of themethods is that the implicit terms are free of the exponential operation
of the linear terms. Hence the exact evaluation of the linear part is decoupled from the implicit
treatment of the nonlinear terms. As a result, if the nonlinear terms do not involve spatial
derivatives, the size of the nonlinear system arising from the implicit treatment is independent
of the number of spatial grid points; it only depends on the number of the original PDEs. This
distinguishes IIF methods [37] from implicit exponential time differencing (ETD) methods
in [3].

Nonlinear convection–diffusion–reaction (CDR) systems of equations [18] are common
mathematical models in applications from biology, chemistry and physics. A CDR system
defined on a multidimensional spatial domain has the following general form

�ut +
d∑

i=1

�fi (�u)xi = ∇ · (D(�u)∇�u) + �r(�u), (1)

where �u is the unknown vector function, �fi , i = 1, . . . , d are flux vector functions in d spatial
dimensions,D(�u) is the diffusion matrix and it could be nonlinear, and �r is the reaction term.
Often the CDR models in applications have nonlinear convection and reaction terms, but a
linear diffusion term ∇ · (D∇�u), where D is the diffusion matrix that is independent of �u.
In such case, the system is semilinear. To numerically solve this time-dependent problem
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(1), a nonlinear stable discretization suitable for hyperbolic PDEs is needed for the nonlin-
ear convection terms, to deal with the convection-dominated cases or a spatial mixture of
convection-dominated and diffusion-dominated cases. Weighted essentially non-oscillatory
(WENO) schemes are such kind of nonlinear stable discretizations. They are a class of popu-
lar high order numerical methods for solving hyperbolic PDEswhose solutions have complex
solution structures. It is robust to apply WENO schemes in discretizing the convection terms
in a general convection–diffusion problem, as that shown in [32]. We use WENO schemes
to solve convection–diffusion equations so that various situations in a general problem can
be dealt with directly.

WENO schemes have the advantage of attaining uniform high order accuracy in smooth
regionswhilemaintaining sharp and essentiallymonotone transitions in large gradient regions
of the solution. WENO schemes are designed based on the successful ENO schemes in
[13,42]. The first WENO scheme was constructed in [28] for a third order finite volume
version. In [19], third and fifth order finite difference WENO schemes in multi-space dimen-
sions were constructed, with a general framework for the design of the smoothness indicators
and non-linear weights. The main idea of the WENO scheme is to form a weighted com-
bination of several local reconstructions based on different stencils (usually referred to as
small stencils) and use it as the final WENO reconstruction. The combination coefficients
(also called non-linear weights) depend on the linear weights, often chosen to increase the
order of accuracy over that on each small stencil, and on the smoothness indicators which
measure the smoothness of the reconstructed function in the relevant small stencils. Hence
an adaptive interpolation or reconstruction procedure is actually the essential part of the
WENO schemes. Later, WENO schemes on unstructured meshes (e.g. arbitrary triangular
or tetrahedral meshes) were developed to deal with complex domain geometries, see e.g.
[15,30,51,52].

Recently, we developed IIF-WENO methods for solving nonlinear CDR systems in [20].
The methods can be designed for arbitrary order of accuracy. The stiffness of the system
is resolved well and the methods are stable by using time step sizes which are just deter-
mined by the non-stiff hyperbolic part of the system. Large time step size computations are
obtained. For CDR systems (1) defined on high dimensional spatial domains, the computa-
tional challenge in applying the methods is how to deal with the matrix exponential for very
large matrices. Currently there are two approaches to deal with the large matrix exponen-
tial problem in IIF methods. One is the class of compact implicit integration factor (cIIF)
methods in [29,38]. cIIF methods reduce the cost prohibitive large matrix exponentials for
linear diffusion operators with constant diffusion coefficients in high spatial dimensions to a
series of much smaller one dimensional computations. This approach is further extended in
[49] as an array-representation technique to deal with more complicated high dimensional
reaction–diffusion equations with cross-derivatives in diffusion operators. The method is
termed as array-representation compact implicit integration factor (AcIIF) method. Another
approach is to use Krylov subspace approximations to efficiently calculate large matrix
exponentials. In [5], Krylov subspace approximation is directly applied to the IIF methods
for solving high dimensional reaction–diffusion problems. A natural question that arises
is how these two approaches may perform differently for various types of problems when
they are applied to solve more complicated CDR equations. In this paper, we study the
computational power of Krylov IIF-WENO methods for solving high spatial dimension
convection–diffusion PDE problems (up to four spatial dimensions) by direct numerical sim-
ulations. Systematical numerical comparison and complexity analysis are carried out for the
computational efficiency of the two different approaches. We show that although the Krylov
IIF-WENOmethods have linear computational complexity, both the compact IIFmethod and
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the Krylov IIF method have their own advantages for different type of problems. This study
provides certain guidance for using IIF-WENO methods to solve high spatial dimension
problems.

The rest of the paper is organized as following. In Sect. 2, we first review the IIF-
WENOmethods for solving CDR equations developed in [20]. Then we present two different
approach to deal with the high dimensional problems, i.e., the direct Krylov approach and
the AcIIF approach. The AcIIF method was developed to solve reaction–diffusion equations
in [49]. In order to compare it with the Krylov approach, we combine the AcIIF method
with WENOmethod for solving CDR equations. In Sect. 3, we perform systematical numer-
ical comparison and complexity analysis for applying these two approaches to various high
dimensional problems including three and four dimensional Fokker–Planck equations. Dis-
cussions and conclusions are given in Sect. 4.

2 Numerical Methods

In this section, we first briefly review the IIF-WENO methods for solving CDR equations
developed in [20]. Then we present two approaches for dealing with high dimensional prob-
lems. For the AcIIF method designed in [49], we combine it with WENOmethod and derive
the corresponding schemes for solving CDR equations.

2.1 IIF-WENO Methods

The method of lines (MOL) approach is applied to the Eq. (1). For the simplicity of pre-
sentation, we consider the scalar equation case. The system case is solved component by
component following the same procedure as the scalar case. For nonlinear convection terms∑d

i=1 fi (u)xi , the third order finite differenceWENO scheme with Lax–Friedrichs flux split-
ting [43] is used. The second or fourth order central finite difference scheme (depending on
the order of accuracy of IIF time discretizations) is used to discretize the diffusion terms.

For the convection terms, the conservative finite-difference schemes we use approximate
the point values at a uniform (or smoothly varying) grid in a conservative fashion. The finite
difference WENO schemes approximate derivatives of multi-dimension in a dimension by
dimension way. For example, the x-direction derivative f (u)x at a grid point is approximated
by a conservative flux difference

f (u)x |x=xi ≈ 1

�x

(
f̂i+1/2 − f̂i−1/2

)
, (2)

where for the third order WENO scheme the numerical flux f̂i+1/2 depends on the three-
point values f (ul) (here for the simplicity of notations, we use ul to denote the value of the
numerical solution u at the point xl along the line y = y j , z = zk with the understanding that
the value could be different for different y and z coordinates), l = i−1, i, i+1,when thewind
is positive (i.e., when f ′(u) ≥ 0 for the scalar case, or when the corresponding eigenvalue
is positive for the system case with a local characteristic decomposition). This numerical
flux f̂i+1/2 is written as a convex combination of two second order numerical fluxes based
on two different substencils of two points each, and the combination coefficients depend on
a “smoothness indicator” measuring the smoothness of the solution in each substencil. The
detailed formulae is

f̂i+1/2 = w0

[
1

2
f (ui ) + 1

2
f (ui+1)

]
+ w1

[
−1

2
f (ui−1) + 3

2
f (ui )

]
, (3)
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where

wr = αr

α1 + α2
, αr = dr

(ε + βr )2
, r = 0, 1. (4)

d0 = 2/3, d1 = 1/3 are called the “linear weights”, and β0 = ( f (ui+1) − f (ui ))2, β1 =
( f (ui ) − f (ui−1))

2 are called the “smoothness indicators”. ε is a small positive number
chosen to avoid the denominator becoming 0. We take ε = 10−3 in this paper.

When the wind is negative (i.e., when f ′(u) < 0), right-biased stencil with numerical
values f (ui ), f (ui+1) and f (ui+2) are used to construct a third orderWENO approximation
to the numerical flux f̂i+1/2. The formulae for negative and positivewind cases are symmetric
with respect to the point xi+1/2. For the general case of f (u), we perform the “Lax–Friedrichs
flux splitting”

f +(u) = 1

2
( f (u) + αu),

f −(u) = 1

2
( f (u) − αu), (5)

where α = maxu | f ′(u)|. f +(u) is the positive wind part, and f −(u) is the negative wind
part. Corresponding WENO approximations are applied to find numerical fluxes f̂ +

i+1/2 and

f̂ −
i+1/2 respectively. Similar procedures are applied to the other directions for g(u)y and

h(u)z . See [19,43] for more details. For diffusion terms, central differences are used. After
spatial discretizations, a semi-discretized ODE system

d �U
dt

= �Fd( �U ) + �Fa( �U ) + �R( �U ) (6)

is obtained. Here �U = (ui )1≤i≤N , �Fd( �U ) = (F̂d i ( �U ))1≤i≤N , �Fa( �U ) = (F̂ai ( �U ))1≤i≤N ,
�R = (r(ui ))1≤i≤N . N is the total number of grid points, �Fd( �U ) is the approximation for the
diffusion terms by the second or fourth order finite difference schemes, and F̂d i is a linear or
nonlinear function of numerical values on the approximation stencil. If the diffusion term is
linear, �Fd( �U ) = C �U whereC is the approximationmatrix for the linear diffusion operator by
the central finite difference scheme. �Fa( �U ) is the approximation for the nonlinear advection
terms by the third order finite difference WENO scheme, and F̂ai is a nonlinear function
of several numerical values on the WENO approximation stencil. �R( �U ) is the nonlinear
reaction term, and r(ui ) is a nonlinear function which only depends on numerical values at
one grid point. In [20], we developed a method to deal with the nonlinear diffusion terms
by factoring out the linear part which mainly contributes to the stiffness of the nonlinear
diffusion terms, then applying the integration factor approach to remove this stiffness. In this
paper, our main focus is on studying the computational complexity of Krylov and compact
IIF methods for high dimensional problems. Hence we simplify our discussions to problems
with linear diffusion, i.e., �Fd( �U ) = C �U . IIF methods for (6) are constructed by exactly
integrating the linear part of the system. Directly multiply (6) by the integration factor e−Ct

and integrate over one time step from tn to tn+1 ≡ tn + �tn to obtain

�U (tn+1) = eC�tn �U (tn) + eC�tn

∫ �tn

0
e−Cτ �Fa( �U (tn + τ))dτ

+ eC�tn

∫ �tn

0
e−Cτ �R( �U (tn + τ))dτ. (7)

Two of the nonlinear terms in (7) have different properties. The nonlinear reaction term �R( �U )

is usually stiff but local, while the nonlinear term �Fa( �U ) derived from WENO approxima-
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tions to the convection term is nonstiff but couples numerical values at grid points of the
stencil. Hence we use different methods to treat them and avoid solving a large coupled
nonlinear system. For the stiff reaction term e−Cτ �R( �U (tn +τ)), we approximate it implicitly
by an (r − 1)th order Lagrange polynomial with interpolation points at tn+1, tn, . . . , tn+2−r .
The nonstiff convection term is highly nonlinear due to the WENO approximations. Dif-
ferent from the nonlinear reaction term, we approximate the nonlinear convection term
e−Cτ �Fa( �U (tn + τ)) explicitly by an (r − 1)th order Lagrange polynomial with interpo-
lation points at tn, tn−1, . . . , tn+1−r . The r th order IIF scheme for CDR equations is obtained
as

�Un+1 = eC�tn �Un + �tn

{
αn+1 �R( �Un+1) +

0∑

i=2−r

αn+i e
C(�tn−τi ) �R( �Un+i )

+
0∑

i=1−r

βn+i e
C(�tn−τi ) �Fa( �Un+i )

}
, (8)

where the coefficients

αn+i = 1

�tn

∫ �tn

0

1∏

j=2−r, j 	=i

τ − τ j

τi − τ j
dτ, i = 1, 0,−1, . . . , 2 − r; (9)

βn+i = 1

�tn

∫ �tn

0

0∏

j=1−r, j 	=i

τ − τ j

τi − τ j
dτ, i = 0,−1,−2, . . . , 1 − r. (10)

τ1 = �tn , τ0 = 0, τi = −∑−1
k=i �tn+k for i = −1,−2,−3, . . . , 1−r . �Un+i is the numerical

solution for �U (tn+i ). Specifically, the second order scheme (IIF2) is of the following form

�Un+1 = eC�tn �Un + �tn
{
αn+1 �R( �Un+1) + αne

C�tn �R( �Un)

+βn−1e
C(�tn+�tn−1) �Fa( �Un−1) + βne

C�tn �Fa( �Un)
}

, (11)

where

αn = 1

2
, αn+1 = 1

2
, βn−1 = − �tn

2�tn−1
,

βn = 1

�tn−1

(
�tn
2

+ �tn−1

)
.

And the third order scheme (IIF3) is

�Un+1 = eC�tn �Un + �tn
{
αn+1 �R( �Un+1) + αne

C�tn �R( �Un) + αn−1e
C(�tn+�tn−1) �R( �Un−1)

+βn−2e
C(�tn+�tn−1+�tn−2) �Fa( �Un−2) + βn−1e

C(�tn+�tn−1) �Fa( �Un−1)

+βne
C�tn �Fa( �Un)

}
, (12)

where

αn+1 = 1

(�tn + �tn−1)

(
�tn
3

+ �tn−1

2

)
,

αn = 1

�tn−1

(
�tn
6

+ �tn−1

2

)
,
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αn−1 = − �t2n
6�tn−1 (�tn−1 + �tn)

,

βn = 1 + 1

�tn−1 (�tn−1 + �tn−2)

[
�t2n
3

+ �tn
2

(2�tn−1 + �tn−2)

]
,

βn−1 = − 1

�tn−1�tn−2

[
�t2n
3

+ �tn
2

(�tn−1 + �tn−2)

]
,

βn−2 = 1

�tn−2 (�tn−1 + �tn−2)

(
�t2n
3

+ �tn�tn−1

2

)
.

Remark Theoretical analysis including stability and error analysis of the IIF schemes for
convection–diffusion–reaction equations is given in [20,21]. Due to the nonlinearity of
WENO schemes [43] and the global property of the exponential integrator in the IIF schemes,
theoretical analysis of the complete IIF-WENO schemes is still an open problem and it will
be one of our future work.

2.2 Two Approaches for High Dimensional Problems

The efficiency of IIF schemes for high dimensional problems largely depends on the methods
to evaluate the product of the matrix exponential and a vector, for example eC�tv. For PDEs
defined on high spatial dimensions (2D and above), a large and sparse matrix C is generated
in the schemes (8). But the exponential matrix eC�t is dense. For high dimensional problems,
direct computation and storage of such exponential matrix are prohibitive in terms of both
CPU cost and computer memory. Two approaches have been developed to solve this problem.
Here we discuss and compare the computational efficiency of these two approaches when
they are applied to IIF-WENO methods for solving high dimensional problems. We first
review the Krylov approximation method. The Krylov approximation method was applied
to IIF schemes in [5]. It has been applied for solving CDR equations in [20].

2.2.1 Krylov Approximation Method

Notice that we do not need the full exponential matrices such as eC�t itself, but only the
products of the exponential matrices and some vectors in the schemes (8). The Krylov sub-
space approximations to the matrix exponential operator is an excellent choice in terms of
both accuracy and efficiency. Follow the literature (e.g. [10,36]), we describe the Krylov
subspace methods to approximate eC�tv as following.

The large sparse matrix C is projected to the Krylov subspace

KM = span
{
v,Cv,C2v, . . . ,CM−1v

}
. (13)

The dimension M of the Krylov subspace is much smaller than the dimension N of the
large sparse matrix C . In all numerical computations of this paper, we take M = 25 for
different N , and accurate results are obtained in the numerical experiments. An orthonormal
basis VM = [v1, v2, v3, . . . , vM ] of the Krylov subspace KM is generated by the well-known
Arnoldi algorithm [47]:
1. Compute the initial vector: v1 = v/‖v‖2.
2. Perform iterations: Do j = 1, 2, . . . , M :

1) Compute the vector w = Cv j .
2) Do i = 1, 2, . . . , j :
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(a) Compute the inner product hi, j = (w, vi ).
(b) Compute the vector w = w − hi, jvi .

3) Compute h j+1, j = ‖w‖2.
4) If h j+1, j ≡ 0, then

stop the iteration;
else

compute the next basis vector v j+1 = w/h j+1, j .
In the Arnoldi algorithm, if h j+1, j ≡ 0 for some j < M , it means that the convergence
has occurred and the Krylov subspace is KM = span{v1, v2, . . . , v j }, so the iteration can be
stopped at this step j , and we assign the value of this j to M . This algorithm will produce
an orthonormal basis VM of the Krylov subspace KM . Denote the M × M upper Hessenberg
matrix consisting of the coefficients hi, j by HM . Since the columns of VM are orthogonal,
we have

HM = V T
MCVM . (14)

This means that the very small Hessenberg matrix HM represents the projection of the large
sparse matrix C to the Krylov subspace KM , with respect to the basis VM . Also since VM

is orthonormal, the vector VMV T
MeC�tv is the orthogonal projection of eC�tv on the Krylov

subspace KM , namely, it is the best approximation to eC�tv in KM . Therefore

eC�tv � VMV T
MeC�tv = βVMV T

MeC�tv1 = βVMV T
MeC�t VMe1,

where β = ‖v‖2, and e1 denotes the first column of the M × M identity matrix IM . Using
(14) we obtain the approximation

eC�tv � βVMeHM�t e1. (15)

Thus the large eC�t matrix exponential problem is replaced with the much smaller problem
eHM�t . The small matrix exponential eHM�t will be computed using a scaling and squaring
algorithm with a Padé approximation, see [10,14,36]. Then the Krylov approximations are
directly applied in schemes (8), (11) or (12) to obtain Krylov IIF schemes for CDR equations
[20]. The r th order Krylov IIF scheme for CDR equations has the following form

�Un+1 = �tnαn+1 �R( �Un+1) + γ0,nVM,0,ne
HM,0,n�tn e1

+�tn

(
βn+1−rγ1−r,nVM,1−r,ne

HM,1−r,n(�tn−τ1−r )e1

+
−1∑

i=2−r

γi,nVM,i,ne
HM,i,n(�tn−τi )e1

)
, (16)

where γ0,n = ‖Un + �tn(αn �R( �Un) + βn �Fa( �Un))‖2, VM,0,n and HM,0,n are orthonormal
basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the initial vector
Un + �tn(αn �R( �Un) + βn �Fa( �Un)). γ1−r,n = ‖ �Fa( �Un+1−r )‖2, VM,1−r,n and HM,1−r,n are
orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with
the initial vector �Fa( �Un+1−r ). γi,n = ‖αn+i �R( �Un+i ) + βn+i �Fa( �Un+i )‖2, VM,i,n and HM,i,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with
the initial vectors αn+i �R( �Un+i ) + βn+i �Fa( �Un+i ), for i = 2 − r, 3 − r, . . . ,−1. Notice that
VM,0,n , VM,1−r,n and VM,i,n, i = 2 − r, 3 − r, . . . ,−1 are orthonormal bases of different
Krylov subspaces for the same matrix C , which are generated with different initial vectors
in the Arnoldi algorithm. Specifically, the second order Krylov IIF (KrylovIIF2) scheme has
the following form
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�Un+1 = 1

2
�tn �R( �Un+1) + γ0,nVM,0,ne

HM,0,n�tn e1

− (�tn)2

2�tn−1

(
γ−1,nVM,−1,ne

HM,−1,n(�tn+�tn−1)e1
)

, (17)

where γ0,n =
∥∥∥Un + �tn

(
1
2

�R( �Un) + 1
�tn−1

(�tn
2 + �tn−1) �Fa( �Un)

)∥∥∥
2
, VM,0,n and HM,0,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with

the initial vectorUn+�tn
(
1
2

�R( �Un) + 1
�tn−1

(�tn
2 + �tn−1) �Fa( �Un)

)
.γ−1,n = ‖ �Fa( �Un−1)‖2,

VM,−1,n and HM,−1,n are orthonormal basis and upper Hessenberg matrix generated by
the Arnoldi algorithm with the initial vector �Fa( �Un−1). And the third order Krylov IIF
(KrylovIIF3) scheme has the form

�Un+1 = 2�tn + 3�tn−1

6(�tn + �tn−1)
�tn �R( �Un+1) + γ0,nVM,0,ne

HM,0,n�tn e1

+�tn

(
2(�tn)2 + 3�tn�tn−1

6�tn−2(�tn−1 + �tn−2)
γ−2,nVM,−2,ne

HM,−2,n(�tn+�tn−1+�tn−2)e1

+ γ−1,nVM,−1,ne
HM,−1,n(�tn+�tn−1)e1

)
, (18)

where γ0,n = ‖Un + �tn(αn �R( �Un) + βn �Fa( �Un))‖2, VM,0,n and HM,0,n are orthonormal
basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the initial
vector Un + �tn(αn �R( �Un) + βn �Fa( �Un)). γ−2,n = ‖ �Fa( �Un−2)‖2, VM,−2,n and HM,−2,n

are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm
with the initial vector �Fa( �Un−2). γ−1,n = ‖αn−1 �R( �Un−1) + βn−1 �Fa( �Un−1)‖2, VM,−1,n and
HM,−1,n are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algo-
rithm with the initial vectors αn−1 �R( �Un−1) + βn−1 �Fa( �Un−1). See the Eq. (12) for values of
αn, βn, αn−1, βn−1.

As that pointed out in [20], in the implementation of the Krylov approximation methods
we do not store matrices C , because only multiplications of matrices C with a vector are
needed in the methods, and they correspond to certain finite difference operations.

Remark By the analysis in [10,17], an error estimation of theKrylov subspace approximation
(15) is

||eC�tv − βVMeHM�t e1||2 ≤ 10βe−M2/(5ρ�t), (19)

where M is the dimension of the Krylov subspace, and eigenvalues of the matrix C are in the
interval [−4ρ, 0]. For a fixed ρ�t , the Krylov approximation error (19) decays exponentially
with respect to the square of the Krylov subspace dimension M .

2.2.2 Compact/Array-Representation Method

We first review the compact IIF (cIIF) method and the array-representation compact IIF
(AcIIF) method for solving high dimensional reaction–diffusion equations, developed in [38]
and [49]. Then we discuss how to apply the cIIF/AcIIF method in the IIF-WENO schemes
for solving high dimensional CDR equations.
(1) cIIF/AcIIF for reaction–diffusion equations

We illustrate the cIIF method by solving a two-dimensional reaction–diffusion equation
with constant diffusion coefficient

∂u

∂t
= D

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ R(u), (x, y) ∈ 
 = {a < x < b, c < y < d} , (20)

123



J Sci Comput (2017) 73:980–1027 989

with periodic boundary conditions in the y−direction and no-flux boundary conditions in
the x-direction. The spatial domain is partitioned by a rectangular mesh with Nx + 2 and
Ny + 2 grid points in each direction. The grid sizes are hx = b−a

Nx+1 , and hy = d−c
Ny+1 . Using

the second order central difference discretization on the diffusion terms, a system of ODEs

dui, j
dt

= D

(
ui+1, j − 2ui, j + ui−1, j

h2x
+ ui, j+1 − 2ui, j + ui, j−1

h2y

)
+ R(ui, j ) (21)

is obtained. The idea of cIIF method [38] is that in stead of representing numerical values
ui, j in a large vector, numerical values are organized and stored in a matrix (see (23)). The
semi-discretized ODE system is written in a compact form

dU
dt

= AU + UB + R(U), (22)

where the three matrices U , A and B are

UNx×(Ny+1) =

⎛

⎜⎜⎜⎝

u1,1 u1,2 · · · u1,Ny u1,Ny+1

u2,1 u2,2 · · · u2,Ny u2,Ny+1
...

...
...

...
...

uNx ,1 uNx ,2 · · · uNx ,Ny uNx ,Ny+1

⎞

⎟⎟⎟⎠ , (23)

ANx×Nx = D

h2x

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

− 2
3

2
3

1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
2
3 − 2

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

B(Ny+1)×(Ny+1) = D

h2y

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 · · · 1
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .
. . .

. . .

0 0 · · · 1 −2 1
1 0 · · · 0 1 −2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Then following the similar procedure for deriving IIF methods [37], we multiply (22) by the
integration factors e−At from the left and e−Bt from the right, and integrate over one time
step from tn to tn+1 ≡ tn + t to obtain

Un+1 = eAtUne
Bt + eAt

(∫ t

0
e−Aτ R(U(tn + τ))e−Bτdτ

)
eBt . (26)

We approximate the integrand in (26) by an (r−1)th order lagrange interpolation polynomial
with interpolation points at tn+1, tn, . . . , tn+2−r , and obtain the r th order cIIF scheme for
two-dimensional reaction–diffusion equations

Un+1 = eAtUne
Bt + t

(
α1R(Un+1) +

r−2∑

i=0

α−i e
(i+1)At R(Un−i )e

(i+1)Bt
)
, (27)
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where

α−i = 1

t

∫ t

0

r−2∏

k=−1
k 	=i

τ + kt

(k − i)t
dτ, −1 ≤ i ≤ r − 2. (28)

In particular, the second order cIIF scheme (cIIF2) is

Un+1 = eAt
(
Un + t

2
R(Un)

)
eBt + t

2
R(Un+1). (29)

Note that the matrices A and B have sizes of a one-dimensional problem. Hence in cIIF
schemes (27), (29) for a two-dimensional problem, we only need to compute matrix expo-
nentials for matrices with sizes of one-dimensional problems. This fact also holds for cIIF
schemes of three-dimensional reaction–diffusion equations, as shown in [38].

In order to solve reaction–diffusion problems with cross-derivatives and non-constant
diffusion coefficients on higher spatial dimensions, cIIF method has been extended to the
array-representation compact IIF (AcIIF) method in [49]. We review the AcIIF method
[49] in the following and then describe the procedure to apply this approach to our IIF
schemes for CDR equations in the next subsection. The numerical solutions are stored
in multi-dimensional arrays, for example, a two-dimensional array U = (Uk1,k2), k1 =
1, . . . , Nx ; k2 = 1, . . . , Ny + 1 for the two-dimensional problem (21)–(25). If we fix the
second index k2, the two-dimensional array U defines a vector

U (:, k2) = (U1,k2 ,U2,k2 , . . . ,UNx ,k2)
T . (30)

Then the array U can be considered as the collection of these vectors on a one-dimensional
array, with k2 going through from 1 to Ny + 1. This collection is presented using symbol

⊗

in [49], so we can write
U =

⊗

1≤k2≤Ny+1

U (:, k2). (31)

The finite difference operators are linear operators in (21) since the diffusion terms here are
linear. Define finite difference operators Lx and Ly as

(LxU )k1,k2 = D

(
Uk1+1,k2 − 2Uk1,k2 +Uk1−1,k2

h2x

)
, (32)

and

(LyU )k1,k2 = D

(
Uk1,k2+1 − 2Uk1,k2 +Uk1,k2−1

h2y

)
, (33)

then the semi-discretized scheme (21) with the array U can be written as

dU

dt
= (Lx + Ly)U + R(U ). (34)

Apply IIF schemes, e.g., the second order IIF scheme (IIF2) [37] in (34) to obtain

Un+1 = e(Lx+Ly )t
(
Un + t

2
R(Un)

)
+ t

2
R(Un+1). (35)

To implement the scheme (35) using array-representation technique, we first represent

LxU =
⊗

1≤k2≤Ny+1

AU (:, k2), (36)
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where A is given in (24). So the exponential of Lx can have the array-representation

eLxtU =
⊗

1≤k2≤Ny+1

eAtU (:, k2). (37)

Similarly,
eLytU =

⊗

1≤k1≤Nx

eBtU (k1, :), (38)

where B is given in (25). SinceLx andLy commutewith each other for this constant diffusion
coefficient equation case, e(Lx+Ly )t = eLxt eLyt . The array-representation form of the
IIF2 scheme [37], i.e., the AcIIF2 scheme for the 2D reaction–diffusion equation (20), is

Un+1 − t

2
R(Un+1) =

⊗

1≤k2≤Ny+1

eAt
( ⊗

1≤k1≤Nx

eBt V (k1, :)
)

(:, k2), (39)

whereV = Un+ t
2 R(Un). Similarly theAcIIF2 scheme for a 3D reaction–diffusion equation

with constant diffusion coefficient and without cross-derivatives is

Un+1 − t

2
R(Un+1)

=
⊗

1≤k2≤Ny

1≤k3≤Nz

eA11t
( ⊗

1≤k1≤Nx
1≤k3≤Nz

eA22t
( ⊗

1≤k1≤Nx
1≤k2≤Ny

eA33t V (k1, k2, :)
)

(k1, :, k3)
)

(:, k2, k3),

(40)

where V = Un + t
2 R(Un),U is a three-dimensional array to store the numerical values of u,

Nx , Ny, Nz are number of spatial grid points in x, y, z directions respectively. A11, A22, A33
are differential matrices for approximating diffusion operators in x, y, z directions respec-
tively, and they have sizes of a one-dimensional problem, i.e., Nx × Nx , Ny × Ny and
Nz × Nz .

It is easy to see that the AcIIF2 scheme (39) is equivalent to the cIIF2 scheme (29). As
that pointed out in [49], AcIIF schemes are actually equivalent to cIIF schemes for reaction–
diffusion equations without cross-derivatives. However, AcIIF schemes can be easily applied
to more general high dimensional reaction–diffusion equations with cross-derivatives as
shown in [49].
(2) AcIIF-WENO schemes for CDR equations

Since AcIIF method is an efficient approach for solving high dimensional reaction–
diffusion equations, we apply it in the IIF-WENO schemes for solving high dimensional
CDR equations. We present the schemes for the general three and four spatial dimension
cases that CDR equations have cross-derivatives and the diffusion coefficients can be non-
constant, such as the Fokker–Planck equations in the following Sect. 3. For such cases with
non-constant diffusion coefficients, differential matrices can not commute and an operator
splitting is needed to achieve the second order accuracy in AcIIF approach. Hence we use
the second order AcIIF scheme here.

Consider the three dimensional case ofCDRequation (1), d = 3,with cross-derivatives for
the linear diffusion terms andperiodic boundary conditions. For the simplicity of presentation,
we consider the scalar equation case. The system case is solved component by component
following the same procedure as the scalar case. The diffusion matrix D is
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D =
⎛

⎝
a1 + a2 b1 b2

b1 a3 + c1 b3
b2 b3 c2 + c3

⎞

⎠ , (41)

where ai , bi and ci , i = 1, 2, 3 are constant or non-constant coefficients of the diffusion
terms. The diffusion terms can be grouped into three classes for the convenience of applying

the AcIIF method, i.e., (a1 ∂2

∂x12
+ 2b1 ∂2

∂x1∂x2
+ c1

∂2

∂x22
)u, (a2 ∂2

∂x12
+ 2b2 ∂2

∂x1∂x3
+ c2

∂2

∂x32
)u,

and (a3
∂2

∂x22
+ 2b3 ∂2

∂x2∂x3
+ c3

∂2

∂x32
)u. Applying the second order IIF-WENO scheme (11) to

the equation and re-grouping the exponential terms, we obtain

�Un+1 = eCtn
( �Un + tnαn �R( �Un) + tnβn �Fa( �Un)

)

+ eC(tn+tn−1)
(
tnβn−1 �Fa( �Un−1)

)
+ tnαn+1 �R( �Un+1)

= �1 + �2 + tnαn+1 �R( �Un+1),

(42)

where

�1 = eCtn �V1, �V1 � �Un + tnαn �R( �Un) + tnβn �Fa( �Un), (43)

�2 = eC(tn+tn−1) �V2, �V2 � tnβn−1 �Fa( �Un−1). (44)

αn, αn+1, βn−1, βn are given in (11). Then we can apply the array representation approach
in computations of the matrix exponentials. Numerical solutions for u are stored in a three-
dimensional array U with size N1 × N2 × N3, where N1, N2 and N3 are numbers of grid
points of three spatial directions respectively. First we use L12 to denote the second order

central finite difference approximation of (a1
∂2

∂x12
+ 2b1 ∂2

∂x1∂x2
+ c1

∂2

∂x22
) as

(L12U )k1,k2,k3 = a1
h21

(Uk1+1,k2,k3 − 2Uk1,k2,k3 +Uk1−1,k2,k3)

+ 2b1
4h1h2

(Uk1+1,k2+1,k3 +Uk1−1,k2−1,k3 −Uk1+1,k2−1,k3 −Uk1−1,k2+1,k3)

+ c1
h22

(Uk1,k2+1,k3 − 2Uk1,k2,k3 +Uk1,k2−1,k3). (45)

where h1, h2 and h3 (not used in the above equation) are the grid sizes of the three spatial
directions respectively. Similarly we can define finite difference operators L13 and L23. The
diffusion terms in the equation are approximated by Fd( �U ) = C �U = (L12 + L13 + L23)U .
To derive the array representation of the operator L12, we fix k3 in the three-dimensional
array U (:, :, k3) which represents a N1 × N2 matrix, and collect all these two-dimensional
matrices along a vector. This leads to

U =
⊗

1≤k3≤N3

U (:, :, k3).

For constant diffusion coefficient cases, we can define a linear mapping A12, from a matrix
space consisting of all N1 × N2 matrices to itself as following

(A12M)i, j = 2b1
4h1h2

(Mi+1, j+1 + Mi−1, j−1 − Mi−1, j+1 − Mi+1, j−1)

+ a1
h21

(Mi+1, j − 2Mi, j + Mi−1, j ) + c1
h22

(Mi, j+1 − 2Mi, j + Mi, j−1).
(46)
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Then, the array representation of L12 and its exponential are

L12U =
⊗

1≤k3≤N3

A12U (:, :, k3),

eL12tU =
⊗

1≤k3≤N3

eA12tU (:, :, k3).

Similarly, the array representations for L13 and L23 can be written in terms of A13 and A23

respectively. Note that here A12, A13, A23 and their exponentials are actually (N1 · N2) ×
(N1 · N2), (N1 · N3) × (N1 · N3) and (N2 · N3) × (N2 · N3) matrices respectively.

For schemes (42)–(44), vectors �V1 and �V2 are stored in three-dimensional arrays V1 and
V2 as that for U . If L12, L13 and L23 commute with each other as the case that the diffusion
coefficients are constants, application of array representations to (43) and (44) leads to direct
decomposition of largematrix exponentials forC tomuch smaller ones. For detailed formulas
in implementation the method, see the equations in (69) in “Appendix”.

If L12, L13 and L23 do not commute with each other as the case that the diffusion coef-
ficients are not constants, two modifications to the method are needed. One is that the finite
difference operators L12, L13 and L23 may depend on other spatial dimensions since the dif-
fusion coefficients can be functions of all spatial variables. For example, different index k3
results in different finite difference operators L12 and different linear mappings A12. Hence
the linear mappings are represented by Ak3

12, Ak2
13 and Ak1

23 in such cases. The other is that
the Strang operator splitting [45] is needed to obtain a second order accuracy. By the Strang
symmetric operator splitting, we have

eCtn = e(L12+L13+L23)tn = e
tn
2 L12e

tn
2 L13etnL23e

tn
2 L13e

tn
2 L12 + O(tn

3). (47)

Then array representations are applied in (43) and (44) for decomposition of large matrix
exponentials of C . See the equations in (70) and (71) in “Appendix” for detailed implemen-
tation formulas.

Similarly, for a four dimensional CDR equation (1), d = 4, with cross-derivatives for the
linear diffusion terms and periodic boundary conditions, the diffusion matrix D is

D =

⎛

⎜⎜⎝

a1 + a2 + a3 b1 b2 b3
b1 a4 + a5 + c1 b4 b5
b2 b4 a6 + c2 + c4 b6
b3 b5 b6 c3 + c5 + c6

⎞

⎟⎟⎠ , (48)

where ai , bi and ci , i = 1, 2, 3, 4, 5, 6 are constant or non-constant coefficients of the
diffusion terms. The diffusion terms can be grouped into six classes for the convenience of

applying the AcIIF method, i.e., (a1
∂2

∂x12
+ 2b1 ∂2

∂x1∂x2
+ c1

∂2

∂x22
)u, (a2

∂2

∂x12
+ 2b2 ∂2

∂x1∂x3
+

c2
∂2

∂x32
)u, (a3

∂2

∂x12
+ 2b3 ∂2

∂x1∂x4
+ c3

∂2

∂x42
)u, (a4

∂2

∂x22
+ 2b4 ∂2

∂x2∂x3
+ c4

∂2

∂x32
)u, (a5

∂2

∂x22
+

2b5 ∂2

∂x2∂x4
+ c5

∂2

∂x42
)u, (a6

∂2

∂x32
+ 2b6 ∂2

∂x3∂x4
+ c6

∂2

∂x42
)u. We apply the second order IIF-

WENO scheme (11) and obtain the same form schemes (42)–(44), but with a much larger
system size. Again we can apply the array representation approach in computations of the
matrix exponentials. Numerical solutions for u are stored in a four-dimensional array U
with size N1 × N2 × N3 × N4, where N1, N2, N3 and N4 are numbers of grid points of four
spatial directions respectively. We useL12 to denote the second order central finite difference

approximation of (a1
∂2

∂x12
+ 2b1 ∂2

∂x1∂x2
+ c1

∂2

∂x22
) as
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(L12U )k1,k2,k3,k4 = a1
h21

(Uk1+1,k2,k3,k4 − 2Uk1,k2,k3,k4 +Uk1−1,k2,k3,k4)

+ 2b1
4h1h2

(Uk1+1,k2+1,k3,k4 +Uk1−1,k2−1,k3,k4 −Uk1+1,k2−1,k3,k4

−Uk1−1,k2+1,k3,k4) + c1
h22

(Uk1,k2+1,k3,k4 − 2Uk1,k2,k3,k4 +Uk1,k2−1,k3,k4).

(49)

Similarly L13, L14, L23, L24 and L34 are defined. Then the diffusion terms in the equation
are approximated by Fd( �U ) = C �U = (L12 + L13 + L14 + L23 + L24 + L34)U . To derive
the array representation of the operator L12, we fix k3 and k4 in the four-dimensional array
U (:, :, k3, k4) which represents a N1 × N2 matrix, and collect all these two-dimensional
matrices along a vector to obtain

U =
⊗

1≤k3≤N3
1≤k4≤N4

U (:, :, k3, k4).

The same linear mapping A12 is defined as (46) for three dimensional cases. The array
representation of L12 and its exponential are

L12U =
⊗

1≤k3≤N3
1≤k4≤N4

A12U (:, :, k3, k4),

eL12tU =
⊗

1≤k3≤N3
1≤k4≤N4

eA12tU (:, :, k3, k4).

Similarly, the array representation for L13, L14, L23, L24 and L34 can be written in terms of
A13, A14, A23, A24 and A34 respectively.

For schemes (42)–(44), vectors �V1 and �V2 are stored in four-dimensional arrays V1 and V2
as that forU . IfL12,L13,L14,L23,L24 andL34 commutewith each other, array representation
is applied in schemes (42)–(44) to decompose largematrix exponentials forC tomuch smaller
ones. For detailed formulas in implementation of the method, see the Eqs. (72) and (73) in
“Appendix”.

If L12, L13, L14, L23, L24 and L34 do not commute with each other(e.g., the case that the
diffusion coefficients are not constants), again two modifications are needed in the method.
One is that the linear mappings may depend on other spatial dimensions since the diffusion
coefficients can be functions of all spatial variables. For example, different indexes k3, k4
result in different finite difference operatorsL12 and different linearmappingsA12. Hence the
linear mappings are represented by Ak3,k4

12 , Ak2,k4
13 , Ak2,k3

14 , Ak1,k4
23 , Ak1,k3

24 and Ak1,k2
34 in such

cases. The other is that again the Strang symmetric operator splitting is needed to achieve a
second order accuracy. Namely, we have

eCtn = e(L12+L13+L14+L23+L24+L34)tn

= e
tn
2 L34e

tn
2 L24e

tn
2 L23e

tn
2 L14e

tn
2 L13etnL12

e
tn
2 L13e

tn
2 L14e

tn
2 L23e

tn
2 L24e

tn
2 L34 + O(t3n ).

(50)

Then application of array representation in (43) and (44) leads to decomposition of large
matrix exponentials of C into much smaller ones. See the Eqs. (74)–(77) in “Appendix” for
detailed implementation formulas.
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Remark All linear mappings (i.e., A12,A13, etc) here are actually N 2 × N 2 matrices if all
spatial directions have the same number of grid points N . Although matrix exponentials
in any higher dimensional problems can be reduced to computations of such N 2 × N 2

matrices’ exponentials, it is still expensive to directly calculate themas shown in the following
numerical experiments. Applications of Krylov subspace approximations of Sect. 2.2.1 in
computations of these N 2 × N 2 matrices’ exponentials are still necessary for the efficiency
of the AcIIF-WENO method for high dimensional CDR problems.

Remark An advantage of cIIF/AcIIF schemes is that they have simpler formulations than
the Krylov IIF schemes, hence easier to code the algorithms. For multidimensional CDR or
reaction–diffusion problems whose diffusion terms do not have cross-derivatives, cIIF/AcIIF
schemes can be directly applied because we only need to compute matrix exponentials for
matrices with sizes of one-dimensional problems, i.e. N × N matrices with N the number of
grid points in one spatial direction. Such matrix exponentials are computed using a scaling
and squaring algorithm with a Padé approximation. They are computed and stored before
the time evolution, and directly used at every time step [38]. As that shown in the numerical
experiments of the Sect. 3, the cIIF/AcIIF schemes implemented this way are more efficient
than the Krylov IIF schemes for problemswhich do not have cross-derivative diffusion terms,
on not very refined meshes.

3 Numerical Experiments

In this section, we use different types of numerical examples to systematically compare the
computational efficiency of two different approaches in using integration factor methods for
solving high dimensional problems. Examples include equations with analytical solutions,
convection-dominated equation, a stiff reaction problem from mathematical modeling of the
dorsal-ventral patterning inDrosophila embryos, and three dimensional and four dimensional
Fokker–Planck equations. We test the convergence and CPU times, and analyze computa-
tional complexity of numerical schemes viamesh refinement studies.We perform simulations
on different meshes including very fine ones. Computations on fine meshes are needed to
resolve small structures in complicated solutions which often arise in application problems.
Comparisons of computational efficiency by different methods on very fine meshes in this
paper can provide certain guidance in choosing the suitable numerical methods. All of the
numerical simulations in this paper are performed on a 2.3 GHz, 16GB RAM Linux work-
station.

3.1 Diffusion Problems

We first test problems without convection, i.e., study computational complexity of both
approaches without considering the cost of WENO scheme. Then the complete convection–
diffusion problems are tested in the next subsection.

3.1.1 Diffusion Problems Without Cross-Derivatives

Example 1 (A problem with linear reaction). We consider a reaction–diffusion problem with
linear reaction

∂u

∂t
= 0.2∇ · (∇u) + 0.1u.
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First we test the two dimensional case defined on the domain 
 = {0 < x < 2π, 0 <

y < 2π}, subject to no-flux boundary conditions at x = 0, x = 2π and periodic boundary
conditions in the y-direction, i.e.,

∂u

∂x
(0, y, t) = ∂u

∂x
(2π, y, t) = 0; u(x, 0, t) = u(x, 2π, t).

The initial condition is u(x, y, 0) = cos(x) + sin(y). The exact solution of the problem is
u(x, y, t) = e−0.1t (cos(x) + sin(y)). We compute the problem until the final time T = 1
by the second order cIIF/AcIIF scheme (29) or (39) (they are equivalent), and the second
order Krylov IIF scheme (17) with the convection term Fa = 0. Since the problem has a
linear reaction term, the local implicit equation is just a linear equation and can be solved
directly. We test the L∞ errors, numerical accuracy orders and CPU times on successively
refined meshes to compare the two approaches. The total numbers of multiplication and
division operations at one time step are counted. The cIIF2 method needs 2N 3 + 8N 2 + 6N
operations, where N is the number of grid points in each spatial direction. The KrylovIIF2
method for this problem needs (M2+12M+7)N 2+(M2+20M+7)N+O(M3) operations
at every time step. M is the dimension of Krylov subspace. M = 25 for all examples in this
paper, and M does not need to be increased when the spatial-temporal resolution is refined.
Here O(M3) term is the number of operations for computing matrix exponential of a small
M × M matrix such as eHMt . Since it is a small constant which is independent of N , we
omit it. Hence for M = 25, the number of operations at one time step for the KrylovIIF2
scheme is estimated to be 932N 2 + 1132N . This is a two dimensional problem with N 2

grid points. So the KrylovIIF2 scheme has a linear computational complexity, while the
computational complexity of the cIIF2 scheme is not linear. However, their computational
efficiency depends on the size of the problem. The numerical errors, accuracy orders, CPU
times (time unit: second) for a complete simulation, for time evolution part and for one time
step are listed in Tables 1 and 2 for the cIIF2 scheme and the KrylovIIF2 scheme. We also
list the ratios of corresponding CPU times on an N × N mesh to that on a N

2 × N
2 mesh, to

study the computational complexity of these two approaches. Both methods give the same
numerical errors and the second order accuracy. For this two dimensional time dependent
parabolic problem, we achieve large time step size computation �t = 0.5h by using the IIF
method. A linear computational complexity method should have the CPU time ratio be 8
for a complete time evolution and the ratio 4 for one time step. The KrylovIIF2 scheme’s
CPU time ratios shown in Table 2 verify its linear computational complexity. On the other
hand, although the cIIF2 scheme’s CPU time ratios shown in Table 1 are not linear, the cIIF2
scheme is more efficient than the KrylovIIF2 scheme on 40 × 40, 80 × 80 and 160 × 160
meshes, because the cIIF2 scheme has a much smaller coefficient 2 in its leading operation
amount than the KrylovIIF2 whose leading operation amount coefficient is 932. On more
refined meshes 640×640 and 1280×1280, the KrylovIIF2 scheme is more efficient than the
cIIF2. On 320×320mesh, the cIIF2 scheme is more efficient than the KrylovIIF2 scheme for
one time step, but KrylovIIF2 is more efficient for the complete simulation and for the whole
time evolution. This is because that cIIF schemes compute matrix exponentials (e.g., matrix
exponentials for N ×N matrices A�t and B�t) before the time evolution and at the last time
step when �t changes to reach the final time T . So additional CPU times are needed. Other
strategies to improve computational efficiency can be explored further here, for example,
interpolation in time for the last time step rather than recomputing matrix exponentials. This
will be one of our future work.

We perform the same test for third order schemes. The third order cIIF scheme cIIF3 (the
scheme (27) with r = 3) and the third order KrylovIIF scheme KrylovIIF3 (18) are used
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Table 1 Example 1: 2D case, cIIF2 scheme, �t = 0.5h, final time T = 1.0

N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

40 × 40 7.45 × 10−4 0.13 0.09 0.0031

80 × 80 1.86 × 10−4 2.00 1.43 11.06 1.04 12.21 0.025 7.92

160 × 160 4.66 × 10−5 2.00 18.26 12.73 14.21 13.66 0.20 8.02

320 × 320 1.16 × 10−5 2.00 269.66 14.77 225.03 15.84 1.77 8.88

640 × 640 2.91 × 10−6 2.00 4,667.67 17.31 4,328.65 19.24 19.58 11.07

1280 × 1280 7.28 × 10−7 2.00 79,855.09 17.11 76,837.65 17.75 180.42 9.22

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N
mesh to that on a N

2 × N
2 mesh

Table 2 Example 1: 2D case, KrylovIIF2 scheme, �t = 0.5h, final time T = 1.0

N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

40 × 40 7.45 × 10−4 0.50 0.50 0.04

80 × 80 1.86 × 10−4 2.00 3.56 7.16 3.56 7.16 0.14 3.58

160 × 160 4.66 × 10−5 2.00 27.34 7.68 27.34 7.68 0.54 3.92

320 × 320 1.16 × 10−5 2.00 219.15 8.02 219.15 8.02 2.15 4.01

640 × 640 2.91 × 10−6 2.00 1,828.21 8.34 1,828.21 8.34 8.91 4.15

1280 × 1280 7.28 × 10−7 2.00 14,174.02 7.75 14,174.02 7.75 34.66 3.89

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N
mesh to that on a N

2 × N
2 mesh

to compute the same two-dimensional problem until the final time T = 1. The comparison
results are presented in Tables 3 and 4. Both methods have comparable numerical errors and
accuracy orders.We observe higher than third order (around fourth order) numerical accuracy
orders because we used a fourth order central difference scheme to discretize the diffusion
terms. This is for the purpose of having comparable spatial and temporal numerical errors.
Again as that in the second order schemes, the Krylov IIF scheme KrylovIIF3 shows a linear
computational complexity, while the cIIF scheme cIIF3 does not. However, cIIF3 is more
efficient than KrylovIIF3 on not very refined meshes such as 40 × 40, 80 × 80, 160 × 160
and 320 × 320. On very refined meshes 640 × 640 and 1280 × 1280, KrylovIIF3 is more
efficient.

Then we test the three dimensional case defined on the domain
 = {0 ≤ x ≤ π, 0 ≤ y ≤
π, 0 ≤ z ≤ π}, subject to no-flux boundary conditions. The initial condition is u(x, y, z, 0) =
cos(x) + cos(y) + cos(z). The exact solution is u(x, y, z, t) = e−0.1t (cos(x) + cos(y) +
cos(z)). We count the total numbers of multiplication and division operations at one time
step. The cIIF2 scheme needs 3N 4 + 4N 3 operations, while the KrylovIIF2 scheme requires
(M2 + 8M + 6)N 3 + 12MN 2 + O(M3) operations. N is the number of grid points in each
spatial direction. Again M is the dimension of the Krylov subspace and M = 25. O(M3)

term is the number of operations for computing matrix exponential of a small M × M matrix
such as eHMt . Since it is a small constant which is independent of N , we omit it. Hence for
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Table 3 Example 1: 2D case, cIIF3 scheme, �t = 0.5h, final time T = 1.0

N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

40 × 40 1.47 × 10−5 0.21 0.16 0.01

80 × 80 9.18 × 10−7 4.00 2.43 11.37 1.96 12.31 0.05 7.82

160 × 160 5.74 × 10−8 4.00 34.41 14.18 30.38 15.49 0.49 9.44

320 × 320 3.59 × 10−9 4.00 433.57 12.60 397.46 13.08 3.41 7.01

640 × 640 2.29 × 10−10 3.97 7,782.29 17.95 7,385.89 18.58 33.51 9.83

1280 × 1280 2.89 × 10−11 2.99 145,987.45 18.76 141,798.99 19.20 332.66 9.93

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N
mesh to that on a N

2 × N
2 mesh

Table 4 Example 1: 2D case, KrylovIIF3 scheme, �t = 0.5h, final time T = 1.0

N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

40 × 40 1.47 × 10−5 1.13 1.12 0.09

80 × 80 9.18 × 10−7 4.00 7.45 6.60 7.39 6.59 0.28 3.22

160 × 160 5.74 × 10−8 4.00 62.08 8.33 61.58 8.34 1.21 4.37

320 × 320 3.59 × 10−9 4.00 504.81 8.13 500.40 8.13 4.90 4.06

640 × 640 2.35 × 10−10 3.94 3,743.59 7.42 3,696.45 7.39 17.63 3.60

1280 × 1280 1.25 × 10−11 4.23 33,080.77 8.84 32,580.07 8.81 80.09 4.54

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N
mesh to that on a N

2 × N
2 mesh

M = 25, the number of operations at one time step for the KrylovIIF2 scheme is estimated to
be 831N 3 + 300N 2. Since three dimensional problem has N 3 grid points, the computational
complexity of the KrylovIIF2 scheme is linear, while the computational complexity of the
cIIF2 scheme is not linear. Again as that for the two dimensional problem, their computational
efficiency depends on the size of the problem. We compute the problem until the final time
T = 1. The numerical errors, accuracy orders, CPU times for a complete simulation, for
time evolution part and for one time step, and the ratios of corresponding CPU times on an
N × N mesh to that on a N

2 × N
2 mesh are listed in Tables 5 and 6 for the cIIF2 scheme

and the KrylovIIF2 scheme. Both methods give the same numerical errors and the second
order accuracy. For a three dimensional time dependent problem with �t = h/3, a linear
computational complexity method should have the CPU time ratio be 16 for a complete time
evolution and the ratio 8 for one time step. The KrylovIIF2 scheme’s CPU time ratios shown
in Table 6 verify its linear computational complexity. However, the cIIF2 scheme is more
efficient than KrylovIIF2 scheme on 10×10×10, 20×20×20, 40×40×40, 80×80×80,
and 160×160×160meshes, because the cIIF2 scheme has a much smaller coefficient 3 in its
leading operation amount than the KrylovIIF2 whose leading operation amount coefficient
is 831. On the most refined mesh 320× 320× 320, the KrylovIIF2 scheme is more efficient
than the cIIF2. We can also see that the cIIF2 scheme needs slightly additional CPU times
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Table 5 Example 1: 3D case, cIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 2.24 × 10−3 0.0061 0.0057 0.00054

20 × 20 × 20 5.79 × 10−4 1.95 0.21 34.99 0.21 36.76 0.010 19.12

40 × 40 × 40 1.87 × 10−4 1.63 6.93 32.67 6.90 32.96 0.18 17.05

80 × 80 × 80 5.50 × 10−5 1.77 230.83 33.33 230.60 33.42 2.99 16.94

160 × 160 × 160 1.53 × 10−5 1.85 8,792.19 38.09 8,790.15 38.12 55.13 18.42

320 × 320 × 320 4.06 × 10−6 1.91 367,739.27 41.83 367,712.22 41.83 1242.62 22.54

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

Table 6 Example 1: 3D case, KrylovIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 2.24 × 10−3 0.22 0.22 0.02

20 × 20 × 20 5.79 × 10−4 1.95 3.06 14.15 3.06 14.15 0.15 7.02

40 × 40 × 40 1.87 × 10−4 1.63 50.54 16.49 50.54 16.49 1.30 8.51

80 × 80 × 80 5.50 × 10−5 1.77 850.24 16.82 850.24 16.82 11.06 8.53

160 × 160 × 160 1.53 × 10−5 1.85 13,637.13 16.04 13,637.13 16.04 89.28 8.07

320 × 320 × 320 4.06 × 10−6 1.91 225,543.28 16.54 225,543.28 16.54 735.62 8.24

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

to compute a few N × N matrix exponentials before the time evolution and at the last time
step.

Example 2 (A problem with nonlinear reaction). We consider a reaction–diffusion problem
with nonlinear reaction

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
− u2 + e−2t cos2(πx) cos2(πy) + (2π2 − 1)e−t cos(πx) cos(πy).

The PDE is defined on the two dimensional domain (x, y) ∈ (0, 1) × (0, 1), subject to no-
flux boundary conditions. The initial condition is u(x, y, 0) = cos(πx) cos(πy). The exact
solution of the problem is u(x, y, t) = e−t cos(πx) cos(πy). We compute the problem until
the final time T = 1 by the cIIF2 scheme and the KrylovIIF2 scheme. Again we test the L∞
errors, numerical accuracy orders and CPU times on successively refined meshes to compare
the two approaches for such a nonlinear reaction–diffusion problem. In the cIIF2 scheme and
the KrylovIIF2 scheme, a local nonlinear equation needed to be solved at every grid point,
due to the implicit treatment for the reaction term. Here the local nonlinear equation is solved
by fixed-point iterations as that in [37]. The results are reported in Tables 7 and 8. We can
see that both methods give the second order accuracy and they have comparable numerical
errors, while KrylovIIF2 has smaller numerical errors on refined meshes 640 × 640 and
1280× 1280. The ratios of corresponding CPU times on an N × N mesh to that on a N

2 × N
2
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Table 7 Example 2: cIIF2 scheme, �t = 0.5h, final time T = 1.0

N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

40 × 40 2.81 × 10−3 0.56 0.49 0.0062

80 × 80 7.19 × 10−4 1.97 6.35 11.30 5.73 11.67 0.036 5.78

160 × 160 1.82 × 10−4 1.98 82.36 12.97 76.56 13.35 0.24 6.61

320 × 320 4.56 × 10−5 1.99 1,202.63 14.60 1,146.50 14.98 1.80 7.56

640 × 640 1.14 × 10−5 2.00 18,055.74 15.01 17,598.19 15.35 13.72 7.63

1280 × 1280 2.86 × 10−6 2.00 375,400.69 20.79 371,035.11 21.08 142.81 10.41

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N
mesh to that on a N

2 × N
2 mesh

mesh show that the KrylovIIF2 scheme has a linear computational complexity. Similar as
the last example, the cIIF2 scheme is more efficient than the KrylovIIF2 scheme on meshes
40 × 40, 80 × 80, 160 × 160 and 320 × 320. On more refined meshes 640 × 640 and
1280 × 1280, the KrylovIIF2 scheme is more efficient than the cIIF2 scheme.

3.1.2 Diffusion Problems with Cross-Derivatives

Example 3 (A 3D problem with constant diffusion coefficients). We consider a three-
dimensional reaction–diffusion problem with constant diffusion coefficients

ut = (0.1uxx − 0.15uxy + 0.1uyy) + (0.1uxx + 0.2uxz + 0.2uzz)

+ (0.2uyy + 0.15uyz + 0.1uzz) + 0.8u,

where (x, y, z) ∈ 
 = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary
conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution of the
problem is

u(x, y, z, t) = e−0.2t sin(x + y + z).

This problem was used in [49] for testing the AcIIF2 scheme. We compute the problem until
the final time T = 1 by the KrylovIIF2 scheme (17) with the convection term Fa = 0, and
the AcIIF2 scheme (42), (69) with the convection term Fa = 0. For the AcIIF2 scheme, we
implement it in two different ways. One way is to directly compute the matrix exponentials
in (69). As that shown in the following numerical results, it is still very expensive in terms
of both CPU times and computer memory to directly calculate such N 2 × N 2 matrices’
exponentials. A more efficient way to implement AcIIF schemes is to apply Krylov subspace
approximations of Sect. 2.2.1 in computations of these N 2 × N 2 matrices’ exponentials.
We call such method AcIIF schemes with Krylov subspace approximations. Again we test
the L∞ errors, numerical accuracy orders and CPU times on successively refined meshes
to compare the KrylovIIF2 scheme, the direct AcIIF2 scheme, and the AcIIF2 scheme with
Krylov subspace approximations for this problem. The results are reported in Tables 9, 10
and 11. We can see that all of methods give the same numerical errors and the second order
accuracy. However, the direct AcIIF2 scheme is computationally expensive as shown in
Table 10, in both CPU times and computer memory costs. The significant CPU time and
computer memory costs for the direct AcIIF2 scheme come from the direct computations
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Table 8 Example 2: KrylovIIF2 scheme, �t = 0.5h, final time T = 1.0

N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

40 × 40 2.81 × 10−3 3.85 3.85 0.05

80 × 80 7.19 × 10−4 1.97 26.50 6.88 26.50 6.88 0.17 3.51

160 × 160 1.81 × 10−4 1.99 198.52 7.49 198.52 7.49 0.61 3.63

320 × 320 4.45 × 10−5 2.03 1,621.66 8.17 1,621.66 8.17 2.54 4.13

640 × 640 7.65 × 10−6 2.54 12,822.76 7.91 12,822.76 7.91 9.92 3.91

1280 × 1280 1.90 × 10−6 2.01 104,679.46 8.16 104,679.46 8.16 40.07 4.04

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N × N
mesh to that on a N

2 × N
2 mesh

Table 9 Example 3: KrylovIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 4.21 × 10−2 0.15 0.15 0.03

20 × 20 × 20 1.11 × 10−2 1.92 2.09 13.51 2.08 13.52 0.21 6.76

40 × 40 × 40 2.79 × 10−3 2.00 33.11 15.88 33.09 15.89 1.65 7.95

80 × 80 × 80 6.97 × 10−4 2.00 538.81 16.27 538.70 16.28 13.69 8.27

160 × 160 × 160 1.74 × 10−4 2.00 8,413.74 15.62 8,412.93 15.62 109.56 8.00

320 × 320 × 320 4.36 × 10−5 2.00 132,359.95 15.73 132,353.57 15.73 866.21 7.91

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

and stores of several N 2 × N 2 matrices’ exponentials. In fact, the computations on the
160× 160× 160 mesh can not be performed due to memory restrictions of our workstation.
Direct large N 2 × N 2 matrix-vector multiplications require a large amount of CPU time for
refined meshes as shown in Table 10 the one time step CPU times. On the other hand, if we
use the Krylov approach to approximate these N 2 ×N 2 matrices’ exponentials in the AcIIF2
scheme, the computational efficiency can be improved dramatically. This is shown in Table
11. An interesting case is that for the coarse meshes such as 10× 10× 10 and 20× 20× 20,
the one time step CPU time for the direct AcIIF2 scheme is less than that for the AcIIF2
scheme with Krylov subspace approximations due to the relative small sizes of N 2 × N 2

matrix-vector multiplications. However, the total CPU time for the direct AcIIF2 scheme
still costs more due to the expensive direct evaluations of N 2 × N 2 matrices’ exponentials.
In Table 9, we report results for the KrylovIIF2 scheme. The efficiency of the KrylovIIF2
scheme is impressive. In fact, the KrylovIIF2 scheme is the most efficient one among all three
approaches here on all meshes. We can also see that both the KrylovIIF2 scheme and the
AcIIF2 scheme with Krylov subspace approximations have linear computational complexity
as shown by the CPU time ratios in Tables 9 and 11.

Example 4 (A 4D problem with constant diffusion coefficients). We test a higher dimen-
sional problem, the four-dimensional reaction–diffusion problem with constant diffusion
coefficients
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Table 10 Example 3: Direct AcIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 4.21 × 10−2 2.16 1.08 0.01

20 × 20 × 20 1.11 × 10−2 1.92 143.85 66.60 73.36 67.75 0.28 31.73

40 × 40 × 40 2.79 × 10−3 2.00 11,831.05 82.24 5,214.92 71.09 8.88 32.26

80 × 80 × 80 6.97 × 10−4 2.00 1,601,309.44 135.35 753,295.70 144.45 485.98 54.73

160 × 160 × 160 – – – − – − − –

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh. The symbol “–” means no enough memory for computation

Table 11 Example 3: AcIIF2 scheme with Krylov subspace approximations, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 4.21 × 10−2 1.17 1.17 0.23

20 × 20 × 20 1.11 × 10−2 1.92 8.66 7.41 8.66 7.41 0.87 3.70

40 × 40 × 40 2.79 × 10−3 2.00 96.87 11.18 96.86 11.18 4.85 5.59

80 × 80 × 80 6.97 × 10−4 2.00 1,352.48 13.96 1,352.37 13.96 34.70 7.15

160 × 160 × 160 1.74 × 10−4 2.00 21,221.14 15.69 21,220.33 15.69 275.57 7.94

320 × 320 × 320 4.36 × 10−5 2.00 339,245.16 15.99 339,238.81 15.99 2,217.32 8.05

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

Table 12 Example 4: KrylovIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 × 10 1.16 × 10−1 1.60 1.59 0.32

20 × 20 × 20 × 20 2.92 × 10−2 1.99 49.34 30.89 49.30 30.92 4.93 15.49

40 × 40 × 40 × 40 7.24 × 10−3 2.01 1,596.13 32.35 1,595.56 32.37 79.79 16.19

80 × 80 × 80 × 80 1.81 × 10−3 2.00 70,569.13 44.21 70,560.68 44.22 1,929.45 24.18

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for
one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an
N × N × N × N mesh to that on a N

2 × N
2 × N

2 × N
2 mesh

ut = (0.1ux1x1 − 0.15ux1x2 + 0.1ux2x2) + (0.1ux1x1 + 0.2ux1x3 + 0.2ux3x3)

+ (0.1ux1x1 + 0.2ux1x4 + 0.2ux4x4) + (0.1ux2x2 + 0.2ux2x3 + 0.2ux3x3)

+ (0.1ux2x2 + 0.2ux2x4 + 0.2ux4x4) + (0.2ux3x3 + 0.15ux3x4 + 0.1ux4x4) + 2u,

(51)
where (x1, x2, x3, x4) ∈ 
 = {0 < x1 < 2π, 0 < x2 < 2π, 0 < x3 < 2π, 0 < x4 < 2π}
with periodic boundary condition. The initial condition is u(x1, x2, x3, x4, 0) = sin(x1 +
x2 + x3 + x4). The exact solution of the problem is

u(x1, x2, x3, x4, t) = e−0.5t sin(x1 + x2 + x3 + x4).
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Table 13 Example 4: Direct AcIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 × 10 1.16 × 10−1 5.20 3.04 0.19

20 × 20 × 20 × 20 2.92 × 10−2 1.99 398.91 76.75 258.66 85.06 11.84 63.91

40 × 40 × 40 × 40 7.24 × 10−3 2.01 38,341.37 96.12 25,777.97 99.66 799.41 67.50

80 × 80 × 80 × 80 – – – – – – − –

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for
one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an
N × N × N × N mesh to that on a N

2 × N
2 × N

2 × N
2 mesh. On the 80×80×80×80 mesh, the computations

can not be performed due to computation time restrictions of our workstation

Table 14 Example 4: AcIIF2 scheme with Krylov subspace approximations, �t = h/3, final time T = 1.0

N × N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 × 10 1.16 × 10−1 23.70 23.69 4.73

20 × 20 × 20 × 20 2.92 × 10−2 1.99 346.17 14.61 346.13 14.61 34.59 7.31

40 × 40 × 40 × 40 7.24 × 10−3 2.01 7,779.73 22.47 7,779.17 22.47 389.45 11.26

80 × 80 × 80 × 80 1.81 × 10−3 2.00 217,356.07 27.94 217,347.68 27.94 5,573.58 14.31

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for
one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an
N × N × N × N mesh to that on a N

2 × N
2 × N

2 × N
2 mesh

We compute the problem until the final time T = 1 by the KrylovIIF2 scheme (17) with the
convection term Fa = 0, and the AcIIF2 scheme (42), (72), (73) with the convection term
Fa = 0. For the AcIIF2 scheme, we also implement it in two different ways, i.e., the direct
computations of N 2 × N 2 matrices’ exponentials and the Krylov subspace approximations
of them. The numerical results are reported in Tables 12, 13 and 14. We obtain the same
conclusion as the 3Dproblem (Example 3). All ofmethods give the same numerical errors and
the second order accuracy. However, the direct AcIIF2 scheme is computationally the most
expensive one among three approaches for relatively refinedmeshes such as 40×40×40×40.
We count the total numbers of multiplication and division operations at one time step. The
direct AcIIF2 scheme needs 6N 6 + 2N 4 operations, where N is the number of grid points
in each spatial direction. The computational complexity is not linear and CPU time ratio is
expected to be around 26 = 64 when the spatial mesh is refined once. This is verified in
Table 13. As a result of the significant increase of computation time with mesh refinement,
CPU time has reached the maximum computation time restriction of our workstation and
the computation on 80 × 80 × 80 × 80 can not be performed. The computational efficiency
is improved dramatically when the Krylov approach is used to approximate these N 2 × N 2

matrices’ exponentials in the AcIIF2 scheme, as shown in Table 14. Again, the KrylovIIF2
scheme is the most efficient one among all three approaches here on all meshes as shown
in Table 12. In terms of total numbers of multiplication and division operations at one time
step, the KrylovIIF2 scheme needs (M2 + 28M + 4)N 4 + O(M3) operations, and the
AcIIF2 schemewith Krylov subspace approximations needs (6M2+66M+14)N 4+O(N 2)

operations. M is the dimension of the Krylov subspace and M = 25 in this example. Hence
they have linear computational complexity.
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Table 15 Example 5: KrylovIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 2.15 × 10−1 0.17 0.17 0.03

20 × 20 × 20 5.29 × 10−2 2.02 2.20 13.06 2.19 13.10 0.22 6.56

40 × 40 × 40 1.34 × 10−2 1.99 35.05 15.94 35.00 15.98 1.75 7.89

80 × 80 × 80 3.34 × 10−3 2.00 551.57 15.73 551.17 15.75 14.13 8.07

160 × 160 × 160 8.34 × 10−4 2.00 8,992.13 16.30 8,989,12 16.31 115.99 8.21

320 × 320 × 320 2.09 × 10−4 2.00 153,195.14 17.04 153,171.55 17.04 958.75 8.27

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

Table 16 Example 5: Direct AcIIF2 scheme, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 2.12 × 10−1 13.79 6.77 0.02

20 × 20 × 20 5.19 × 10−2 2.03 1,723.95 125.01 852.12 125.81 0.54 27.17

40 × 40 × 40 1.31 × 10−2 1.99 328,908.44 190.79 145,345.87 170.57 20.18 37.45

80 × 80 × 80 – – – – – – − –

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh. The symbol “–” means no enough memory for computation

Example 5 (A 3D problem with variable diffusion coefficients). In this example, we test the
three-dimensional reaction–diffusion problem with variable diffusion coefficients

ut = 0.5uxx − 0.5 sin(x + y)uxy + 0.5uyy

+ 0.5uxx − 1

3
cos yuxz + 1

3
uzz

+ 0.5(1 + cos x)uyy − 0.5(1 + cos x)uyz + 1

3
(1 + cos x)uzz + f (x, y, z, u),

(52)

where (x, y, z) ∈ 
 = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic bound-
ary conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The source term
f (x, y, z, u) = (1.3 + 2

3 − 0.5 sin(x + y) + 1
3 (cos x − cos y)

)
u. The exact solution of this

problem is

u(x, y, z, t) = e−0.2t sin(x + y + z).

This problem was used in [49] for testing the AcIIF2 scheme. We compute the problem until
the final time T = 1. The KrylovIIF2 scheme (17) with the convection term Fa = 0, and the
AcIIF2 scheme (42), (70), (71)with the convection term Fa = 0 are tested. Twodifferentways
to implement theAcIIF2 scheme, i.e., direct computations of N 2×N 2 matrices’ exponentials
and Krylov subspace approximations of them, are performed. The numerical results are
reported in Tables 15, 16 and 17. We obtain the same conclusion as Example 3 and Example
4. All of methods achieve similar numerical errors and the second order accuracy. Again, the
direct AcIIF2 scheme is computationally the most expensive one among three approaches
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Table 17 Example 5: AcIIF2 scheme with Krylov subspace approximations, �t = h/3, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 2.12 × 10−1 1.99 1.99 0.40

20 × 20 × 20 5.19 × 10−2 2.03 14.87 7.45 14.86 7.45 1.49 3.73

40 × 40 × 40 1.31 × 10−2 1.99 165.34 11.12 165.28 11.12 8.26 5.56

80 × 80 × 80 3.27 × 10−3 2.00 2,299.09 13.91 2,298.70 13.91 58.91 7.13

160 × 160 × 160 8.17 × 10−4 2.00 35,181.50 15.30 35,178.49 15.30 456.60 7.75

320 × 320 × 320 2.04 × 10−4 2.00 577,577.49 16.42 577,553.96 16.42 3,775.65 8.27

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

due to direct computations of quite a few N 2×N 2 matrices’ exponentials. Especially for this
problem with variable diffusion coefficients, much more N 2 × N 2 matrices’ exponentials
need to be computed than that for constant diffusion coefficient problems because such
N 2 × N 2 matrices Ak3

12, Ak2
13 and Ak1

23 in (70) and (71) are different at different spatial grid
points. Since direct implementation of theAcIIF2 scheme computes and stores these N 2×N 2

matrices’ exponentials before the time evolution, much more computer memory is used to
store matrices’ exponentials than that by the approach of Krylov subspace approximations, in
whichmultiplications of exponential matrices and vectors are performed in the time evolution
process and nomatrix’s exponential is pre-stored. In fact, the computations on the 80×80×80
mesh by the direct AcIIF2 scheme can not be performed due to memory restrictions of our
workstation. Table 16 shows that a complete simulation needsmuchmoreCPU times than that
of the time evolution part. This verifies that direct computations of these N 2 × N 2 matrices’
exponentials require a large amount of CPU resources. Again, the computational efficiency
can be improved dramatically by using the Krylov approach to approximate multiplications
of N 2 × N 2 matrices’ exponentials with vectors in the AcIIF2 scheme, as shown in Table
17. And computations can be performed on much more refined meshes (Table 17) since we
do not need to pre-store these N 2 × N 2 matrices’ exponentials. The most efficient one is
the computations by using the KrylovIIF2 scheme, as shown in Table 15. In terms of total
numbers of multiplication and division operations at one time step, the KrylovIIF2 scheme
needs (M2 + 19M + 7)N 3 + MN 2 + MN + O(M3) operations, and the AcIIF2 scheme
needs 5N 5 + 6N 3 operations. N is the number of grid points in each spatial direction, while
the constant M is the dimension of the Krylov subspace and M = 25 in this example. Hence
the KrylovIIF2 scheme has linear computational complexity as shown by the CPU time ratios
in Table 15.

3.1.3 A System with Stiff Reactions from Mathematical Biology

Example 6 We consider an example in mathematical modeling of the dorsal-ventral pat-
terning in Drosophila embryos, a regulatory system involving several zygotic genes [35].
Among them, decapentaplegic (Dpp) promotes dorsal cell fates such as amnioserosa and
inhibits development of the ventral central nervous system; and another gene Sog promotes
central nervous system development. In this system, Dpp is produced only in the dorsal
region while Sog is produced only in the ventral region. For the wild-type, the Dpp activity
has a sharp peak around the mid-line of the dorsal with the presence of its “inhibitor” Sog.
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Intriguingly, mutation of Sog results in a loss of ventral structure as expected, but, in addition,
the amnioserosa is reduced as well. It appears that the Dpp antagonist, Sog, is required for
maximal Dpp signaling [2]. Motivated by experimental study on over-expression of the cell
receptors along the anterior–posterior axis of the embryo [35], a two-dimensional reaction
diffusion model was developed [27] to exam the Dpp activities outside the area of elevated
receptors in aDrosophila embryo. The model has stiff reaction terms due to largely different
biochemical reaction rates in the system [38]. Here we compare the computational efficiency
of compact IIF method and Krylov IIF method for solving this example.

Let [L], [S], [LS], [LR] denote the concentration of Dpp, Sog, Dpp-Sog complex, and
Dpp-receptor complex, respectively. The dynamics of the Dpp-Sog system is governed by
the following reaction diffusion system [27]:

∂[L]
∂t

= DL

(
∂2[L]
∂x2

+ ∂2[L]
∂y2

)
− kon[L] (R(x, y) − [LR]) + kof f [LR]

− jon[L][S] + ( jo f f + τ jdeg)[LS] + VL(x, y)

∂[LR]
∂t

= kon[L] (R(x, y) − [LR]) − (kof f + kdeg)[LR]
∂[LS]

∂t
= DLS

(
∂2[LS]

∂x2
+ ∂2[LS]

∂y2

)
+ jon[L][S] − ( jo f f + jdeg)[LS]

∂[S]
∂t

= DS

(
∂2[S]
∂x2

+ ∂2[S]
∂y2

)
− jon[L][S] + jo f f [LS] + VS(x, y) (53)

in the domain 0 < x < Xmax, 0 < y < Ymax, where

R(x, y) =
{
Rh, x ≤ Xh,

R0, x > Xh .
(54)

VL(X, Y ) =
{

vL , y < 1
2Ymax,

0, y ≥ 1
2Ymax.

(55)

VS(X, Y ) =
{
0, y < 1

2Ymax,

vS, y ≥ 1
2Ymax.

(56)

The boundary conditions for [L], [LS], and [S] are no-flux at x = 0 and x = Xmax, and
periodic at y = 0 and y = Ymax. R(x, y) is the concentration of the initially available
receptor in space; x = Xh is the boundary between the two regions with different level of
receptors; VL(x, y) and VS(x, y) are the production rates for Dpp and Sog, respectively;
DL , DLS, DS are diffusion coefficients; τ is the cleavage rate for Sog, and other coefficients
are on, off and degradation rate constants for the corresponding biochemical reactions. The
initial concentrations of all morphogen molecules are zeros. Both Xmax and Ymax are taken to
be 0.055cm, based on the embryo size of Drosophila at its certain developmental stage [35].
We study the cell receptor over-expression experiments in [35] by setting Rh = 9µM in the
region 0 < x ≤ Xh = 0.02cm, and R0 = 3µM in the rest part of the domain. The second
order Krylov IIF (Krylov IIF2) scheme and the second order compact IIF (cIIF2) scheme
are used to simulate the system. The numerical solutions for the concentrations of Dpp,
Dpp-receptor, Dpp-Sog and Sog are presented in Figs. 1 and 2. Similar results are obtained
for these two methods. Simulations by both methods confirm that the over-expression of
receptor induces a local boost of Dppreceptor activities near the boundary of two different
concentration regions of receptors, similar to the experimental observations in [35]. However
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Fig. 1 Numerical solutions of Example 6 using the Krylov IIF2 scheme: concentrations of [L], [LR],
[LS], [S] at T = 100 s for theDpp-Sog systemwhen receptors are over-expressed.�t = hx = hy = 0.001375
in the simulation. Parameters are DL = DLS = DS = 85µm2 s−1; vL = 1 nM s−1; vS = 80 nM s−1; kon =
0.4µM−1 s−1; kof f = 4 × 10−6 s−1; kdeg = 5 × 10−4 s−1; jon = 95µM−1 s−1; jo f f = 4 × 10−6 s−1;

jdeg = 0.54 s−1; τ = 1; Rh = 9µM; R0 = 3µM

the computational efficiency of these twomethods are different. It takes 871.26 seconds CPU
time for the cIIF2 scheme tofinish the simulation,while it costs 8152.50 secondsCPU time for
the Krylov IIF2 scheme. Again, consistent observations with previous examples are obtained.
For this example which has diffusion terms without cross-derivatives, compact approach is
more efficient than the Krylov approach.

3.2 Convection–Diffusion Problems

In this section, we test these schemes for dealing with high dimensional convection–diffusion
problems with WENO discretizations for convection terms.

Example 7 (A 4D convection–diffusion equation with anisotropic diffusion and constant
diffusion coefficients) We consider a four-dimensional convection–diffusion equation with
cross-derivative diffusion terms and constant diffusion coefficients

ut +
(
1

2
u2
)

x1

+
(
1

2
u2
)

x2

+
(
1

2
u2
)

x3

+
(
1

2
u2
)

x4

= (0.1ux1x1 − 0.15ux1x2 + 0.1ux2x2) + (0.1ux1x1 + 0.2ux1x3 + 0.2ux3x3)

+ (0.1ux1x1 + 0.2ux1x4 + 0.2ux4x4) + (0.1ux2x2 + 0.2ux2x3 + 0.2ux3x3)

+ (0.1ux2x2 + 0.2ux2x4 + 0.2ux4x4) + (0.2ux3x3 + 0.15ux3x4
+ 0.1ux4x4) + S(x1, x2, x3, x4, t),

(57)

where (x1, x2, x3, x4) ∈ 
 = {0 < x1 < 2π, 0 < x2 < 2π, 0 < x3 < 2π, 0 < x4 < 2π}
with periodic boundary condition. The initial condition is u(x1, x2, x3, x4, 0) = sin(x1 +
x2 + x3 + x4). The exact solution is
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Fig. 2 Numerical solutions of Example 6 using the cIIF2 scheme: concentrations of [L], [LR], [LS], [S] at
T = 100 s for the Dpp-Sog system when receptors are over-expressed. �t = hx = hy = 0.001375 in the
simulation. Parameters are DL = DLS = DS = 85µm2 s−1; vL = 1 nM s−1; vS = 80 nM s−1; kon =
0.4µM−1 s−1; kof f = 4 × 10−6 s−1; kdeg = 5 × 10−4 s−1; jon = 95µM−1 s−1; jo f f = 4 × 10−6 s−1;

jdeg = 0.54 s−1; τ = 1; Rh = 9µM; R0 = 3µM

u(x1, x2, x3, x4) = e−0.5t sin(x1 + x2 + x3 + x4).

The source term

S(x1, x2, x3, x4, t) = (4e−0.5t cos(x1 + x2 + x3 + x4) + 2)e−0.5t sin(x1 + x2 + x3 + x4).

We compute the problem until the final time T = 1. The KrylovIIF2-WENO scheme (17)
and the AcIIF2-WENO scheme (42), (72), (73) with Krylov subspace approximations to
matrix exponentials in (72) and (73) are used. Here time step sizes are determined only by
the convection (hyperbolic) part of the equation with CFL number 0.1. Numerical results are
reported in Tables 18 and 19.We can see that both schemes achieve the same numerical errors
and second order accuracy. However, the KrylovIIF2-WENO scheme is much more efficient
than the AcIIF2-WENO scheme with Krylov subspace approximations for this example.

Example 8 (A 3D convection–diffusion equation with anisotropic diffusion and variable
diffusion coefficients) We add convection terms to the example 5 and consider the following
three-dimensional convection–diffusion equation with cross-derivative diffusion terms and
variable diffusion coefficients

ut + (
1

2
u2)x + (

1

2
u2)y + (

1

2
u2)z = 0.5uxx − 0.5 sin(x + y)uxy

+ 0.5uyy + 0.5uxx − 1

3
cos(y)uxz + 1

3
uzz + 0.5(1 + cos x)uyy

− 0.5(1 + cos x)uyz + 1

3
(1 + cos x)uzz + S(x, y, z, t),

(58)
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Table 18 Example 7: KrylovIIF2-WENO scheme, final time T = 1.0

N × N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 × 10 2.27 × 10−2 6.55 6.52 0.65

20 × 20 × 20 × 20 1.01 × 10−2 1.18 242.15 36.97 241.64 37.08 10.51 16.13

40 × 40 × 40 × 40 3.30 × 10−3 1.61 8,013.72 33.09 8,005.98 33.13 166.82 15.87

80 × 80 × 80 × 80 9.00 × 10−4 1.87 316,945.98 39.55 316,803.84 39.57 3,084.58 18.49

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for
one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an
N × N × N × N mesh to that on a N

2 × N
2 × N

2 × N
2 mesh

Table 19 Example 7: AcIIF2-WENO scheme with Krylov subspace approximations, final time T = 1.0

N × N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 × 10 2.27 × 10−2 110.57 110.54 11.07

20 × 20 × 20 × 20 1.01 × 10−2 1.18 2,290.56 20.72 2,290.05 20.72 99.25 8.96

40 × 40 × 40 × 40 3.30 × 10−3 1.61 60,778.28 26.53 60,770.28 26.54 1,269.46 12.79

80 × 80 × 80 × 80 9.00 × 10−4 1.87 1,812,641.33 29.82 1,812,266.39 29.82 17,984.97 14.17

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for
one time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an
N × N × N × N mesh to that on a N

2 × N
2 × N

2 × N
2 mesh

where (x, y, z) ∈ 
 = {0 < x < 2π, 0 < y < 2π, 0 < z < 2π} with periodic boundary
conditions. The initial condition is u(x, y, z, 0) = sin(x + y + z). The exact solution of this
equation is

u(x, y, z, t) = e−0.2t sin(x + y + z).

And the source term S(x, y, z, t) is

S(x, y, z, t) =
(
3e−0.2t cos(x + y + z) + 59

30
− 0.5 sin(x + y)

+ 1

3
(cos(x) − cos(y))

)
e−0.2t sin(x + y + z).

We compute the problem until the final time T = 1. The KrylovIIF2-WENO scheme (17),
and the AcIIF2-WENO scheme (42), (70), (71) with Krylov subspace approximations to
matrix exponentials in (70) and (71) are tested. Time step sizes are determined only by
the convection (hyperbolic) part of the equation with CFL number 0.1. Numerical results
are reported in Tables 20 and 21. The same observations as the last example are obtained.
Both schemes achieve almost the same numerical errors and second order accuracy. The
KrylovIIF2-WENO scheme is much more efficient than the AcIIF2-WENO scheme with
Krylov subspace approximations for this convection–diffusion example with anisotropic
diffusion and variable diffusion coefficients.

Example 9 (A convection-dominated problem) In this example, we test the performance of
the schemes for convection-dominated case. Consider the two-dimensional nonlinear viscous
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Table 20 Example 8: KrylovIIF2-WENO scheme, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 1.37 × 10−1 1.22 1.22 0.09

20 × 20 × 20 2.99 × 10−2 2.19 21.24 17.35 21.21 17.37 0.76 8.11

40 × 40 × 40 5.28 × 10−3 2.50 393.16 18.51 392.95 18.52 6.89 9.10

80 × 80 × 80 1.09 × 10−3 2.28 8,463.98 21.53 8,462.12 21.53 61.55 8.93

160 × 160 × 160 2.62 × 10−4 2.05 95,558.44 11.29 95,545.98 11.29 413.83 6.72

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh

Table 21 Example 8: AcIIF2-WENO scheme with Krylov subspace approximations, final time T = 1.0

N × N × N L∞ error Order CPU (s) R1 CPU1 (s) R2 CPU2 (s) R3

10 × 10 × 10 1.37 × 10−1 10.05 10.05 0.78

20 × 20 × 20 2.99 × 10−2 2.19 81.47 8.10 81.44 8.10 2.91 3.73

40 × 40 × 40 5.28 × 10−3 2.50 936.26 11.49 936.05 11.49 16.43 5.64

80 × 80 × 80 1.09 × 10−3 2.28 11,024.66 11.78 11,022.74 11.78 91.27 5.56

160 × 160 × 160 2.61 × 10−4 2.06 215,299.80 19.53 215,287.37 19.53 936.02 10.26

CPU: CPU time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one
time step. CPU time unit: seconds. R1, R2 and R3 are the ratios of corresponding CPU times on an N ×N ×N
mesh to that on a N

2 × N
2 × N

2 mesh
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Fig. 3 Numerical solutions of nonlinear viscous Burgers’ equation on a 80 × 80 mesh by the Krylov IIF2-
WENO scheme and the cIIF2-WENO scheme. Time T = 5/π2. Left picture result of Krylov IIF2-WENO;
right picture result of cIIF2-WENO
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Table 22 CPU time comparisons for solving the nonlinear viscous Burgers’ equation

N × N KrylovIIF2 CPU (s) cIIF2 CPU (s)

40 × 40 0.52 0.10

80 × 80 5.83 1.20

160 × 160 29.81 15.15

320 × 320 378.36 290.28

640 × 640 3,067.96 4,344.81

The PDE is solved until the final time T = 5/π2. KrylovIIF2 CPU: CPU time of the Krylov IIF2-WENO
scheme; cIIF2 CPU: CPU time of the cIIF2-WENO scheme

Table 23 Numerical errors and
accuracy orders for the
KrylovIIF2 scheme and the
AcIIF2 scheme with Krylov
subspace approximations for the
3D Fokker–Planck equation (63)

KrylovIIF2-WENO

Time step size L∞error Order

t 1.56 × 10−8

t/2 3.90 × 10−9 2.00

t/4 1.00 × 10−9 1.96

AcIIF2-WENO with Krylov subspace approx.

Time step L∞ error Order

t 1.56 × 10−8

t/2 3.90 × 10−9 2.00

t/4 1.00 × 10−9 1.96

The third order WENO scheme is
used for the convection terms.
Final time T = 5. t = 0.017

Burgers’ equation
⎧
⎪⎨

⎪⎩
ut + (

u2

2
)x + (

u2

2
)y = 0.01�u, −2 ≤ x ≤ 2, − 2 ≤ y ≤ 2,

u(x, y, 0) = 0.3 + 0.7 sin(
π

2
(x + y)),

(59)

with periodic boundary condition. Since the viscous coefficient is much smaller than the
convection coefficient, a sharp gradient (the shock wave) is developed along with the time
evolution. The Krylov IIF2-WENO scheme and the cIIF2-WENO scheme are used to solve
the PDE to T = 5/π2. The numerical results are reported in Fig. 3. We can observe that the
WENOschemeplays an important role here to obtain a sharp, non-oscillatory shock transition
region.The time step size is only restricted by the hyperbolic part of thePDEwithCFLnumber
0.5. We compare the CPU times of the Krylov IIF2-WENO scheme and the cIIF2-WENO
scheme on different meshes. The results are reported in Table 22. Consistent observations
with previous examples are obtained. For this example which has diffusion terms without
cross-derivatives, compact approach is more efficient than the Krylov approach, except the
case with a very refined mesh.

Example 10 (Fokker–Planck equations)The Fokker–Planck equation (FPE) [9,39] describes
in a statistical sense how a collection of initial data evolves in time, e.g., in describing
Brownian motion. It is a N -dimensional convection–diffusion equation and has been applied
in computing statistical properties inmany systems. In [49], AcIIF schemeswith second order
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Fig. 4 Distribution of molecular species A and Bwith EA = 12.75, 21.75, 30.75, 39.75. Numerical solutions
of (63) using the KrylovIIF2-WENO scheme. Final time T = 10. t = 0.017. The numbers of spatial grid
points are NA = 120, NB = 120, NEA = 60

central difference spatial discretizations for the diffusion terms were applied in solving FPEs
which describe the time evolution of the probability density function of stochastic systems
[40]. The general form of FPEs is

∂ p(x, t)

∂t
= −

R∑

r=1

⎧
⎨

⎩

N∑

i=1

nri
∂

∂xi

(
qr (x, t) − 1

2

N∑

j=1

nr j
∂qr (x, t)

∂x j

)
⎫
⎬

⎭ , (60)

where p(x, t) is the probability density of the system at the state x = (x1, x2, . . . , xN )

and time t . In the context of bio-chemical reactions, R denotes the total number of chemical
reactions in the system, N the total number of species involving in the reaction, and xi denotes
the copy number of i th reactant. nri is the change of xi when the r th reaction occurs once.
qr (x, t) is defined by qr (x, t) = wr (x)p(x, t), where wr (x, t) is the reaction propensity
function for r th reaction at state x and time t . In this section,we study computational efficiency
of Krylov IIF-WENO scheme and AcIIF-WENO scheme for solving high dimensional FPE.
Since IIF schemes in this paper are multistep methods, numerical values at the first time step
are needed to start computations for solving convection–diffusion equations. We use a third
order Runge–Kutta scheme for the first step time evolution. Then the second order Krylov
IIF scheme and AcIIF scheme are used to continue the time evolution.

(1) A three dimensional Fokker–Planck equation
We first compare the computational efficiency of the KrylovIIF2-WENO scheme (17) and

the AcIIF2-WENO scheme (42), (70), (71) with Krylov subspace approximations for a three
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Table 24 CPU time for KrylovIIF2 scheme and the AcIIF2 scheme with Krylov subspace approximations
for the 3D Fokker–Planck equation (63)

CPU CPU1 CPU2

KrylovIIF2-WENO 44,568.7 44,562.3 75.24

AcIIF2-WENO with Krylov 183,126.0 183,120.0 309.38

The third order WENO scheme is used for the convection terms. Final time T = 10. t = 0.017. CPU: CPU
time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step.
CPU time unit: seconds
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Fig. 5 Distribution of molecular species A and Bwith EA = 12.75, 21.75, 30.75, 39.75. Numerical solutions
of (63) using the KrylovIIF2-WENO scheme. Final time T = 50. t = 0.017. The numbers of spatial grid
points are NA = 120, NB = 120, NEA = 60

dimensional Fokker–Planck equation [44] which involves two metabolites A and B and one
enzyme EA. The reactions are described as following (here ∅ means that there is no reactant
or product in the reaction):

∅
kA [EA ]

1+[A]/KI−→ A, ∅ kB−→ B,

A + B
k[A][B]−→ ∅,

A
μ[A]−→ ∅, B

μ[B]−→ ∅,

∅
kEA

1+[A]/KR−→ EA, EA
μ[EA]−→ ∅.

(61)
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Fig. 6 Distribution of molecular species A and B with different EA values, at time T = 0, 20, 35, 50.
Numerical solutions of (63) using the KrylovIIF2-WENO scheme. t = 0.017. The numbers of spatial grid
points are NA = 120, NB = 120, NEA = 60

In this system, the total number of reactions R is 7, and the total number of chemical species
N is 3. The vectors nr = (nr1, nr2, nr3) are n1 = (1, 0, 0), n2 = (0, 1, 0), n3 = (−1,−1, 0),
n4 = (−1, 0, 0), n5 = (0,−1, 0), n6 = (0, 0, 1), n7 = (0, 0,−1). We denote the system
state x by x = (x1, x2, x3) which is ([A], [B], [EA]) in this case. Then the propensity
functions wr (x) are

w1 = kAx3
1 + x1/KI

, w2 = kB , w3 = kx1x2,

w4 = μx1, w5 = μx2, w6 = kEA

1 + x1/KR
, w7 = μx3,

(62)

where kA = 0.3 s−1, kB = 2 s−1, KI = 30, k = 0.001 s−1, μ = 0.004 s−1, KR = 30 and
kEA = 1 s−1 [44]. Then the FPE can be written as

∂ p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7), (63)

where Lr represents the operator for the r th reaction. Specifically,

L1 = ∂q1(x, t)

∂x1
− 1

2

∂2q1(x, t)

∂x21
,

L2 = ∂q2(x, t)

∂x2
− 1

2

∂2q2(x, t)

∂x22
,
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L3 = −∂q3(x, t)

∂x1
− ∂q3(x, t)

∂x2
− 1

2

(∂2q3(x, t)

∂x21
+ ∂2q3(x, t)

∂x22
+ 2

∂2q3(x, t)

∂x1∂x2

)
,

L4 = −∂q4(x, t)

∂x1
− 1

2

∂2q4(x, t)

∂x21
,

L5 = −∂q5(x, t)

∂x2
− 1

2

∂2q5(x, t)

∂x22
,

L6 = ∂q6(x, t)

∂x3
− 1

2

∂2q6(x, t)

∂x23
,

L7 = −∂q7(x, t)

∂x3
− 1

2

∂2q7(x, t)

∂x23
. (64)

The computational domain is 
 = [0, 100] × [0, 100] × [0, 45], which covers nearly all the
possible states of the chemical reactions, since the probability of [A] > 100, [B] > 100, and
[EA] > 45 is sufficiently small. The initial condition in our simulation is a Gaussian distri-
bution centered at point (30, 40, 20) with standard deviation

√
30. Zero Dirichlet boundary

conditions are used.
For spatial discretizations, we use the third order WENO scheme for the convection terms

and the second order central difference scheme for the diffusion terms. And we compare the
second order Krylov IIF scheme and the second order AcIIF scheme with Krylov subspace
approximations. For simulation results shown in the figures here, the time step size t is
0.017 (corresponding to the CFL number 0.4 for the convection part) and the numbers of
spatial grid points are NA = 120, NB = 120, NEA = 60. In Table 23, we list the errors
and accuracy orders for both schemes, and the same numerical errors and second order
accuracy are obtained. Since there is no explicit form for the exact solution in this example,
we focus on testing the schemes’ temporal accuracy. So the spatial resolution is fixed to be
120× 120× 60, and numerical errors for a time step size t are obtained by calculating the
difference of numerical values for t and t/2. We compare the computational efficiency
of these two schemes and list CPU times of using them to solve the problem until the final
time T = 10 with t = 0.017, in Table 24. The CPU times in Table 24 show that the
KrylovIIF2-WENO scheme is more efficient than the AcIIF2-WENO scheme with Krylov
subspace approximations, for this example. In Figs. 4, 5 and 6, we show contour plots
of numerical solutions by the KrylovIIF2-WENO scheme on two dimensional domain of
molecular species A and B, with different values of the third dimension EA. Contour plots of
numerical solutions by the AcIIF2-WENO schemewith Krylov subspace approximations are
presented in Figs. 7, 8 and 9. We see that both methods generate similar numerical solutions.

(2) A four dimensional Fokker–Planck equation
We further test the methods for a higher dimensional problem, i.e., a four dimensional

FPE which involves two metabolites A and B and two enzymes EA and EB . The reac-
tions are described as following (here ∅ means that there is no reactant or product in the
reaction):

∅
kA [EA ]

1+[A]/KI−→ A, ∅
kB [EB ]

1+[B]/KI−→ B,

A + B
k[A][B]−→ ∅,

A
μ[A]−→ ∅, B

μ[B]−→ ∅,
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Fig. 7 Distribution of molecular species A and Bwith EA = 12.75, 21.75, 30.75, 39.75. Numerical solutions
of (63) using the AcIIF2-WENO scheme with Krylov subspace approximations. Final time T = 10. t =
0.017. The numbers of spatial grid points are NA = 120, NB = 120, NEA = 60

∅
kEA

1+[A]/KR−→ EA, EA
μ[EA]−→ ∅,

∅
kEB

1+[B]/KR−→ EB , EB
μ[EB ]−→ ∅. (65)

In this system, the total number of reactions R is 9, and the total number of chemical species
N is 4. The vectors nr = (nr1, nr2, nr3, nr4) are n1 = (1, 0, 0, 0), n2 = (0, 1, 0, 0), n3 =
(−1,−1, 0, 0), n4 = (−1, 0, 0, 0), n5 = (0,−1, 0, 0), n6 = (0, 0, 1, 0), n7 = (0, 0,−1, 0),
n8 = (0, 0, 0, 1), n9 = (0, 0, 0,−1). We denote the system state x by x = (x1, x2, x3, x4)
which is ([A], [B], [EA], [EB ]) in this case. Then the propensity functions wr (x) are

w1 = kAx3
1 + x1/KI

, w2 = kBx4
1 + x2/KI

, w3 = kx1x2, w4 = μx1,

w5 = μx2, w6 = kEA

1 + x1/KR
, w7 = μx3, w8 = kEB

1 + x2/KR
, w9 = μx4,

(66)

where kA = 0.3 s−1, kB = 0.3 s−1, KI = 60, k = 0.001 s−1, μ = 0.002 s−1, KR = 30,
kEA = 0.02 s−1 and kEB = 0.02 s−1 [44]. Then the FPE can be written as

∂ p(x, t)

∂t
= −(L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9), (67)
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Fig. 8 Distribution of molecular species A and Bwith EA = 12.75, 21.75, 30.75, 39.75. Numerical solutions
of (63) using the AcIIF2-WENO scheme with Krylov subspace approximations. Final time T = 50. t =
0.017. The numbers of spatial grid points are NA = 120, NB = 120, NEA = 60

where Lr represents the operator for the r th reaction. Specifically,

L1 = ∂q1(x, t)

∂x1
− 1

2

∂2q1(x, t)

∂x21
,

L2 = ∂q2(x, t)

∂x2
− 1

2

∂2q2(x, t)

∂x22
,

L3 = −∂q3(x, t)

∂x1
− ∂q3(x, t)

∂x2
− 1

2

(∂2q3(x, t)

∂x21
+ ∂2q3(x, t)

∂x22
+ 2

∂2q3(x, t)

∂x1∂x2

)
,

L4 = −∂q4(x, t)

∂x1
− 1

2

∂2q4(x, t)

∂x21
,

L5 = −∂q5(x, t)

∂x2
− 1

2

∂2q5(x, t)

∂x22
,

L6 = ∂q6(x, t)

∂x3
− 1

2

∂2q6(x, t)

∂x23
,

L7 = −∂q7(x, t)

∂x3
− 1

2

∂2q7(x, t)

∂x23
,

L8 = ∂q8(x, t)

∂x4
− 1

2

∂2q8(x, t)

∂x24
,
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Fig. 9 Distribution of molecular species A and B with different EA values, at time T = 0, 20, 35, 50.
Numerical solutions of (63) using the AcIIF2-WENO scheme with Krylov subspace approximations. t =
0.017. The numbers of spatial grid points are NA = 120, NB = 120, NEA = 60

Table 25 Numerical errors and
accuracy orders for the
KrylovIIF2 scheme and the
AcIIF2 scheme with Krylov
subspace approximations for the
4D Fokker–Planck equation (67)

KrylovIIF2-WENO

Time step size L∞ error Order

t 1.03 × 10−8

t/2 2.58 × 10−9 2.00

t/4 6.47 × 10−10 2.00

AcIIF2-WENO with Krylov subspace approx.

Time step L∞ error Order

t 1.03 × 10−8

t/2 2.58 × 10−9 2.00

t/4 6.47 × 10−10 2.00

The third order WENO scheme is
used for the convection terms.
Final time T = 5. t = 0.1

L9 = −∂q9(x, t)

∂x4
− 1

2

∂2q9(x, t)

∂x24
. (68)

The computational domain is 
 = [0, 80]× [0, 80]× [0, 30]× [0, 30]. The initial condition
in our simulation is a Gaussian distribution centered at point (30, 40, 15, 12) with standard
deviation

√
40. Zero Dirichlet boundary conditions are used.

Same as that for the three dimensional problem, for spatial discretizations we use the third
orderWENO scheme for the convection terms and the second order central difference scheme
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Table 26 CPU time for KrylovIIF2 scheme and the AcIIF2 scheme with Krylov subspace approximations
for the 4D Fokker–Planck equation (67)

CPU CPU1 CPU2

KrylovIIF2-WENO 3831.98 3826.48 38.09

AcIIF2-WENO with Krylov 93320.7 93315.6 924.16

The third order WENO scheme is used for the convection terms. Final time T = 10. t = 0.1. CPU: CPU
time for a complete simulation. CPU1: CPU time for time evolution part. CPU2: CPU time for one time step.
CPU time unit: seconds
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Fig. 10 Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and EB = 15. Numerical
solutions of (67) using the KrylovIIF2-WENO scheme. Final time T = 10. t = 0.1. The numbers of spatial
grid points are NA = 40, NB = 40, NEA = 20, NEB = 20

for the diffusion terms. We compare the computational efficiency of the second order Krylov
IIF scheme (17) and the second order AcIIF scheme (42), (74)–(77) with Krylov subspace
approximations. For simulation results shown in the figures here, the time step size t is 0.1
(corresponding to the CFL number 0.6 for the convection part) and the numbers of spatial
grid points are NA = 40, NB = 40, NEA = 20, NEB = 20. In Table 25, we list the errors and
accuracy orders for both schemes, and the same numerical errors and second order accuracy
are obtained. We compare the computational efficiency of these two schemes and list CPU
times of using them to solve the problem until the final time T = 10 with t = 0.1, in
Table 26. We obtain the same conclusion as that for the three dimensional problem. The CPU
times in Table 26 show that the KrylovIIF2-WENO scheme is more efficient than the AcIIF2-
WENO scheme with Krylov subspace approximations, for this four dimensional example. In
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Fig. 11 Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and EB = 15. Numerical
solutions of (67) using the KrylovIIF2-WENO scheme. Final time T = 50. t = 0.1. The numbers of spatial
grid points are NA = 40, NB = 40, NEA = 20, NEB = 20

Figs. 10, 11 and 12, we show contour plots of numerical solutions by the KrylovIIF2-WENO
scheme on two dimensional domain of molecular species A and B, with different values of
the third and the fourth dimension EA and EB . Contour plots of numerical solutions by the
AcIIF2-WENO scheme with Krylov subspace approximations are presented in Figs. 13, 14
and 15. We see that both methods generate similar numerical solutions.

4 Conclusions and Discussions

In this paper,we systematically performnumerical comparison and computational complexity
analysis to study two different approaches in dealing with solving high spatial dimension
diffusion and convection–diffusion PDE problems by integration factor WENO methods.
Specifically, one approach is the cIIF/AcIIF method, and the other one is the Krylov IIF
method, i.e., direct application of Krylov subspace approximations in efficiently calculating
large matrix exponentials in integration factor methods. Via extensive numerical experiments
and analysis of the results for various high spatial dimension problems, we find that both the
cIIF/AcIIF method and the Krylov IIF method have their own advantages for different type
of problems. The Krylov IIF method has linear computational complexity. For the numerical
examples tested in this paper, it is shown that on not very refined meshes, the cIIF/AcIIF
method is more efficient than the Krylov IIF method for problems whose diffusion terms do
not have cross-derivatives. TheKrylov IIFmethod ismore efficient on such problems for very
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Fig. 12 Distribution of molecular species A and B with EA = 15 and EB = 15, at time T = 0, 10, 30, 50.
Numerical solutions of (67) using the KrylovIIF2-WENO scheme. t = 0.1. The numbers of spatial grid
points are NA = 40, NB = 40, NEA = 20, NEB = 20

refined meshes due to its linear computational complexity property. For high dimensional
problems whose diffusion terms have no cross-derivatives, the cIIF/AcIIF method only needs
to compute matrix exponentials with sizes as that for one spatial dimension problems (i.e.,
N×N matrices and N is the number of spatial grid points in one spatial direction). Hence it is
very efficient. For high dimensional problems whose diffusion terms have cross-derivatives,
theAcIIFmethod can reduce Nd×Nd matrices’ exponentials to a series of N 2×N 2 matrices’
exponentials. However, computations of these N 2×N 2 matrices’ exponentials are still costly
in CPU time and computer memory, especially for a not very coarse mesh. Applications
of Krylov subspace approximations to these N 2 × N 2 matrices’ exponentials in the AcIIF
method can significantly improve its computational efficiency.We compare three approaches
including the AcIIF method, the AcIIF method with Krylov subspace approximation, and the
direct Krylov IIFmethod for problems whose diffusion terms have cross-derivatives, and find
that themost efficientmethod for such problems is the directKrylov IIFmethod, as that shown
in the numerical experiments. Certainly the efficiency of the Krylov IIF method depends
on the dimension size M of Krylov subspace used in computation. In the development of
Krylov IIF schemes for solving high spatial dimension convection–diffusion–reaction PDEs
[5,20,21], M is taken to be 25 and Krylov subspace approximation errors are much smaller
than truncation errors of the numerical schemes which discretize the PDEs, for different
problems and matrices’ sizes. Following the literature, for all examples in this paper, we
choose M = 25 and obtain correct accuracy orders of the numerical schemes, even for very
large N 4 × N 4 matrices from the four spatial dimension PDEs. It will be interesting to study
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Fig. 13 Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and EB = 15. Numerical
solutions of (67) using the AcIIF2-WENO scheme with Krylov subspace approximations. Final time T = 10.
t = 0.1. The numbers of spatial grid points are NA = 40, NB = 40, NEA = 20, NEB = 20

possible dependence of the parameter M on different types of PDEs (different differential
operators) and problems, which is one of our future work.

To further improve efficiency of IIF methods for high dimensional problems, both the
AcIIF method and the Krylov IIF method have been implemented on sparse grids [31,50].
In [50], the AcIIF method was applied on sparse grids to solve high dimensional reaction–
diffusion systems of dimensionality up to 6, and significantly higher efficiency was achieved.
For higher spatial dimension problems with cross-derivative diffusion terms, the sparse grid
Krylov IIF method in [31] could be very efficient as that shown in this paper. While both
AcIIF and Krylov IIF methods on sparse grids [31,50] can be applied to higher spatial
dimension problems, there are many interesting questions to address. For example, how
could a computation on sparse grids achieve similar accuracy level as that on single grids?
For higher spatial dimension problems, demands on computer memory increase significantly,
and parallel computing may be needed. These interesting questions will be studied in our
future research.

Another recent interesting work on the IIF method is to apply it in solving stochas-
tic reaction–diffusion equations in [46]. Stochastic reaction–diffusion equations have broad
applications in modeling biological or physical systems which are subjected to noises and
environmental perturbations. Stiffness in stochastic reaction–diffusion equations may occur
in the deterministic and/or the stochastic terms. In [46], the stiff deterministic diffusion and
reaction termswere treated by the IIF approach, and the stochastic termwas dealt with explic-
itly. Nice stability properties and efficiency of the original IIF method were preserved well. It
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Fig. 14 Distribution of molecular species A and B with EA = 4.5, 12, 19.5, 27 and EB = 15. Numerical
solutions of (67) using the AcIIF2-WENO scheme with Krylov subspace approximations. Final time T = 50.
t = 0.1. The numbers of spatial grid points are NA = 40, NB = 40, NEA = 20, NEB = 20

provides an efficient new approach for solving stochastic reaction–diffusion equations with
stiff deterministic terms. For such problemswith high spatial dimensions, bothKrylov IIF and
AcIIF methods discussed in this paper can be straightforwardly applied in dealing with the
large matrix exponential challenge arising from the stiff deterministic diffusion.We expect to
see the effectiveness of the Krylov IIF and AcIIF methods in solving high spatial dimension
stochastic problems, as that discussed in this paper. This is one of our future research.

Appendix: Detailed Formulae for AcIIF-WENO Schemes

(1) For the three dimensional CDR equation, if L12, L13 and L23 commute with each other,
then

�1 =
⊗

1≤k1≤N1

eA23tn

( ⊗

1≤k2≤N2

eA13tn

( ⊗

1≤k3≤N3

eA12tn V1(:, :, k3)
)

(:, k2, :)
)

(k1, :, :),

�2 =
⊗

1≤k1≤N1

eA23(tn+tn−1)

( ⊗

1≤k2≤N2

eA13(tn+tn−1)

( ⊗

1≤k3≤N3

eA12(tn+tn−1)V2(:, :, k3)
)

(:, k2, :)
)

(k1, :, :). (69)
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Fig. 15 Distribution of molecular species A and B with EA = 15 and EB = 15, at time T = 0, 10, 30, 50.
Numerical solutions of (67) using theAcIIF2-WENOschemewithKrylov subspace approximations.t = 0.1.
The numbers of spatial grid points are NA = 40, NB = 40, NEA = 20, NEB = 20

If L12, L13 and L23 do not commute with each other, then

�1 =
⊗

1≤k3≤N3

eA
k3
12

tn
2

( ⊗

1≤k2≤N2

eA
k2
13

tn
2 V ∗

1 (:, k2, :)
)

(:, :, k3),

V ∗
1 =

⊗

1≤k1≤N1

eA
k1
23tn

( ⊗

1≤k2≤N2

eA
k2
13

tn
2

( ⊗

1≤k3≤N3

eA
k3
12

tn
2 V1(:, :, k3)

)
(:, k2, :)

)
(k1, :, :);

(70)
and

�2 =
⊗

1≤k3≤N3

eA
k3
12

(tn+tn−1)

2

( ⊗

1≤k2≤N2

eA
k2
13

(tn+tn−1)

2 V ∗
2 (:, k2, :)

)
(:, :, k3),

V ∗
2 =

⊗

1≤k1≤N1

eA
k1
23(tn+tn−1)

( ⊗

1≤k2≤N2

eA
k2
13

(tn+tn−1)

2

( ⊗

1≤k3≤N3

eA
k3
12

(tn+tn−1)

2 V2(:, :, k3)
)

(:, k2, :)
)

(k1, :, :).

(71)

(2) For the four dimensional CDR equation, if L12, L13, L14, L23, L24 and L34 commute
with each other, then
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�1 =
⊗

1≤k1≤N1
1≤k2≤N2

eA34tn

( ⊗

1≤k1≤N1
1≤k3≤N3

eA24tn

( ⊗

1≤k1≤N1
1≤k4≤N4

eA23tn

( ⊗

1≤k2≤N2
1≤k3≤N3

eA14tn

( ⊗

1≤k2≤N2
1≤k4≤N4

eA13tn

( ⊗

1≤k3≤N3
1≤k4≤N4

eA12tn V1(:, :, k3, k4)
)

(:, k2, :, k4)
)

(:, k2, k3, :)
)

(k1, :, :, k4)
)

(k1, :, k3, :)
)

(k1, k2, :, :),

(72)

�2 =
⊗

1≤k1≤N1
1≤k2≤N2

eA34(tn+tn−1)

( ⊗

1≤k1≤N1
1≤k3≤N3

eA24(tn+tn−1)

( ⊗

1≤k1≤N1
1≤k4≤N4

eA23(tn+tn−1)

( ⊗

1≤k2≤N2
1≤k3≤N3

eA14(tn+tn−1)

( ⊗

1≤k2≤N2
1≤k4≤N4

eA13(tn+tn−1)

( ⊗

1≤k3≤N3
1≤k4≤N4

eA12(tn+tn−1)V2(:, :, k3, k4)
)

(:, k2, :, k4)
)

(:, k2, k3, :)
)

(k1, :, :, k4)
)

(k1, :, k3, :)
)

(k1, k2, :, :).

(73)

If L12, L13, L14, L23, L24 and L34 do not commute with each other, then

�1 =
⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

tn
2

( ⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

tn
2

( ⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

tn
2

( ⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

tn
2

( ⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

tn
2 V ∗

1 (:, k2, :, k4)
)

(:, k2, k3, :)
)

(k1, :, :, k4)
)

(k1, :, k3, :)
)

(k1, k2, :, :),

(74)
V ∗
1 =

⊗

1≤k3≤N3
1≤k4≤N4

eA
k3,k4
12 tn

( ⊗

1≤k2≤N2
1≤k4≤N4

eA
k2 ,k4
13

tn
2

( ⊗

1≤k2≤N2
1≤k3≤N3

eA
k2 ,k3
14

tn
2

( ⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

tn
2

( ⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

tn
2

( ⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

tn
2 V1(k1, k2, :, :)

)

(k1, :, k3, :)
)

(k1, :, :, k4)
)

(:, k2, k3, :)
)

(:, k2, :, k4)
)

(:, :, k3, k4).

(75)

And

�2 =
⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

(tn+tn−1)

2

( ⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

(tn+tn−1)

2

( ⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

(tn+tn−1)

2

( ⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

(tn+tn−1)

2

( ⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

(tn+tn−1)

2 V ∗
2 (:, k2, :, k4)

)
(76)

(:, k2, k3, :)
)

(k1, :, :, k4)
)

(k1, :, k3, :)
)

(k1, k2, :, :),
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V ∗
2 =

⊗

1≤k3≤N3
1≤k4≤N4

eA
k3,k4
12 (tn+tn−1)

( ⊗

1≤k2≤N2
1≤k4≤N4

eA
k2,k4
13

(tn+tn−1)

2

( ⊗

1≤k2≤N2
1≤k3≤N3

eA
k2,k3
14

(tn+tn−1)

2

( ⊗

1≤k1≤N1
1≤k4≤N4

eA
k1,k4
23

(tn+tn−1)

2

( ⊗

1≤k1≤N1
1≤k3≤N3

eA
k1,k3
24

(tn+tn−1)

2

( ⊗

1≤k1≤N1
1≤k2≤N2

eA
k1,k2
34

(tn+tn−1)

2

V2(k1, k2, :, :)
)

(k1, :, k3, :)
)

(k1, :, :, k4)
)

(:, k2, k3, :)
)

(:, k2, :, k4)
)

(:, :, k3, k4). (77)
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