Skip to main content

Advertisement

Log in

Noncoding RNAs Involved in Mammary Gland Development and Tumorigenesis: There’s a Long Way to Go

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammalian genome encodes thousands of noncoding RNAs. These noncoding transcripts are broadly categorized into short noncoding RNAs, such as microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) of greater than 200 nt. While the role of miRNAs in development and cancer biology has been extensively studied, much less is known about the vast majority of noncoding transcripts represented by lncRNAs. LncRNAs are emerging as key regulators of developmental processes and as such, their frequent misregulation in tumorigenesis and disease in not unexpected. The role of lncRNAs in mammary gland development and breast cancer is just beginning to be elucidated. This review will discuss the role of lncRNAs in mammalian and mammary gland development. In addition, we will review the contributions of lncRNAs to the stepwise progression of tumorigenesis, highlighting the role of lncRNAs in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

lncRNA:

long/large noncoding RNA

lincRNA:

long/large intergenic noncoding RNA

PRC2:

polycomb repressive complex-2

CoREST:

co-repressor for REST

REST:

repressor element-1 (RE1) silencing transcription factor

MLL1:

mixed lineage leukemia 1

Xist :

X-inactive specific transcript

RepA :

Repeat A

Kcnq1ot1 :

Kcnq1 overlapping transcript 1

Airn :

antisense Igf2r RNA noncoding

mESC:

mouse embryonic stem cell

Oct4:

octamer-binding transcription factor 4

Sox2:

SRY (sex determining region Y)-box 2

EGO :

eosinophil granule ontogeny

HOTAIRM1 :

HOX antisense intergenic RNA myeloid 1

LincRNA-EPS :

lincRNA erythroid prosurvival 1

Evf2 :

embryonic ventral forebrain 1

GABA:

gamma-aminobutryic acid

Tug1 :

taurine-upregulated gene 1

RNCR :

retinal noncoding RNA

MIAT :

myocardial infarction associated transcript

ceRNA:

competing endogenous RNA

ANCR :

anti-differentiation noncoding RNA

SRA :

steroid receptor RNA activator

MMTV:

mouse mammary tumor virus

PINC :

pregnancy induced noncoding RNA

Zfas1 :

Znfx1 antisense RNA 1

mPINC1.0 :

mouse pregnancy induced noncoding RNA 1.0 Kb

mPINC1.6 :

mouse pregnancy induced noncoding RNA 1.6 Kb

RbAp46:

retinoblastoma associated protein 46

Znfx1:

zinc finger, NFX1-type containing 1

snoRNA:

small nucleolar RNA

TCGA:

the cancer genome atlas

Shh:

sonic hedgehog

BMP:

bone morphogenetic protein

MALAT1:

metastasis associated lung adenocarcinoma transcript 1

ER:

estrogen receptor

PR:

progesterone receptor

AGO2:

argonaute 2

UCR:

ultraconserved region

GWAS:

genome-wide association study

References

  1. Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi:10.1038/nature05874.

    Article  CAS  Google Scholar 

  2. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, et al. Antisense transcription in the mammalian transcriptome. Science. 2005;309(5740):1564–6. doi:10.1126/science.1112009.

    Article  PubMed  Google Scholar 

  3. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63. doi:10.1126/science.1112014.

    Article  CAS  PubMed  Google Scholar 

  4. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306(5705):2242–6. doi:10.1126/science.1103388.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005;308(5725):1149–54. doi:10.1126/science.1108625.

    Article  CAS  PubMed  Google Scholar 

  6. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16(1):11–9. doi:10.1101/gr.4200206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716–21. doi:10.1073/pnas.0706729105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. doi:10.1038/nature07672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27. doi:10.1101/gad.17446611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38. doi:10.1016/j.molcel.2010.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005;309(5740):1570–3. doi:10.1126/science.1115901.

    Article  CAS  PubMed  Google Scholar 

  12. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20(11):1470–84. doi:10.1101/gad.1416106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9. doi:10.1038/ng.848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meola N, Pizzo M, Alfano G, Surace EM, Banfi S. The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA. 2012;18(1):111–23. doi:10.1261/rna.029454.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi:10.1038/nature08975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8. doi:10.1126/scisignal.2000568.

    PubMed  PubMed Central  Google Scholar 

  17. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33(6):717–26. doi:10.1016/j.molcel.2009.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazo A, Hodgson JW, Petruk S, Sedkov Y, Brock HW. Transcriptional interference: an unexpected layer of complexity in gene regulation. J Cell Sci. 2007;120(Pt 16):2755–61. doi:10.1242/jcs.007633.

    Article  CAS  PubMed  Google Scholar 

  19. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69. doi:10.1016/j.cell.2011.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  21. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, et al. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell. 2006;11(4):547–60. doi:10.1016/j.devcel.2006.08.003.

    Article  CAS  PubMed  Google Scholar 

  22. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58. doi:10.1016/j.cell.2010.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72. doi:10.1073/pnas.0904715106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 2010;40(6):939–53. doi:10.1016/j.molcel.2010.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertani S, Sauer S, Bolotin E, Sauer F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell. 2011;43(6):1040–6. doi:10.1016/j.molcel.2011.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45. doi:10.1101/gr.078378.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2):232–46. doi:10.1016/j.molcel.2008.08.022.

    Article  CAS  PubMed  Google Scholar 

  28. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20. doi:10.1126/science.1163802.

    Article  CAS  PubMed  Google Scholar 

  29. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23. doi:10.1016/j.cell.2007.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322(5902):750–6. doi:10.1126/science.1163045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–62. doi:10.1038/onc.2010.568.

    Article  CAS  PubMed  Google Scholar 

  32. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12(2):136–49. doi:10.1038/nrg2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amaral PP, Mattick JS. Noncoding RNA in development. Mamm Genome. 2008;19(7–8):454–92. doi:10.1007/s00335-008-9136-7.

    Article  CAS  PubMed  Google Scholar 

  34. Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev. 2007;21(1):11–42. doi:10.1101/gad.1484207.

    Article  CAS  PubMed  Google Scholar 

  35. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61. doi:10.1016/j.tcb.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  36. Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19(R2):R152–61. doi:10.1093/hmg/ddq353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khalil AM, Rinn JL. RNA-protein interactions in human health and disease. Semin Cell Dev Biol. 2011;22(4):359–65. doi:10.1016/j.semcdb.2011.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brockdorff N. Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development. 2011;138(23):5057–65. doi:10.1242/dev.065276.

    Article  CAS  PubMed  Google Scholar 

  39. Lee JT. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol. 2011;12(12):815–26. doi:10.1038/nrm3231.

    Article  CAS  PubMed  Google Scholar 

  40. Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 2011;3:7. doi:10.1101/cshperspect.a002592.

    Article  CAS  Google Scholar 

  41. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300. doi:10.1038/nature10398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA. 2010;16(2):324–37. doi:10.1261/rna.1441510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A, Kelley L, et al. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood. 2007;109(12):5191–8. doi:10.1182/blood-2006-06-027987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood. 2009;113(11):2526–34. doi:10.1182/blood-2008-06-162164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25(24):2573–8. doi:10.1101/gad.178780.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ponjavic J, Oliver PL, Lunter G, Ponting CP. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 2009;5(8):e1000617. doi:10.1371/journal.pgen.1000617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31(3):522–33. doi:10.1038/emboj.2011.459.

    Article  CAS  PubMed  Google Scholar 

  48. Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res. 2010;1338:20–35. doi:10.1016/j.brainres.2010.03.110.

    Article  CAS  PubMed  Google Scholar 

  49. Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 2009;12(8):1020–7. doi:10.1038/nn.2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Young TL, Matsuda T, Cepko CL. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15(6):501–12. doi:10.1016/j.cub.2005.02.027.

    Article  CAS  PubMed  Google Scholar 

  51. Rapicavoli NA, Poth EM, Blackshaw S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol. 2010;10:49. doi:10.1186/1471-213X-10-49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012. doi:10.1101/gad.182121.111.

  53. Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135(6):995–1003. doi:10.1242/dev.005439.

    Article  CAS  PubMed  Google Scholar 

  54. Anderson SM, Rudolph MC, McManaman JL, Neville MC. Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res. 2007;9(1):204. doi:10.1186/bcr1653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Brisken C, Rajaram RD. Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia. 2006;11(3–4):239–48. doi:10.1007/s10911-006-9026-0.

    Article  PubMed  Google Scholar 

  56. Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23(22):2563–77. doi:10.1101/gad.1849509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 2006;8(2):207. doi:10.1186/bcr1411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25. doi:10.1038/nrm1714.

    Article  CAS  PubMed  Google Scholar 

  59. Siegel PM, Muller WJ. Transcription factor regulatory networks in mammary epithelial development and tumorigenesis. Oncogene. 2010;29(19):2753–9. doi:10.1038/onc.2010.43.

    Article  CAS  PubMed  Google Scholar 

  60. Adriaenssens E, Lottin S, Duqimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ. Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene. 1999;18(31):4460–73.

    Article  CAS  PubMed  Google Scholar 

  61. Lanz RB, Chua SS, Barron N, Soder BM, DeMayo F, O’Malley BW. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol. 2003;23(20):7163–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 2011;17(5):878–91. doi:10.1261/rna.2528811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, et al. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A. 2006;103(15):5781–6. doi:10.1073/pnas.0600745103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM. Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol. 2001;15(11):1993–2009.

    Article  CAS  PubMed  Google Scholar 

  65. Guan LS, Rauchman M, Wang ZY. Induction of Rb-associated protein (RbAp46) by Wilms’ tumor suppressor WT1 mediates growth inhibition. J Biol Chem. 1998;273(42):27047–50.

    Article  CAS  PubMed  Google Scholar 

  66. Tursun B, Patel T, Kratsios P, Hobert O. Direct conversion of C. elegans germ cells into specific neuron types. Science. 2011;331(6015):304–8. doi:10.1126/science.1199082.

    Article  CAS  PubMed  Google Scholar 

  67. Anderson AE, Karandikar UC, Pepple KL, Chen Z, Bergmann A, Mardon G. The enhancer of trithorax and polycomb gene Caf1/p55 is essential for cell survival and patterning in Drosophila development. Development. 2011;138(10):1957–66. doi:10.1242/dev.058461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16(22):2893–905. doi:10.1101/gad.1035902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system? Bioessays. 2006;28(6):606–16. doi:10.1002/bies.20423.

    Article  CAS  PubMed  Google Scholar 

  70. Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, et al. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia. 2010;15(1):85–100. doi:10.1007/s10911-010-9170-4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lemay DG, Lynn DJ, Martin WF, Neville MC, Casey TM, Rincon G, et al. The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol. 2009;10(4):R43. doi:10.1186/gb-2009-10-4-r43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Takeda K, Ichijo H, Fujii M, Mochida Y, Saitoh M, Nishitoh H, et al. Identification of a novel bone morphogenetic protein-responsive gene that may function as a noncoding RNA. J Biol Chem. 1998;273(27):17079–85.

    Article  CAS  PubMed  Google Scholar 

  73. Yochum GS, Cleland R, McWeeney S, Goodman RH. An antisense transcript induced by Wnt/beta-catenin signaling decreases E2F4. J Biol Chem. 2007;282(2):871–8. doi:10.1074/jbc.M609391200.

    Article  CAS  PubMed  Google Scholar 

  74. Kohtz JD, Fishell G. Developmental regulation of EVF-1, a novel non-coding RNA transcribed upstream of the mouse Dlx6 gene. Gene Expr Patterns. 2004;4(4):407–12. doi:10.1016/j.modgep.2004.01.007.

    Article  CAS  PubMed  Google Scholar 

  75. Tsutsumi M, Itoh M. Novel transcript nort is a downstream target gene of the Notch signaling pathway in zebrafish. Gene Expr Patterns. 2007;7(3):227–32. doi:10.1016/j.modgep.2006.10.002.

    Article  CAS  PubMed  Google Scholar 

  76. Gibb EA, Vucic EA, Enfield KS, Stewart GL, Lonergan KM, Kennett JY, et al. Human cancer long non-coding RNA transcriptomes. PLoS One. 2011;6(10):e25915. doi:10.1371/journal.pone.0025915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maruyama R, Shipitsin M, Choudhury S, Wu Z, Protopopov A, Yao J, et al. Altered antisense-to-sense transcript ratios in breast cancer. Proc Natl Acad Sci U S A. 2010. doi:10.1073/pnas.1010559107.

  78. Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC, et al. Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet. 2008;17(5):642–55. doi:10.1093/hmg/ddm336.

    Article  CAS  PubMed  Google Scholar 

  79. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74. doi:10.1073/pnas.191367098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23. doi:10.1073/pnas.0932692100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):R214. doi:10.1186/gb-2007-8-10-r214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wilusz JE, Freier SM, Spector DL. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell. 2008;135(5):919–32. doi:10.1016/j.cell.2008.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773–88. doi:10.1016/j.cell.2011.08.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, et al. H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol. 1998;153(5):1597–607. doi:10.1016/S0002-9440(10)65748-3.

    Google Scholar 

  85. Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32(6):473–80. doi:10.1002/bies.200900170.

    Article  CAS  PubMed  Google Scholar 

  86. Berteaux N, Lottin S, Monte D, Pinte S, Quatannens B, Coll J, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem. 2005;280(33):29625–36. doi:10.1074/jbc.M504033200.

    Article  CAS  PubMed  Google Scholar 

  87. Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-Lail R, Fellig Y, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010;1803(4):443–51. doi:10.1016/j.bbamcr.2010.01.010.

    Article  CAS  PubMed  Google Scholar 

  88. Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 2007;67(8):3963–9. doi:10.1158/0008-5472.CAN-06-2004.

    Article  CAS  PubMed  Google Scholar 

  89. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38(5):662–74. doi:10.1016/j.molcel.2010.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pasmant E, Sabbagh A, Vidaud M, Bieche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 2011;25(2):444–8. doi:10.1096/fj.10-172452.

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30. doi:10.1038/nature06992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol. 2011;8(3):496–505.

    Article  CAS  PubMed  Google Scholar 

  93. Chen W, Bocker W, Brosius J, Tiedge H. Expression of neural BC200 RNA in human tumours. J Pathol. 1997;183(3):345–51. doi:10.1002/(SICI)1096-9896(199711)183:3<345::AID-PATH930>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  94. Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, et al. BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis. 2004;25(11):2125–33. doi:10.1093/carcin/bgh228.

    Article  CAS  PubMed  Google Scholar 

  95. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, et al. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol. 2008;10(9):1098–105. doi:10.1038/ncb1770.

    Article  CAS  PubMed  Google Scholar 

  96. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–33. doi:10.1038/nature08199.

    Article  CAS  PubMed  Google Scholar 

  97. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4. doi:10.1038/nature05939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13(3):317–23. doi:10.1038/ncb2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 2011;208(5):875–83. doi:10.1084/jem.20110235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi:10.1016/j.cell.2010.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42. doi:10.1074/jbc.M702029200.

    Article  CAS  PubMed  Google Scholar 

  102. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30(47):4750–6. doi:10.1038/onc.2011.193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8. doi:10.1158/0008-5472.CAN-09-3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26.

    Article  CAS  PubMed  Google Scholar 

  105. Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, et al. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res. 2010;34(2):148–53. doi:10.1016/j.leukres.2009.06.019.

    Article  CAS  PubMed  Google Scholar 

  106. Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38. doi:10.1186/1476-4598-10-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell. 2011;145(4):622–34. doi:10.1016/j.cell.2011.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008;15(8):842–8. doi:10.1038/nsmb.1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Younger ST, Corey DR. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011;39(13):5682–91. doi:10.1093/nar/gkr155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leygue E, Dotzlaw H, Watson PH, Murphy LC. Expression of the steroid receptor RNA activator in human breast tumors. Cancer Res. 1999;59(17):4190–3.

    CAS  PubMed  Google Scholar 

  111. Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y, et al. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J. 2001;20(6):1341–52. doi:10.1093/emboj/20.6.1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK, Dibrov AA, et al. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol. 2006;25(7):418–28. doi:10.1089/dna.2006.25.418.

    Article  CAS  PubMed  Google Scholar 

  113. Cooper C, Guo J, Yan Y, Chooniedass-Kothari S, Hube F, Hamedani MK, et al. Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides. Nucleic Acids Res. 2009;37(13):4518–31. doi:10.1093/nar/gkp441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Foulds CE, Tsimelzon A, Long W, Le A, Tsai SY, Tsai MJ, et al. Research resource: expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol Endocrinol. 2010;24(5):1090–105. doi:10.1210/me.2009-0427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28(2):195–208. doi:10.1038/onc.2008.373.

    Article  CAS  PubMed  Google Scholar 

  116. Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104(7):1168–77. doi:10.1038/sj.bjc.6606076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93. doi:10.1126/science.1192002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44(4):667–78. doi:10.1016/j.molcel.2011.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38(16):5366–83. doi:10.1093/nar/gkq285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8. doi:10.1038/nature09144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 2011;147(2):382–95. doi:10.1016/j.cell.2011.09.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147(2):344–57. doi:10.1016/j.cell.2011.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–22. doi:10.1038/emboj.2011.359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell. 2007;12(3):215–29. doi:10.1016/j.ccr.2007.07.027.

    Article  CAS  PubMed  Google Scholar 

  125. Jin G, Sun J, Isaacs SD, Wiley KE, Kim ST, Chu LW, et al. Human polymorphisms at long non-coding RNAs (lncRNAs) and association with prostate cancer risk. Carcinogenesis. 2011;32(11):1655–9. doi:10.1093/carcin/bgr187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang R, Frank B, Hemminki K, Bartram CR, Wappenschmidt B, Sutter C, et al. SNPs in ultraconserved elements and familial breast cancer risk. Carcinogenesis. 2008;29(2):351–5. doi:10.1093/carcin/bgm290.

    Article  CAS  PubMed  Google Scholar 

  127. Day JR, Jost M, Reynolds MA, Groskopf J, Rittenhouse H. PCA3: from basic molecular science to the clinical lab. Cancer Lett. 2011;301(1):1–6. doi:10.1016/j.canlet.2010.10.019.

    Article  CAS  PubMed  Google Scholar 

  128. Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8(3):123–4. doi:10.1038/nrurol.2011.10.

    Article  PubMed  Google Scholar 

  129. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  130. Moskalev EA, Schubert M, Hoheisel JD. RNA-directed epigenomic reprogramming: an emerging principle of a more targeted cancer therapy? Genes Chromosomes Cancer. 2012;51(2):105–10. doi:10.1002/gcc.20943.

    Article  CAS  PubMed  Google Scholar 

  131. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7. doi:10.1158/0008-5472.CAN-10-2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5. doi:10.1038/ng.518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, et al. The genetic landscape of the childhood cancer medulloblastoma. Science. 2011;331(6016):435–9. doi:10.1126/science.1198056.

    Article  CAS  PubMed  Google Scholar 

  134. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203. doi:10.1126/science.1200609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rotblat B, Leprivier G, Sorensen PH. A possible role for long non-coding RNA in modulating signaling pathways. Med Hypotheses. 2011;77(6):962–5. doi:10.1016/j.mehy.2011.08.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ANS was supported by a Department of Defense Pre-doctoral Fellowship Award (W81XWH-06-1-0717). This work was supported by National Cancer Institute (NCI) Grants CA-16303 and CA148761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Rosen.

Additional information

Amy N. Shore and Jason I. Herschkowitz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shore, A.N., Herschkowitz, J.I. & Rosen, J.M. Noncoding RNAs Involved in Mammary Gland Development and Tumorigenesis: There’s a Long Way to Go. J Mammary Gland Biol Neoplasia 17, 43–58 (2012). https://doi.org/10.1007/s10911-012-9247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-012-9247-3

Keywords

Navigation