Skip to main content
Log in

The Estimation of Truncation Error by \(\tau \)-Estimation for Chebyshev Spectral Collocation Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we show how to accurately estimate the local truncation error of the Chebyshev spectral collocation method using \(\tau \)-estimation. This method compares the residuals on a sequence of approximations with different polynomial orders. First, we focus the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error. Then, we show the validity of the analysis for the incompressible Navier–Stokes equations. First on the Kovasznay flow, where an analytical solution is known, and finally in the lid driven cavity (LDC). We demonstrate that this approach yields a highly accurate estimation of the truncation error if the precision of the approximations increases with the polynomial order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Berger, M.J.: Adaptive finite difference methods in fluid dynamics. Technical report, Courant Institute of Mathematical Sciences, New York University, New York (1987)

  2. Bernert, K.: \(\tau \)-Extrapolation-theoretical foundation, numerical experiment, and application to Navier–Stokes equations. Siam J. Sci. Comput. 18, 460–478 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Botella, O., Peyret, R.: Benchmark spectral results on the lid driven cavity flow. Comput. Fluids 27(4), 421–433 (1998). doi:10.1016/S0045-7930(98)00002-4. http://www.sciencedirect.com/science/article/pii/S0045793098000024

    Google Scholar 

  4. Boyd, J.: Chebyshev and Fourier Spectral Methods. Springer, Berlin (1989)

  5. Brandt, A., Livne, O.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. SIAM, Philadelphia (1984)

  6. Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113–151. doi:10.1017/S0022112066000545. http://dx.doi.org/10.1017/S0022112066000545

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1989)

  8. Casoni, E.: Shock capturing for discontinuous Galerkin methods. Ph.D. thesis, Universitat Politcnica de Catalunya (2011)

  9. Chorin, A.J.: A numerical method for solving incompressible flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Google Scholar 

  10. Cockburn, B., Kanschat, G., Tzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73, 569593 (2003)

    Google Scholar 

  11. de Vicente, J.: Spectral multi-domain methods for the global instability analysis of complex cavity flows. Ph.D. thesis, Polytechnic University of Madrid (2010)

  12. Fraysse, F., De Vicente, J., Valero, E.: The estimation of truncation error by \(\tau \)-estimation revisited. J. Comput. Phys. 231, 3457–3482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulton, S.R.: On the accuracy of multigrid truncation error estimates. Electron. Trans. Numer. Anal. 15, 29–37 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Ghia, U., Ghia, K., Shin, C.: High-Re solutions for incompressible flow using the Navier Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982). doi:10.1016/0021-9991(82)90058-4. http://www.sciencedirect.com/science/article/pii/0021999182900584

    Google Scholar 

  15. Hartmann, R., Held, J., Leicht, T., Prill, F.: Discontinuous Galerkin methods for computational aerodynamics 3D adaptive flow simulation with the DLR padge code. Aerosp. Sci. Technol. 14(7), 512–519 (2010). doi:10.1016/j.ast.2010.04.002. http://www.sciencedirect.com/science/article/pii/S1270963810000441

  16. Hartmann, R., Held, J., Leicht, T.: Adjoint-based error estimation and adaptive mesh refinement for the RANS and \(k-\omega \) turbulence model equations. J. Comput. Phys. 230(11), 4268–4284 (2011). doi:10.1016/j.jcp.2010.10.026. http://www.sciencedirect.com/science/article/pii/S0021999110005826. Special issue High Order Methods for CFD Problems

  17. Kondaxakis, D., Tsangaris, S.: A weak Legendre collocation spectral method for the solution of the incompressible Navier Stokes equations in unstructured quadrilateral subdomains. J. Comput. Phys. 192(1), 124–156 (2003). doi:10.1016/S0021-9991(03)00350-4. http://www.sciencedirect.com/science/article/pii/S0021999103003504

    Google Scholar 

  18. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Scientific Computation. Springer, New York (2009)

  19. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 5862 (1948)

    Article  MathSciNet  Google Scholar 

  20. Löhner, R.: Mesh adaptation in fluid mechanics. Eng. Fract. Mech. 50(56), 819–847 (1995). doi:10.1016/0013-7944(94)E0062-L. http://www.sciencedirect.com/science/article/pii/0013794494E0062L

  21. Mavriplis, C.: Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques. Ph.D. thesis, Massachusetts Institute of Technology (1989)

  22. Mavriplis, C.A.: Adaptive mesh strategies for the spectral element method. Comput. Methods Appl. Mech. Eng. 116(14), 77–86 (1994). doi:10.1016/S0045-7825(94)80010-3. http://www.sciencedirect.com/science/article/pii/S0045782594800103

  23. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010)

  24. Ozcelikkale, A., Sert, C.: Least-squares spectral element solution of incompressible Navier Stokes equations with adaptive refinement. J. Comput. Phys. 231, 3755–3769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peyret, R., Taylor, T.: Computational Methods for Fluid Flow. Springer Series in Computational Physics. Springer, New York (1983). http://books.google.com.ar/books?id=hZZRAAAAMAAJ

  26. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)

  27. Rosenberg, D., Fournier, A., Fischer, P., Pouquet, A.: Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): object-oriented h-adaptive fluid dynamics simulation. J. Comput. Phys. 215(1), 59–80 (2006). doi:10.1016/j.jcp.2005.10.031. http://www.sciencedirect.com/science/article/pii/S0021999105004791

    Google Scholar 

  28. Roy, C.J.: Review of discretization error estimators in scientific computing. In: AIAA Paper (2010)

  29. Shah, A., Yuan, L., Khan, A.: Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier Stokes equations. Appl. Math. Comput. 215(9), 3201–3213 (2010). doi:10.1016/j.amc.2009.10.001. http://www.sciencedirect.com/science/article/pii/S0096300309008947

    Google Scholar 

  30. Shen, J.: Dynamics of regularized cavity flow at high Reynolds numbers. Appl. Math. Lett. 2(4), 381–384 (1989). doi:10.1016/0893-9659(89)90093-1. http://www.sciencedirect.com/science/article/pii/0893965989900931

  31. Shen, J.: Pseudo-compressibility methods for the unsteady incompressible Navier Stokes equations. In: Beijing Symposium on Nonlinear Evolution Equations and Infinite, Dynamical Systems (1997)

  32. Syrakos, A., Goulas, A.: Finite volume adaptive solutions using simple as smoother. Int. J. Numer. Methods Fluids 52, 1215–1245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Syrakos, A., Efthimiou, G., Bartzis, J.G., Goulas, A.: Numerical experiments on the efficiency of local grid refinement based on truncation error estimates. J. Comput. Phys. 231(20), 6725–6753 (2012). doi:10.1016/j.jcp.2012.06.023. http://www.sciencedirect.com/science/article/pii/S0021999112003385

  34. Venditti, D.A., Darmofal, D.L.: Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow. J. Comput. Phys. 164, 204–227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, L., Mavriplis, D.J.: Adjoint-based hp adaptive discontinuous Galerkin methods for the 2D compressible euler equations. J. Comput. Phys. 228(20), 7643–7661 (2009). doi:10.1016/j.jcp.2009.07.012. http://www.sciencedirect.com/science/article/pii/S0021999109003854

  36. Wasberg, C., Gottlieb, D.: Optimal decomposition of the domain in spectral methods for wave-like phenomena. SIAM J. Sci. Comput. 22(2), 617–632 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zienkiewicz, O.C.: The background of error estimation and adaptivity in finite element computations. Comput. Methods Appl. Mech. Eng. 195(46), 207–213 (2006). doi:10.1016/j.cma.2004.07.053. http://www.sciencedirect.com/science/article/pii/S0045782505000824. Adaptive Modeling and Simulation

Download references

Acknowledgments

This research is supported by the European project ANADE (PINT-GA-2011-289428). Furthermore, the authors would like to thank Professor David A. Kopriva for his support, and for many invaluable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, G., Fraysse, F., de Vicente, J. et al. The Estimation of Truncation Error by \(\tau \)-Estimation for Chebyshev Spectral Collocation Method. J Sci Comput 57, 146–173 (2013). https://doi.org/10.1007/s10915-013-9698-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9698-8

Keywords

Mathematics Subject Classification (2000)

Navigation