Skip to main content

Advertisement

Log in

Mouse Modifier Genes in Mammary Tumorigenesis and Metastasis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Tumorigenesis and metastasis are complex multistep processes. In addition to the numerous somatic mutations that facilitate cancer progression, there is abundant evidence that an individual’s genetic background not only contributes to overall cancer risk, but also specifically influences metastatic potential. The handful of human susceptibility genes that have been identified thus far do not fully account for hereditary cancer risk, and the discovery of additional susceptibility loci using population based studies is complex, time-consuming and expensive. Therefore, we and others have used a variety of mouse models to identify novel candidate susceptibility genes. Here we review how these mouse models have contributed to our understanding of the role of genetic background in modifying tumorigenesis and metastasis susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LFS:

Li-Fraumeni syndrome

SNP:

single nucleotide polymorphism

MMTV:

mouse mammary tumor virus

CIS:

common insertion site

PyMT:

polyoma virus middle T antigen

QTL:

quantitative trait locus

ECM:

extracellular matrix

References

  1. Parkin DM. International variation. Oncogene 2004;23(38):6329–40. doi:10.1038/sj.onc.1207726.

    Article  PubMed  CAS  Google Scholar 

  2. American Cancer Society. Cancer Facts and Figures 2008. Atlanta: American Cancer Society; 2008.

    Google Scholar 

  3. Lester J. Breast cancer in 2007: incidence, risk assessment, and risk reduction strategies. Clin J Oncol Nurs 2007;11(5):619–22. doi:10.1188/07.CJON.619-622.

    Article  PubMed  Google Scholar 

  4. Antoniou AC, Easton DF. Models of genetic susceptibility to breast cancer. Oncogene 2006;25(43):5898–905. doi:10.1038/sj.onc.1209879.

    Article  PubMed  CAS  Google Scholar 

  5. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 1994;266(5182):120–2. doi:10.1126/science.7939630.

    Article  PubMed  CAS  Google Scholar 

  6. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994;266(5182):66–71. doi:10.1126/science.7545954.

    Article  PubMed  CAS  Google Scholar 

  7. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995;378(6559):789–92. doi:10.1038/378789a0.

    Article  PubMed  CAS  Google Scholar 

  8. Bradbury AR, Olopade OI. Genetic susceptibility to breast cancer. Rev Endocr Metab Disord 2007;8(3):255–67. doi:10.1007/s11154-007-9038-0.

    Article  PubMed  Google Scholar 

  9. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250(4985):1233–8. doi:10.1126/science.1978757.

    Article  PubMed  CAS  Google Scholar 

  10. Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M, et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 2001;20(34):4621–8. doi:10.1038/sj.onc.1204621.

    Article  PubMed  CAS  Google Scholar 

  11. Eng C. PTEN: one gene, many syndromes. Hum Mutat 2003;22(3):183–98. doi:10.1002/humu.10257.

    Article  PubMed  CAS  Google Scholar 

  12. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16(1):64–7. doi:10.1038/ng0597-64.

    Article  PubMed  CAS  Google Scholar 

  13. Brownstein MH, Wolf M, Bikowski JB. Cowden’s disease: a cutaneous marker of breast cancer. Cancer 1978;41(6):2393–8. doi:10.1002/1097-0142(197806)41:6<2393::AID-CNCR2820410644>3.0.CO;2-K.

    Article  PubMed  CAS  Google Scholar 

  14. Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, et al. Increased risk for cancer in patients with the Peutz–Jeghers syndrome. Ann Intern Med 1998;128(11):896–9.

    PubMed  CAS  Google Scholar 

  15. Lim W, Hearle N, Shah B, Murday V, Hodgson SV, Lucassen A, et al. Further observations on LKB1/STK11 status and cancer risk in Peutz–Jeghers syndrome. Br J Cancer 2003;89(2):308–13. doi:10.1038/sj.bjc.6601030.

    Article  PubMed  CAS  Google Scholar 

  16. Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 2000;92(14):1126–35. doi:10.1093/jnci/92.14.1126.

    Article  PubMed  CAS  Google Scholar 

  17. Szpirer C, Szpirer J. Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 2007;18(12):817–31. doi:10.1007/s00335-007-9073-x.

    Article  PubMed  Google Scholar 

  18. Khanna KK. Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 2000;92(10):795–802. doi:10.1093/jnci/92.10.795.

    Article  PubMed  CAS  Google Scholar 

  19. Fostira F, Thodi G, Konstantopoulou I, Sandaltzopoulos R, Yannoukakos D. Hereditary cancer syndromes. J BUON 2007;12(Suppl 1):S13–22.

    PubMed  Google Scholar 

  20. Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002;31(1):55–9. doi:10.1038/ng879.

    Article  PubMed  CAS  Google Scholar 

  21. Breast Cancer Association C. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 2006;98(19):1382–96.

    Article  Google Scholar 

  22. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007;447(7148):1087–93. doi:10.1038/nature05887.

    Article  PubMed  CAS  Google Scholar 

  23. Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 2002;86(1):76–83. doi:10.1038/sj.bjc.6600008.

    Article  PubMed  CAS  Google Scholar 

  24. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 2000;19(8):992–1001. doi:10.1038/sj.onc.1203276.

    Article  PubMed  CAS  Google Scholar 

  25. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31(1):99–109. doi:10.1016/0092-8674(82)90409-3.

    Article  PubMed  CAS  Google Scholar 

  26. Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, Jonkers J, et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet 2007;39(6):759–69. doi:10.1038/ng2034.

    Article  PubMed  CAS  Google Scholar 

  27. Dillon C, Spencer-Dene B, Dickson C. A crucial role for fibroblast growth factor signaling in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 2004;9(2):207–15. doi:10.1023/B:JOMG.0000037163.56461.1e.

    Article  PubMed  Google Scholar 

  28. Turashvili G, Bouchal J, Burkadze G, Kolar Z. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 2006;73(5):213–23. doi:10.1159/000098207.

    Article  PubMed  CAS  Google Scholar 

  29. Farnie G, Clarke RB. Mammary stem cells and breast cancer—role of Notch signalling. Stem Cell Rev 2007;3(2):169–75. doi:10.1007/s12015-007-0023-5.

    Article  PubMed  CAS  Google Scholar 

  30. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992;12(3):954–61.

    PubMed  CAS  Google Scholar 

  31. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH, et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 1998;77(4):640–4. doi:10.1002/(SICI)1097-0215(19980812)77:4<640::AID-IJC26>3.0.CO;2-8.

    Article  PubMed  CAS  Google Scholar 

  32. Le Voyer T, Lu Z, Babb J, Lifsted T, Williams M, Hunter K. An epistatic interaction controls the latency of a transgene-induced mammary tumor. Mamm Genome 2000;11(10):883–9. doi:10.1007/s003350010163.

    Article  PubMed  Google Scholar 

  33. Cozma D, Lukes L, Rouse J, Qiu TH, Liu ET, Hunter KW. A bioinformatics-based strategy identifies c-Myc and Cdc25A as candidates for the Apmt mammary tumor latency modifiers. Genome Res 2002;12(6):969–75. doi:10.1101/gr.210502.

    Article  PubMed  CAS  Google Scholar 

  34. Crawford NP, Hunter KW. New perspectives on hereditary influences in metastatic progression. Trends Genet 2006;22(10):555–61. doi:10.1016/j.tig.2006.07.009.

    Article  PubMed  CAS  Google Scholar 

  35. Hsieh SM, Lintell NA, Hunter KW. Germline polymorphisms are potential metastasis risk and prognosis markers in breast cancer. Breast Dis 2006;26:157–62.

    PubMed  CAS  Google Scholar 

  36. Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature 1980;283(5743):139–46. doi:10.1038/283139a0.

    Article  PubMed  CAS  Google Scholar 

  37. Steeg PS, Ouatas T, Halverson D, Palmieri D, Salerno M. Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 2003;4(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  38. Riethmuller G, Klein CA. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin Cancer Biol 2001;11(4):307–11. doi:10.1006/scbi.2001.0386.

    Article  PubMed  CAS  Google Scholar 

  39. Weiss L. Metastatic inefficiency. Adv Cancer Res 1990;54:159–211. doi:10.1016/S0065-230X(08)60811-8.

    Article  PubMed  CAS  Google Scholar 

  40. Kerbel RS, Frost P, Liteplo R, Carlow DA, Elliott BE. Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J Cell Physiol Suppl 1984;3:87–97. doi:10.1002/jcp.1041210411.

    Article  PubMed  CAS  Google Scholar 

  41. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415(6871):530–6. doi:10.1038/415530a.

    Article  PubMed  Google Scholar 

  42. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347(25):1999–2009. doi:10.1056/NEJMoa021967.

    Article  PubMed  Google Scholar 

  43. Hunter K. The intersection of inheritance and metastasis: the role and implications of germline polymorphism in tumor dissemination. Cell Cycle 2005;4(12):1719–21.

    PubMed  CAS  Google Scholar 

  44. Hunter KW. Allelic diversity in the host genetic background may be an important determinant in tumor metastatic dissemination. Cancer Lett 2003;200(2):97–105. doi:10.1016/S0304-3835(03)00420-8.

    Article  PubMed  CAS  Google Scholar 

  45. Hunter KW, Broman KW, Voyer TL, Lukes L, Cozma D, Debies MT, et al. Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res 2001;61(24):8866–72.

    PubMed  CAS  Google Scholar 

  46. Lancaster M, Rouse J, Hunter KW. Modifiers of mammary tumor progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm Genome 2005;16(2):120–6. doi:10.1007/s00335-004-2432-y.

    Article  PubMed  CAS  Google Scholar 

  47. Park YG, Clifford R, Buetow KH, Hunter KW. Multiple cross and inbred strain haplotype mapping of complex-trait candidate genes. Genome Res 2003;13(1):118–21. doi:10.1101/gr.786403.

    Article  PubMed  CAS  Google Scholar 

  48. Park YG, Zhao X, Lesueur F, Lowy DR, Lancaster M, Pharoah P, et al. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 2005;37(10):1055–62. doi:10.1038/ng1635.

    Article  PubMed  CAS  Google Scholar 

  49. Crawford NP, Ziogas A, Peel DJ, Hess J, Anton-Culver H, Hunter KW. Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res 2006;8(2):R16. doi:10.1186/bcr1389.

    Article  PubMed  CAS  Google Scholar 

  50. Crawford NP, Qian X, Ziogas A, Papageorge AG, Boersma BJ, Walker RC, et al. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet 2007;3(11):e214. doi:10.1371/journal.pgen.0030214.

    Article  PubMed  CAS  Google Scholar 

  51. Yang H, Rouse J, Lukes L, Lancaster M, Veenstra T, Zhou M, et al. Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis. Clin Exp Metastasis 2004;21(8):719–35. doi:10.1007/s10585-004-8251-4.

    Article  PubMed  CAS  Google Scholar 

  52. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003;33(1):49–54. doi:10.1038/ng1060.

    Article  PubMed  CAS  Google Scholar 

  53. Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW, Hunter KW. The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis 2008;25(4):357–69.

    Article  PubMed  CAS  Google Scholar 

  54. Farina A, Hattori M, Qin J, Nakatani Y, Minato N, Ozato K. Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol 2004;24(20):9059–69. doi:10.1128/MCB.24.20.9059-9069.2004.

    Article  PubMed  CAS  Google Scholar 

  55. Crawford NP, Alsarraj J, Lukes L, Walker RC, Officewala J, Yang HH, et al. Bromodomain 4 activation predicts breast cancer survival. Proc Natl Acad Sci USA. 2008; 105(17):6380–5 doi:10.1073/pnas.071033105.

    Google Scholar 

  56. Chung CT, Carlson RW. Goals and objectives in the management of metastatic breast cancer. Oncologist 2003;8(6):514–20. doi:10.1634/theoncologist.8–6–514.

    Article  PubMed  Google Scholar 

  57. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5(8):591–602. doi:10.1038/nrc1670.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent W. Hunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, S.F., Hunter, K.W. Mouse Modifier Genes in Mammary Tumorigenesis and Metastasis. J Mammary Gland Biol Neoplasia 13, 337–342 (2008). https://doi.org/10.1007/s10911-008-9089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9089-1

Keywords

Navigation