Skip to main content

Advertisement

Log in

Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and Revision of Gobiconodontidae

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

There are two species of Gobiconodon in the Early Cretaceous Khoboor locality of Mongolia: G. borissiaki Trofimov, 1978, and G. hoburensis (Trofimov, 1978). The smaller G. hoburensis has i2 half the size of i1, double-rooted dp2, and two generations of molariforms (m1-5 and m1r-4r). In the larger G. borissiaki, i2 is about ¾ size of i1, dp2 is single-rooted, and there are three generations of molariforms (m1-5, m1r-5r, m1rr-2rr). In larger G. ostromi Jenkins and Schaff, 1988, there are three molariforms of the third generation (m1rr-3rr). The anterior lower dentition of Gobiconodon is interpreted as i1-3, c, and dp1-2. The replacement of dp1 by p1 is known only in G. hoburensis. The dp2 is not replaced and may be lost in some specimens (G. hoburensis, G. ostromi) with its alveolus plugged by bone. Gobiconodon includes five valid species: G. borissiaki, G. hoburensis, G. ostromi, G. hopsoni Rougier et al., 2001, and G. zofiae Li et al., 2001 (=G. luoianus Yuan et al., 2009, syn. nov.). The holotype upper maxilla of G. hopsoni is not diagnostic and a new diagnosis for this species is provided based on lower dentitions from the type locality. Repenomamus Li et al., 2001, and Meemannodon Meng et al., 2005, are the only other members of the Gobiconodontidae. The dental formula of Repenomamus is reinterpreted as I1-3, C, P1, M1-5/i1-2, c, p1-2, m1-5 and thus it differs from Gobiconodon by lack of i3 and P2. Meemannodon is different from Gobiconodon by lack of i3 (the upper dentition is unknown). The Early Cretaceous Jeholodens, Yanoconodon, and Liaoconodon are closer to the Gobiconodontidae than to the Amphilestidae by having only two premolars. Liaoconodon with modified anterior dentition is likely the closest relative to the Gobiconodontidae. The Gobiconodontidae is likely the sister taxon for the clade Amphilestidae + Trechnotheria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Averianov AO (2002) Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol Pol 47:705-716

    Google Scholar 

  • Averianov AO, Lopatin AV (2008) “Protocone” in a pretribosphenic mammal and upper dentition of tinodontid “symmetrontans.” J Vertebr Paleontol 28:548-552

    Article  Google Scholar 

  • Averianov AO, Lopatin AV, Krasnolutskii SA (2008) An amphilestid grade eutriconodontan from the Middle Jurassic of Russia. Russ J Theriol 7: 1-4

    Google Scholar 

  • Averianov AO, Martin T, Lopatin AV (2013) A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100:311-326

    Article  CAS  PubMed  Google Scholar 

  • Averianov AO, Skutschas PP, Lopatin AV, Leshchinskiy SV, Rezvyi AS, Fayngerts AV (2005) Early Cretaceous mammals from Bol’shoi Kemchug 3 locality in West Siberia, Russia. Russ J Theriol 4:1-12

    Google Scholar 

  • Beynon AD, Clayton CB, Ramirez Rozzi FV, Reid DJ (1998) Radiographic and histological methodologies in estimating the chronology of crown development in modern humans and great apes: a review, with some applications for studies on juvenile hominids. J Human Evol 35:351-370

    Article  CAS  Google Scholar 

  • Buchtová M, Stembírek J, Matalová E, Tucker AS (2012) Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 91:491-498

    Article  PubMed  Google Scholar 

  • Butler PM, Sigogneau-Russell D, Ensom PC (2012) Possible persistence of the morganucodontans in the Lower Cretaceous Purbeck Limestone Group (Dorset, England) Cret Res 33:135-145

  • Chow M-C, Rich THV (1984) A new triconodontan (Mammalia) from the Jurassic of China. J Vertebr Paleontol 3:226-231

    Article  Google Scholar 

  • Cifelli RL, Madsen SK (1998) Triconodont mammals from the medial Cretaceous of Utah. J Vertebr Paleontol 18:403-411

    Article  Google Scholar 

  • Cifelli RL, Madsen SK (1999) Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21:167-214

    Google Scholar 

  • Cifelli RL, Wible JR, Jenkins FA Jr (1998) Triconodont mammals from the Cloverly Formation (Lower Cretaceous), Montana and Wyoming. J Vertebr Paleontol 18:237-241

    Article  Google Scholar 

  • Crompton AW (1974) The dentitions and relationships of the southern African Triassic mammals Erythrotherium parringtoni and Megazostrodon rudnerae. Bull Brit Mus (Nat Hist) Geol 24:397-437

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1967) American Jurassic symmetrodonts and Rhaetic “pantotheres.” Science 155:1006-1009

    Article  CAS  PubMed  Google Scholar 

  • Crompton AW, Jenkins FA Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43:427-458

    Article  CAS  PubMed  Google Scholar 

  • Crompton AW, Jenkins FA Jr (1973) Mammals from reptiles: a review of mammalian origins. Annu Rev Earth Planet Sci 1:131-155

    Article  Google Scholar 

  • Crompton AW, Jenkins FA Jr (1979) Origin of mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: The First Two-Thirds of Mammalian History. University of California Press, Berkeley, pp 59-73

    Google Scholar 

  • Crompton AW, Luo Z-X (1993) Relationships of the Liassic mammals, Sinoconodon, Morganucodon oehleri, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer Verlag, New York, pp 30-44

    Chapter  Google Scholar 

  • Crompton AW, Sun A (1985) Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool J Linn Soc 85:99-119

    Article  Google Scholar 

  • Cuenca-Bescos G, Canudo JI (2003) A new gobiconodontid mammal from the Early Cretaceous of Spain and its palaeogeographic implications. Acta Palaeontol Pol 48:575–582

    Google Scholar 

  • Engelmann GF, Callison GL (1998) Mammalian faunas of the Morrison Formation. Modern Geol 23:343-379

    Google Scholar 

  • Freeman EF (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontology 22:135-166

    Google Scholar 

  • Gaetano LC, Rougier GW (2011) New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vertebr Paleontol 31:829-843

    Article  Google Scholar 

  • Gambaryan PP, Kielan-Jaworowska Z (1995) Masticatory musculature of Asian taeniolabidoid multituberculate mammals. Acta Palaeontol Pol 40:45-108

    Google Scholar 

  • Gao C-L, Wilson GP, Luo Z-X, Maga M, Meng Q, Wang X. (2010) A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts. Proc R Soc B 277:237-246

    Article  PubMed Central  PubMed  Google Scholar 

  • Godefroit P, Guo D-Y (1999) A new amphilestid mammal from the Early Cretaceous of Inner Mongolia (P.R. China). Bull l’Inst R Sci Natur Belg 69B:7-16

    Google Scholar 

  • Gow CE (1986) A new skull of Megazostrodon (Mammalia, Triconodonta) from the Elliot Formation (Lower Jurassic) of Southern Africa. Palaeontol Afr 26:13-26

    Google Scholar 

  • Hopson JA, Crompton AW (1969) Origin of mammals. In: Dobzhansky T, Hecht MK, Steere VC (eds) Evolutionary Biology. Appleton-Century-Crofts, New York, pp 25-72

    Google Scholar 

  • Hopson JA, Kielan-Jaworowska Z, Allin EF (1989) The cryptic jugal of multituberculates. J Vertebr Paleontol 9:201-209

    Article  Google Scholar 

  • Hu Y (2006) Postcranial morphology of Repenomamus (Eutriconodonta, Mammalia): implications for the higher-level phylogeny of mammals. Dissertation, City University of New York

    Google Scholar 

  • Hu Y, Meng J, Wang Y, Li C (2005) Large Mesozoic mammals fed on young dinosaurs. Nature 433:149-152

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wang Y, Luo Z-X, Li C (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137-142

    Article  CAS  PubMed  Google Scholar 

  • Järvinen E, Tummers M, Thesleff I (2009) The role of the dental lamina in mammalian tooth replacement. J Exp Zool 312B:281-291

    Article  Google Scholar 

  • Jenkins FA Jr, Schaff CR (1988) The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vertebr Paleontol 8:1-24

    Article  Google Scholar 

  • Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139:3487-3497

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of mammalian skeleton. Nature 398:326-330

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Luo Z-X, Yuan C-X, Tabrum AR (2006) A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311:1123-1127

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326:278-281

    Article  CAS  PubMed  Google Scholar 

  • Kielan-Jaworowska Z, Dashzeveg D (1998) Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol 43:413-438

    Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New York

    Google Scholar 

  • Li C, Wang Y, Hu Y, Meng J (2003) A new species of Gobiconodon (Triconodonta, Mammalia) and its implication for the age of Jehol Biota. Chin Sci Bull 48:1129-1134

    Google Scholar 

  • Li J, Wang Y, Wang Y, Li C (2001) A new family of primitive mammals from the Mesozoic of western Liaoning, China. Chin Sci Bull 46:782-785

    Article  CAS  Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, reformata. Laurentii Salvii, Stockholm

  • Lopatin AV (2013) New finds of Early Cretaceous mammals in Mongolia. Dokl Biol Sci 449:103-105

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AV, Averianov AO (2006a) An aegialodontid upper molar and the evolution of mammal dentition. Science 313:1092

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AV, Averianov AO (2006b) Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia. Acta Palaeontol Pol 51:339-349

    Google Scholar 

  • Lopatin AV, Averianov AO (2007) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontid dentition. Acta Palaeontol Pol 52:441-446

    Google Scholar 

  • Lopatin AV, Averianov AO, Maschenko EN, Leshchinskiy SV (2010a) Early Cretaceous mammals of Western Siberia: 3. Zhangheotheriidae. Paleontol J 44:573-583

    Article  Google Scholar 

  • Lopatin AV, Maschenko EN, Averianov AO (2010b) A new genus of triconodont mammals from the Early Cretaceous of Western Siberia. Dokl Biol Sci 433:282-285

    Article  CAS  PubMed  Google Scholar 

  • Luckett WP (1993) An ontogenetic assessment of dental homologies in therian mammals. In: Szalay FS, Novacek MJ and McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 182-204

    Chapter  Google Scholar 

  • Luo Z-X (2011) Developmental patterns in Mesozoic evolution of mammal ears. Annu Rev Ecol Evol Syst 42:355-380

    Article  Google Scholar 

  • Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103-107

  • Luo Z-X, Chen P, Li G., Chen M (2007a) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:288-293

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1-78

    Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36:159-175

    Article  Google Scholar 

  • Luo Z-X, Ji Q, Yuan C-X (2007b) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450:93-97

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Averianov AO (2007) A previously unrecognized group of Middle Jurassic triconodontan mammals from Central Asia. Naturwissenschaften 94:43-48

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Averianov AO (2010) Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J Vertebr Paleontol 30:855-871

    Article  Google Scholar 

  • Maschenko EN, Voronkevich AV (2001) New data on the diversity of mammals from the Early Cretaceous localities Shestakovo (south-west of Western Siberia). In: Evolution of Life on the Earth. Materials of the Second International Symposium, November 12-15, 2001. Izdatel’stvo NTL, Tomsk, pp 448-450 [In Russian]

  • Meng J, Hu Y, Wang Y, Li C (2003) The ossified Meckel’s cartilage and internal groove in Mesozoic mammaliaforms: implications to origin of the definitive mammalian middle ear. Zool J Linn Soc 138:431–448

    Article  Google Scholar 

  • Meng J, Hu Y, Wang Y, Li C (2005) A new tricondont (Mammalia) from the Early Cretaceous Yixian Formation of Liaoning, China. Vertebr PalAsiatica 43:1-10

    Google Scholar 

  • Meng J, Hu Y, Wang Y, Wang X, Li C (2006) A Mesozoic gliding mammal from northeastern China. Nature 444:889-893

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Wang Y, Li C (2011) Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472:181-185

    Article  CAS  PubMed  Google Scholar 

  • Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc, pp 29-63

  • Minjin B, Chuluun M, Geisler JH (2003) A report of triconodont mammal jaw from Oosh, an Early Cretaceous locality in Mongolia. Publ Mongol Univ Sci Technol Inst Geol Ser Geol 9: 89-93

    Google Scholar 

  • Montellano M, Hopson JA, Clark JM (2008) Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, México. J Vertebr Paleontol 28:1130-1143

    Article  Google Scholar 

  • Musser AM, Archer M (1998) New information about the skull and dentary of the Miocene platypus Obdurodon dicksoni, and a discussion of ornithorhynchid relationships. Phil Trans R Soc London B 353:1063-1079

    Article  CAS  Google Scholar 

  • Parrington FR (1971) On the Upper Triassic mammals. Phil Trans R Soc London B 261:231-272

    Article  Google Scholar 

  • Parrington FR (1973) The dentition of the earliest mammals. Zool J Linn Soc 52:85-95

    Article  Google Scholar 

  • Patterson B, Olson EC (1961) A triconodontid mammal from the Triassic of Yunnan. In: Vandebroek G (ed) Internationall Colloquium on the Evolution of Lower and Non-Specialized Mammals. Konink Vlaamse Acad Wetensch Letteren Schone Kunst Belg, pp 129-191

  • Rauhut OWM, Martin T, Ortiz-Jaureguizar EO, Puerta PF (2002) A Jurassic mammal from South America. Nature 416:165-168

    Article  CAS  PubMed  Google Scholar 

  • Rougier GW, Apesteguía S, Gaetano LC (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98-102

    Article  CAS  PubMed  Google Scholar 

  • Rougier GW, Isaji S, Manabe M (2007a) An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus 76:73-115

    Article  Google Scholar 

  • Rougier GW, Ji Q, Novacek MJ (2003a) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sinica 77:7-14

    Article  Google Scholar 

  • Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007b) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566:1-54

    Article  Google Scholar 

  • Rougier GW, Novacek MJ, McKenna MC, Wible JR (2001) Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novitates 3348:1-30

    Article  Google Scholar 

  • Rougier GW, Wible JR, Beck RMD, Apesteguía S. (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Natl Acad Sci USA 109:20053-20058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rougier GW, Spurlin BK, Kik PK (2003b) A new specimen of Eurylambda aequicrurius and considerations on “symmetrodont” dentition and relationships. Am Mus Novitates 3398:1-15

    Article  Google Scholar 

  • Rowe TB, Rich THV, Vickers-Rich P, Springer MS, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105:1238-1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sigogneau-Russell D (2003) Diversity of triconodont mammals from the Early Cretaceous of North Africa - affinities of the amphilestids. Palaeovertebrata 32:27-55

    Google Scholar 

  • Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. British Museum (Natural History), London

    Google Scholar 

  • Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus Yale Univ 3:1-235

    Google Scholar 

  • Stock DW, Weiss KM, Zhao Z (1997) Patterning of the mammalian dentition in development and evolution. BioEssays 19:481-490

    Article  CAS  PubMed  Google Scholar 

  • Sweetman SC (2006) A gobiconodontid (Mammalia, Eutriconodonta) from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern Britain. Palaeontology 49:889-897

    Article  Google Scholar 

  • Tang F, Luo Z-X, Zhou Z, You H, Georgi JA, Tang Z-L, Wang X-Z (2001) Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China. Cret Res 22:115-129

    Article  Google Scholar 

  • Trofimov BA (1978) The first triconodonts (Mammalia, Triconodonta) from Mongolia. Dokl Akad Nauk SSSR 243:213-216 [In Russian]

    Google Scholar 

  • Tsubamoto T, Rougier GW, Isaji S, Manabe M, Forasiepi AM (2004) New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontol Pol 49:329–346

    Google Scholar 

  • Wang Y, Hu Y, Li C (2006) Review of recent advances on study of Mesozoic mammals in China. Vertebr PalAsiatica 44:193-204

    Google Scholar 

  • Wang Y, Hu Y, Meng J, Li C (2001) An ossified Meckel’s cartilage in two Cretaceous mammals and the origin of the mammalian middle ear. Science 294:357-361

    Article  CAS  PubMed  Google Scholar 

  • Westergaard B (1983) A new detailed model for mammalian dentitional evolution. Z zool Syst Evolutionsforsch 21:68-87

  • Whitlock JA, Richman JM (2013) Biology of tooth replacement in amniotes. Internatl J Oral Sci 5:66-70

  • Woodburne MO (2003) Monotremes as pretribosphenic mammals. J Mammal Evol 10:195-248

    Article  Google Scholar 

  • Yuan C, Xu L, Zhang X, Xi Y, Wu Y, Ji Q (2009) A new species of Gobiconodon (Mammalia) from Western Liaoning, China and its implication for the dental formula of Gobiconodon. Acta Geol Sinica 83:207-211

    Article  Google Scholar 

  • Yuan C-X, Ji Q, Meng Q-J, Tabrum AR, Luo Z-X (2013) Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science 341:779-783

    Article  CAS  PubMed  Google Scholar 

  • Zhang F-K, Crompton AW, Luo Z-X, Schaff CR (1998) Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vertebr PalAsiatica 36:197-217

    Google Scholar 

  • Zheng X, Bi S, Wang X, Meng J (2013) A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500:199-202

    Article  CAS  PubMed  Google Scholar 

  • Zhou C-F, Wu S, Martin T, Luo Z-X (2013) A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500:163-167

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807-814

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (projects 13-04-01401 and 13-04-00525). We thank Guilermo Rougier (University of Louisville, Louisville, USA) and an anonymous reviewer for reading the manuscript and critical comments that improved our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Averianov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatin, A., Averianov, A. Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and Revision of Gobiconodontidae. J Mammal Evol 22, 17–43 (2015). https://doi.org/10.1007/s10914-014-9267-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-014-9267-4

Keywords

Navigation