Erratum to: Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes

Andrew J. Christlieb ${ }^{1}$ • Sigal Gottlieb ${ }^{2}$. Zachary Grant ${ }^{2}$. David C. Seal ${ }^{3}$

Published online: 23 March 2016
© Springer Science+Business Media New York 2016

Erratum to: J Sci Comput DOI 10.1007/s10915-016-0164-2

The authors regret that typographical errors appeared in the order conditions, Table 1 in the original publication. These errors included a mistaken factor of 2 on one of the terms in one of the fifth-order conditions, and an omitted equation. The corrected Table 1 of order conditions is provided here.

Table 1 Order conditions for multistage multiderivative methods of the form (6) as in [3]

$p=1$	$b^{T} e=1$
$p=2$	$b^{T} c+\hat{b}^{T} e=\frac{1}{2}$
$p=3$	$b^{T} c^{2}+2 \hat{b}^{T} c=\frac{1}{3}$
	$b^{T} A c+b^{T} \hat{c}+\hat{b}^{T} c=\frac{1}{6}$
$p=4$	$b^{T} c^{3}+3 \hat{b}^{T} c^{2}=\frac{1}{4}$
	$b^{T} c A c+b^{T} c \hat{c}+\hat{b}^{T} c^{2}+\hat{b}^{T} A c+\hat{b}^{T} \hat{c}=\frac{1}{8}$
	$b^{T} A c^{2}+2 b^{T} \hat{A} c+\hat{b}^{T} c^{2}=\frac{1}{12}$
	$b^{T} A^{2} c+b^{T} A \hat{c}+b^{T} \hat{A} c+\hat{b}^{T} A c+\hat{b}^{T} \hat{c}=\frac{1}{24}$

$p=1$
$p=2$
$p=3$
$p=4$

$$
\begin{aligned}
& b^{T} e=1 \\
& b^{T} c+\hat{b}^{T} e=\frac{1}{2} \\
& b^{T} c^{2}+2 \hat{b}^{T} c=\frac{1}{3} \\
& b^{T} A c+b^{T} \hat{c}+\hat{b}^{T} c=\frac{1}{6} \\
& b^{T} c^{3}+3 \hat{b}^{T} c^{2}=\frac{1}{4} \\
& b^{T} c A c+b^{T} c \hat{c}+\hat{b}^{T} c^{2}+\hat{b}^{T} A c+\hat{b}^{T} \hat{c}=\frac{1}{8} \\
& b^{T} A c^{2}+2 b^{T} \hat{A} c+\hat{b}^{T} c^{2}=\frac{1}{12} \\
& b^{T} A^{2} c+b^{T} A \hat{c}+b^{T} \hat{A} c+\hat{b}^{T} A c+\hat{b}^{T} \hat{c}=\frac{1}{24}
\end{aligned}
$$

[^0]Table 1 continued

$$
\begin{array}{ll}
p=5 & b^{T} c^{4}+4 \hat{b}^{T} c^{3}=\frac{1}{5} \\
& b^{T} c^{2} A c+b^{T} c^{2} \hat{c}+\hat{b}^{T} c^{3}+2 \hat{b}^{T} c A c+2 \hat{b}^{T} c \hat{c}=\frac{1}{10} \\
& b^{T} c A c^{2}+2 b^{T} c \hat{A} c+\hat{b}^{T} c^{3}+\hat{b}^{T} A c^{2}+2 \hat{b}^{T} \hat{A} c=\frac{1}{15} \\
& b^{T} c A^{2} c+b^{T} c A \hat{c}+b^{T} c \hat{A} c+\hat{b}^{T} c A c+\hat{b}^{T} c \hat{c}+\hat{b}^{T} A^{2} c+\hat{b}^{T} A \hat{c}+\hat{b}^{T} \hat{A} c=\frac{1}{30} \\
& b^{T}(A c)(A c)+2 b^{T} \hat{c} A c+b^{T} \hat{c}^{2}+2 \hat{b}^{T} c A c+2 \hat{b}^{T} c \hat{c}=\frac{1}{20} \\
& b^{T} A c^{3}+3 b^{T} \hat{A} c^{2}+\hat{b}^{T} c^{3}=\frac{1}{20} \\
& b^{T} A(c A c)+b^{T} A\left((\hat{c})+b^{T} \hat{A} c^{2}+b^{T} \hat{A} A c+b^{T} \hat{A} \hat{c}+\hat{b}^{T} c A c+\hat{b}^{T} c \hat{c}=\frac{1}{40}\right. \\
& b^{T} A^{2} c^{2}+2 b^{T} A \hat{A} c+b^{T} \hat{A} c^{2}+\hat{b}^{T} A c^{2}+2 \hat{b}^{T} \hat{A} c=\frac{1}{60} \\
& b^{T} A^{3} c+b^{T} A^{2} \hat{c}+b^{T} A \hat{A} c+b^{T} \hat{A} A c+b^{T} \hat{A} \hat{c}+\hat{b}^{T} A^{2} c+\hat{b}^{T} A \hat{c}+\hat{b}^{T} \hat{A} c=\frac{1}{120}
\end{array}
$$

[^0]: The online version of the original article can be found under doi:10.1007/s10915-016-0164-2.
 Zachary Grant
 zgrant@umassd.edu
 1 Department of Computational Mathematics Science and Engineering, Department of Electrical Engineering and Department of Mathematics, Michigan State University, East Lansing, MI, USA

 2 Department of Mathematics, University of Massachusetts, North Dartmouth, MA, USA
 3 Department of Mathematics, U.S. Naval Academy, Annapolis, MD, USA

