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Abstract Early-stage ovarian cancer has an excellent prognosis, but due mainly to
late detection, ovarian cancer remains a major cause of cancer deaths among women.
In vivo magnetic resonance spectroscopy (MRS) would be an excellent candidate for
early ovarian cancer detection, being non-invasive, surpassing anatomic imaging to
identify metabolic features of cancer, and free of ionizing radiation. However, the
present meta-analysis of 13 studies indicates that with conventional Fourier-based
processing, in vivo MRS insufficiently distinguished 134 cancerous from 114 benign
ovarian lesions. The fast Padé transform (FPT), an advanced signal processor with
high-resolution and parametric (quantification-equipped) capabilities is best qualified
for MRS time signals from the ovary, as demonstrated in our earlier proof-of-concept
studies. We now apply the FPT to MRS time signals encoded in vivo on a 3 T scanner,
echo time of 30 ms, from a borderline serous cystic ovarian tumor. The FPT-produced
total shape spectrumwas better resolved than with Fourier processing. Spectra averag-
ing through the FPT generated a denoised total shape spectrum. Subsequent parametric
analysis reconstructed dense component spectra in the “usual” mode: absorption and
dispersion components mixed and “ersatz” mode: reconstructed phases set to zero,
thus eliminating interference effects. Numerous metabolites, including potential can-
cer biomarkers, were identified and quantified by the FPT, including isoleucine, valine,
lipids, lactate, alanine, lysine, N-acetyl aspartate, N-acetylneuraminic acid, gluta-
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mine, choline, phosphocholine, myoinositol. Many of these are difficult or impossible
to detect with Fourier plus fitting techniques for in vivo MRS of the ovary. These
Padé-generated results are promising, overcomingmajor barriers hinderingMRS from
becoming a key method for non-invasively assessing ovarian lesions.

Keywords Magnetic resonance spectroscopy · Ovarian cancer diagnostics ·
Mathematical optimization · Fast Padé transform

Abbreviations

Ace Acetic acid
AcNeu N-acetylneuraminic acid
Ala Alanine
Av Average
au Arbitrary units
B Benign ovarian lesion
Bet Betaine
BL Borderline ovarian lesion
BRCA1 Breast cancer susceptibility gene 1
BRCA2 Breast cancer susceptibility gene 2
BW Bandwidth
CA Carcinoma
CHESS Chemical shift selective
Cho Choline
CI Confidence interval
Cit Citrate
cm Centimeter
COSY Correlated spectroscopy
Cr Creatine
Crn Creatinine
CT Computerized tomography
DFT Discrete Fourier transform
DWI Diffusion weighted imaging
E Ersatz
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full width at half maximum
Iso Isoleucine
GE General Electric
Glc Glucose
Gln Glutamine
Glu Glutamate
Gly Glycine
GPC Glycerophosphocholine
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HBOC Hereditary breast and ovarian cancer
His Histidine
HLSVD Hankel–Lanczos Singular Value Decomposition
HRMAS High resolution magic angle spinning
IDFT Inverse discrete Fourier transform
IFFT Inverse fast Fourier transform
Iso Isoleucine
L Liter
Lac Lactate
LCModel Linear combination of model in vitro spectra
Leu Leucine
Lip Lipid
Lys Lysine
Mann Mannose
Met Methionine
METAS Metastatic
m-Ins Myoinositol
mL Milliliter
mm Millimeter
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
MW Mann Whitney
NAA N-acetyl aspartate
NEX Number of excitations
NPV Negative predictive value
NS Statistically non-significant
OC Ovarian cancer
OR Odds ratio
PC Phosphocholine
PCr Phosphocreatine
PLCO Prostate, Lung, Colon, and Ovarian (trial)
ppm Parts per million
PPV Positive predictive value
PRESS Point resolved spectroscopy
Pt Patient
Pts Patients
Pyr Pyruvate
RMS Root-mean-square
S South
SCSOCS Shizuoka Cohort Study on Ovarian Cancer Screening
SD standard deviation
SNR Signal-noise ratio
SNS Signal-noise separation
SRI Spectral region of interest
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STEAM Stimulated echo acquisition method
SVD Singular Value Decomposition
TE Echo time
Thr Threonine
TR Repetition time
Tu Tumor
TVUS Transvaginal ultrasound
Tx Treatment
Tyr Tyrosine
U Usual
UKCTOCS UK Collaborative Trial of Ovarian Cancer Screening
Univ University
Val Valine
VOI Volume or voxel of interest
WET Water suppression through enhanced T1 effects
ww Wet weight
Y Year
1D One dimensional
2D Two dimensional
3-HB 3-Hydroxybutyrate
µM Micromole

1 Introduction

Mathematical optimization has a special relevance to the problem of ovarian cancer
diagnostics. This is related to the application of advanced signal processingmethods to
evaluate data encoded via magnetic resonance spectroscopy (MRS). The anticipated
added value of a high-resolution and clinically reliable signal processor to this prob-
lem would be improved accuracy for early detection of ovarian cancer. We begin by
contextualizing the problem, briefly reviewing the relevant medical aspects, followed
by our meta-analysis of the results to date that are based upon the conventional Fourier
processing of in vivo MRS time signals encoded from the ovary. Then, we proceed to
a succinct presentation of the advanced signal processing provided by the fast Padé
transform (FPT). Thereby, we strive to provide the multi-disciplinary background for
viewing the new results presented in this paper, applying the FPT to in vivo MRS time
signals encoded from the ovary.

1.1 Dimensions of the problem: impact and risk of ovarian cancer

The ovary is a small, moving ellipsoid organ. Its normal mean volume in adult females
ranges from 6.1 to 1.8 cm3 depending on age. Especially in early-stage cancer, the
ovary may be only slightly enlarged or of normal size [1]. Cancers in this tiny organ
are the sixth most often occurring malignancy among women throughout the world.
In many parts of the world, including the U.S., Scandinavia and Israel, ovarian cancer
is even more common, and in a number of countries the incidence of ovarian cancer
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appears to be increasing [2–5]. Ovarian cancer has a very high case fatality rate [6].
In the U.S. alone, over 14,000 women die each year from ovarian cancer [7].

Among the risk factors for ovarian cancer is heredity, which accounts for up to
25% of cases [8–12]. Familial ovarian cancer has been most widely identified in
relation to the hereditary breast and ovarian cancer (HBOC) syndrome, with germline
mutations in BRCA1 and BRCA2 tumor suppressor genes1 being responsible for the
vast majority of HBOC. Several other gene mutations also appear to be associated
with HBOC or other hereditary ovarian cancers. The Lynch syndrome characterized
by non-polyposis colorectal cancer also includes increased risk of ovarian cancer, as
well as endometrial cancer [9,12].

Non-hereditary risk factors for ovarian cancer include use of hormone replacement
therapy [11,13], unhealthy life-style (smoking, high-saturated fat diet intake, obesity)
[11], late childbirth, nulliparity, endometriosis [14,15], and possibly exposure to diag-
nostic ionizing radiation, as well as to talc, pesticides or herbicides [11,15]. Night shift
workmay also increase the risk of ovarian cancer [16], possibly in relation to circadian
genes that are highly expressed in the ovaries, since these genes regulate ovulation
[17].

1.2 Late detection of ovarian cancer

The main reason for the high mortality is that the majority of ovarian cancers are
detected late, at Stage III or IV with tumor spread outside the true pelvis [18]. When
detected early, ovarian cancer has an excellent prognosis, especially at Stage Ia (con-
fined to a single ovary) for which five-year survival rates are well above 90% [19]. The
challenge, however, is that early stage ovarian cancer is most often asymptomatic and,
as noted, the ovary may still be of normal size [1]. Once symptoms such as abdominal
pain, bloating and urinary discomfort have appeared, the disease is often already in
an advanced stage. Taking a more proactive approach towards symptoms has been
suggested, i.e. performing more symptom-triggered diagnostic workups. However, it
has not been demonstrated that this approach would contribute substantially to earlier
diagnosis of ovarian cancer [20].

1.2.1 Ultrasound and biomarkers

Transvaginal ultrasound (TVUS) and serum cancer antigen (CA-125)2 have been the
most commonly used diagnosticmethods to screen for ovarian cancer. Recent evidence
from a large, randomized controlled trial [the UK Collaborative Trial of Ovarian
Cancer Screening (UKCTOCS)] indicates that, compared to women who received no

1 BRCA1 denotes the breast cancer susceptibility gene 1, BRCA2 denotes the breast cancer susceptibility
gene 2. These are tumor suppressor genes that, when functioning normally, maintain cell growth at the
proper rate. With harmful mutations of BRCA1 or BRCA2, cells have an increased chance of unchecked
growth, and the risk of breast and ovarian cancer is increased.
2 Serum cancer antigen, CA-125 is a protein which, when present is often associated with ovarian cancer.
However, it has poor sensitivity for early stage ovarian cancer and is also non-specific, being present in
other malignancies as well as in a number of non-cancerous conditions, including pregnancy.
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screening, there may have been reduced mortality from ovarian cancer during years 7
to 14 of the study among the women who received annual multimodal screening with
serum CA-125 interpreted with use of the “Risk of Ovarian Cancer Algorithm”. It was
considered, however, that further follow-up is needed before definitive conclusions
could be reached concerning the efficacy and cost-effectiveness of ovarian cancer
screening using this strategy [21]. In the large-scale Prostate, Lung, Colorectal and
Ovarian (PLCO) Trial from the U.S., the combination of CA-125 and TVUS to screen
for ovarian cancer in asymptomatic women did not reduce mortality. This strategy had
associated harms related to a large percentage of false positive findings. Therefore,
the conclusion was that this screening strategy should not be recommended [22].
Concordantly, the conclusion of a randomized multi-center study of 48027 women
from Japan [Shizuoka Cohort Study on Ovarian Cancer Screening (SCSOCS)] was
that TVUS plus CA-125 did not lead to a significant increase in stage I ovarian cancer
detection among asymptomatic women who had passed menopause [23]. Notably,
among the 40801 women enrolled in the SCSOCS who never had a CA-125 value
above the upper limit of normal (35 Units/mL), some 4859 women had an abnormal
TVUS. Among those women who subsequently underwent surgery, 8 ovarian cancers
were diagnosed. The authors conclude: “surgery-detected ovarian cancer is not rare
among women with CA-125 levels of 35 Units/mL or less—levels generally thought
to be in the normal range” [24] (p. 133).

It has been suggested that certain other biomarkers could provide better diagnostic
accuracy than CA-125 for early ovarian cancer detection [25–29]. However, none of
these other biomarkers are considered to provide sufficient improvement in sensitivity
and specificity to support their routine use for ovarian cancer screening [30].

A particular concern regarding the described screening strategies aimed at early
ovarian cancer detection are the adverse consequences of false positive findings. These
include poorer adherence to further screening recommendations, emotional distress,
as well as a substantial percentage (15% in the PLCO study) of serious complications
among women undergoing surgical intervention for false positive results [31,32].
The impact of compromised subsequent fertility among women in their reproductive
years who have undergone surgical intervention is also an important consideration.
Overall, the major problem is that screening using TVUS and CA-125 can lead to
many unnecessary surgical procedures [33], without an evident contribution to early
detection and reduced mortality from ovarian cancer. In other words, for women who
are not clearly at high risk for ovarian cancer, the “harms” of routine ovarian cancer
screening are considered to outweigh the benefits [34].

1.2.2 Possible added value of magnetic resonance imaging

With the aid of magnetic resonance imaging (MRI), adnexal masses with morphologic
characteristics that are indeterminate on TVUS can sometimes be better identified as
benign or malignant, with a specific diagnosis facilitated in certain cases [35,36]. In a
meta-analysis comparing three morphological imaging modalities, MRI was found to
yield greater incremental value than computerized tomography (CT) for identifying
ovarian cancer when the findings on TVUS were indeterminate [37]. Still, almost
one-fourth of benign ovarian lesions were misdiagnosed as cancerous using TVUS
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with MRI as a second imaging technique [37]. Generally, MRI is highly sensitive,
with ovarian cancer usually identified. The main problem is lack of specificity, such
that non-malignant findings cannot consistently be distinguished from ovarian cancer,
without further investigation. With the addition of diffusion-weighted imaging (DWI)
further improvement in specificity can be gained, although a substantial number of
false positive findings still occur [38,39]. There is also some evidence that DWI may
be helpful in reflecting response of advanced stage ovarian cancer to neoadjuvant
chemotherapy [40].

1.3 In vivo magnetic resonance spectroscopy of the ovary: the present
meta-analysis of published results

Magnetic resonance imaging, MRI, provides high spatial resolution, such that mor-
phology is very well visualized. Via magnetic resonance spectroscopy, MRS, it
becomes possible to go beyond anatomy, to assess the metabolic features of tissues or
organs. The molecular changes that typify the cancer process, i.e. the “hallmarks of
cancer” [41] can potentially be revealed through MRS [42].

Several investigative teams have applied in vivo MRS with the aim of improving
ovarian cancer diagnostics. We performed a systematic search3 of the literature and
found published results for 134 malignant ovarian lesions, 114 benign ovarian lesions
and 3 lesions of the ovary thatwere classified as “borderline” (BL), using in vivo proton
MRS time signals encoded via clinical (1.5 or 3 T) magnetic resonance (MR) scanners
[40,43–55]. Appendix 1 provides a summary of the clinical aspects and design of these
studies, with salient information concerning the reported MRS data. In all 251 cases,
the nature of the ovarian lesion was subsequently confirmed histopathologically. As
seen in column 3 ofAppendix 1, there wasmuch diversity in the histopathologic nature
of these lesions. There was also substantial diversity in theMRS-related methodology,
as described in column 5 of Appendix 1. In most of the studies, some assessment of
spectral quality, notably, Signal-noise ratio (SNR) was reported, with these issues
addressed in detail in Ref. [52]. The common methodologic feature of all these in vivo
studies was that the MRS time signals were processed by the fast Fourier transform
(FFT) as is the conventional practice, with eventual post-processing via fitting in some
instances, such as in Refs. [40,45,51,52,54].

Column 6 of Appendix 1 summarizes the MRS findings. The main metabolite
peaks resolved were: lipid (Lip) at 1.3 ppm (parts per million), an inverted lactate
(Lac) doublet also at around 1.3 ppm, creatine (Cr) at 3.0 ppm, choline (Cho) at 3.2
ppm or total Cho between 3.14 and 3.34 ppm and Lip at 5.2 ppm. In addition, a peak
with resonance frequency between 2.0 and 2.1 ppmwas reported by some authors [48–
52,54]. Based upon in vitro analysis, this peak was found to be comprised of N-acetyl
aspartate (NAA) aswell asN-acetyl groups fromglycoproteins and/or glycolipids [50].
The NAA component may be a reflection of a molecular water pump [48]. Recall that

3 The search was performed using two reliable search engines for medicine: OVID MEDLINE and
PUBMED. The search terms were magnetic resonance spectroscopy and (ovary or ovarian cancer). All
identified published clinical studies using in vivo MRS to evaluate ovarian lesions were included in the
meta-analysis. Bibliographies of relevant articles and personal files were also reviewed.
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in the healthy human brain, NAA is the tallest peak and this reflects the abundance
and viability of neurons. Choline reflects phospholipid metabolism of cell membranes
and is a marker of membrane damage, cellular proliferation and cell density, while
Cr is a marker of energy metabolism. Anaerobic glycolysis is indicated by Lac. Most
commonly, themetabolic informationwas described qualitatively (presence or absence
of a given peak), and these are the data that could be pooled for meta-analysis. Various
procedures were performed aimed at quantifying Cho. Due to the diversity of units as
well as of the procedures, these data could not be pooled. Metabolite concentration
ratios of Cho to Cr were reported in two of the studies [51,54]. In both studies, the
Cho/Cr concentration ratio was significantly higher in cancerous ovarian lesions than
in the benign ovaries. However, these data were given for individual patients in only
one [54] of these studies, and thus, no data pooling could be done.

Univariate analysis of the pooled data for the 134 ovarian cancers and 114 benign
ovarian lesions is presented in Table 1. It can be seen that Cho at 3.2 ppm was sig-
nificantly more often detected in cancerous compared to benign ovarian lesions. This
was also the case for Lac at 1.3 ppm, but the number of patients for whom data on
Lac were available was relatively small. There was no significant difference between
cancerous and benign ovarian lesions regarding detection of Lip at 1.3 ppm. Data
concerning an NAA peak at ∼2.0 ppm almost exclusively indicated its presence, not
absence. Altogether an NAA peak at ∼2.0 ppm was reportedly detected in 46 of the
cancerous and 36 of the benign ovarian lesions. This would not be a statistically sig-
nificant difference, even if all the missing data actually indicated absence of an NAA
peak (Yates χ2 = 0.10, p = 0.747). The majority of the MRS analyses for both the
benign and malignant ovarian lesions were on voxels containing solid tissue. In an
additional analysis (not shown in Table 1) comparing the metabolic findings among
the ovarian cancers alone, Cho at 3.2 ppm was detected more often in the voxels con-
taining solid tissue compared to those containing cystic material (Fisher’s exact test,
2-tailed, p = 0.00000).

The patients with ovarian cancer were significantly older than those with benign
ovarian lesions, although there were much missing data for this variable (age), par-
ticularly among the patients with ovarian cancer. Magnetic field strength, B0, and
echo time (TE) were similar for the ovarian cancers and the benign ovarian lesions.
In an additional analysis (not shown in Table 1), there was a borderline significant
association between B0 and Cho detection (Pearson χ2 = 3.97, p = 0.046, Yates
χ2 = 3.19, p = 0.074), but no association between B0 and Lac detection.

Table 2 displays the present results of logistic regression analysis, from which the
positive predictive value (PPV), negative predictive value (NPV) and overall accuracy
of several models were determined. In the left column of Table 2, the unadjusted
models are shown. These indicate how well Cho at 3.2 ppm (top panels), Lac at 1.3
ppm (middle panels) as well as Cho and Lac together (bottom panels) predict whether
the ovarian lesions were cancerous or benign. Based on the detection of Cho alone,
some 50 benign ovarian lesions would be incorrectly classified as cancerous, i.e. as
false positive results, indicated by the PPV of 66%. Some 20malignant ovarian lesions
would be incorrectly considered benign based upon lack of detected Cho, i.e. false
negative results, with an NPV of 57.4%. Lactate alone provided better PPV and NPV
with a statistically more significant model, but data were available for only 25% of the
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Table 1 Univariate analysis comparing ovarian cancer and benign ovarian lesions

Ovarian cancer N = 134 Significance Benign ovarian lesions N = 114

Number (%) Number (%)

Metabolites detected by in vivo MRS

Cho (3.2 ppm)

Present 97 (82.9) p = 0.007 50 (64.9)

Absent 20 (17.1) 27 (35.1)

Missing data 17 37

Lip (1.3 ppm)

Present 44 (67.7) NS 57 (59.4)

Absent 21 (32.3) 39 (40.6)

Missing data 69 18

Lac (1.3 ppm)

Present 18 (69.2) p = 0.0006 8 (22.2)

Absent 8 (30.8) 28 (77.8)

Missing data 108 78

Lesion type

Solid 85 (80.2) NS 49 (72.1)

Cystic 21 (19.8) 19 (27.9)

Missing data 28 46

Mean ± SD (range) Mean ± SD (range)

Patient age 56.3 ± 7.8 (43–81) p = 0.000000 41.9 ± 15.2(22−84)

Missing data 88 46

Magnetic field strength B0 1.89 ± 0.66(1.5−3.0) NS 1.87 ± 0.65(1.5−3.0)

Missing data 2 9

TE (in ms) 122 ± 31.5(30−144) NS ζ 107.5 ± 46.7(30−144)

Missing data 0 0

Comparisons for the categorical variables assessed by Pearson χ2 test with Yates’ continuity correction.
Means are compared with two-sample “t” tests, unless indicated as ζ for MW test
All significant levels 2 sided, SD (standard deviation), NS (Statistically non-significant)
Analysis performed using Statistica 64 software

patients. We also used an unadjusted logistic regression model including both Cho and
Lac, which was more powerful than the models for either of the twometabolites alone.
In the unadjusted model including both Cho and Lac, a higher PPV was attained, but
3 fewer cases were included than for the model with Lac alone.

The logistic regression models with adjustment for age and B0 are presented on
the right column of Table 2. Age was included since, as seen in Table 1, there was a
significantly greater likelihood that the ovarian lesion was cancerous with increased
age of the patient. As noted, Cho was more likely to be detected with higher B0.
We therefore included the variable B0 in these adjusted models. The adjusted logistic
regression model for Cho provided a better NPV than did the unadjusted model,
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although with markedly fewer patients included. There were twelve fewer patients in
the adjusted than in the unadjusted Lac model, with only marginal improvement in
overall accuracy. The adjusted model with both Lac and Cho, also with a total of fifty
patients, provided the best PPV, NPV and overall accuracy. In that model Lac and
Cho each had the highest odds ratios (OR), but their 95% confidence intervals (CI)
were the widest. Even with this strongest logistic regression model, four of twenty-
four patients with benign ovarian lesions were incorrectly predicted to have ovarian
cancer, and four of twenty-six patients with ovarian cancer were erroneously predicted
to have benign lesions.

Overall, it can be concluded that while some insights are gleaned, in vivo MRS has
not yet provided sufficient distinction between cancerous and benign ovarian lesions.
Due to motion artefacts plus the small size of the ovary, encoding good quality MRS
time signals is technically very difficult. As noted, current practice is to rely upon the
FFT to convert the encoded MRS time signal into its spectral representation in the
frequency domain. The FFT is a low resolution, non-parametric signal processor. It
cannot reliably separate out the noise that corrupts the recordedMRS time signal, such
that poor SNR is a major problem when using clinical MR scanners. Yet, there are
many MR-observable compounds that characterize malignant versus benign ovarian
lesions using in vitro MRS [50,56–62].

1.4 In vitro MRS findings from the ovary

Greater possibilities emerge for distinguishing malignant from benign ovarian lesions
by in vitro MRS. Not only can much stronger static magnetic fields be applied, but the
methods of analytical chemistry can also be used on the excised specimens. Generally
much better resolution is achieved compared to in vivo MRS in which time signals
are most often encoded with 1.5 or 3 T clinical scanners.

Using linear discriminant analysis training with leave-one-out (12 normal, 22 can-
cer) for evaluating 7 normal versus 15 ovarian cancer specimens, normal and benign
lesions were identified according to six discriminating peaks: 1.47 ppm (fatty acid),
1.68 ppm [lysine (Lys)], 2.80 ppm (fatty acid), 2.97 ppm (Cr), 3.17 ppm (Cho) and
3.34 ppm (taurine), with 95% sensitivity and 86% specificity [56]. In an investigation
of 19 normal or benign ovarian samples, 3 with BL pathology and 37 ovarian cancers
[57], amplitude ratios of peaks at 0.9 ppm (Lip methyl), 1.3 ppm (Lip methylene), 1.7
ppm (Lys and polyamines) and 3.2 ppm (Cho), distinguished normal or benign sam-
ples from BL and malignant ovarian samples with a sensitivity of 95% and specificity
of 86%.

Examining samples from 9 malignant and 19 benign ovarian cysts, Massuger et al.
[58] reported higher concentrations of Lac, as well as alanine (Ala), isoleucine (Iso),
leucine (Leu), methionine (Met) and valine (Val) in the cancer specimens. However,
the ranges overlapped. Higher pyruvate (Pyr) and 3-hydroxybutyrate (3-HB) were
observed in the cancerous ovarian cyst fluid, attributed to the rapid cellular metabolism
which leads to elevations in 3-HB. The high concentrations of Iso, Leu, and Val,
as branched chain amino acids, were considered to be protein breakdown products
associated with proteolysis and necrosis. There was also an endometrioma located
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in the adnexal region included in the study, for which much higher levels of Ala,
Iso, Lys, Met, Val, threonine (Thr), as well as glycine were seen compared to the
malignant ovarian cysts. Using one-dimensional (1D) and two-dimensional (2D) in
vitro MRS, the investigation was extended to 12 cancerous and 23 benign ovarian
cysts [59]. Therein, concentrations of Iso (1.02 ppm), Val (1.04 ppm), Thr (1.33 ppm),
Lac (1.41 ppm), Ala (1.51 ppm), Lys (1.67–1.78 ppm), Met (2.13 ppm), as well as
glutamine (Gln) (2.42–2.52 ppm) and Cho (3.19 ppm) were all significantly higher
in the malignant cyst fluid. There was, however, some overlap between the individual
values of each of these metabolite concentrations in the cancerous and the benign
samples.

For the borderline, BL, serous cystic ovarian lesion assessedwith in vivoMRS at TE
= 30 and 136ms inRef. [50], as noted, the cystic fluidwas also evaluated in vitro. Using
1D spectral analysis, in addition to the Lac doublet at ∼1.3 ppm, several resonances
appeared in the region around 1.0 ppm, most likely corresponding to Iso and Val, inter
alia. Alaninewas seen at∼1.45 ppmand acetate (Ace) at∼1.9 ppm.Abroad resonance
centered at 2.06 ppm was observed, which disappeared when the deproteinized cyst
fluid was reanalyzed. In contrast, however, a singlet resonance at 2.03 ppm assigned
to NAA was seen in the deproteinized benign serous ovarian cyst fluid from three
other patients. Further analysis was performed on the native BL ovarian cystic fluid,
using 2D correlated spectroscopy (COSY). Cross peaks of two different types of
bound sialic i.e. N-acetylneuraminic (acNeu) acid were seen. It was considered that
these resonances may be attributed to N-acetylated glycoproteins and/or glycolipids.
These findings underscore the importance of assessing the underlying components of
resonant peaks, rather than relying solely upon total shape spectra.

In a subsequent study, this group of investigators applied Gas Chromatography-
Mass Spectrometry to ovarian cystic fluid [60]. In the nine epithelial ovarian tumors
with a serous histology (serous cystadenocarcinoma), it was reported that NAA was
generally present in high micromolar concentrations. Since the serum concentrations
of NAA were usually low in these patients, it was suggested that NAA was produced
locally in these ovarian tumors. Other histological types of cystadenocarcinomas
(mucinous, endometrioid and clear cell), however, mainly showed low micromolar
concentrations of NAA, and these concentrations were similar to those in the serum.
The authors suggested that the high levels of NAA may be associated with the water
accumulation within the tumors and thereby could contribute to the formation of large
serous cystic lesions.

An extensive metabolomic assessment using high resolution magic angle spinning
(HRMAS) was made of 31 epithelial ovarian carcinomas (22 serous, 4 endometrioid,
and 5mucinous carcinomas), 5 BL ovarian tumors and 3 samples from healthy ovarian
tissue [61]. Pattern differences were observed among the malignant subtypes, with
NAA being characteristic of serous carcinomas, and N-acetyl-lysine of mucinous
carcinomas. Among four patients with poor survival, higher levels of Val, Leu and Lys
were found.

Most recently, metabolomic analysis was reported of 23 ovarian cyst fluid samples
(8 benign, 5 BL and 10 cancerous) via proton MRS [62]. These authors examined
a wide chemical shift region from about 0.8 to 8.2 ppm. Included therein were the
”Aliphatic region” from about 1.8 to 4.2 ppm, and the ”Aromatic region” from about
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6.6 to 8.0 ppm. The latter contained histidine, tyrosine and phenylalanine. At 8.2
ppm, a hypoxanthine resonance was detected only in a sub-cohort of the ovarian
cancers. In the aliphatic region, the citrate (Cit) level was found to be elevated in
the benign tumors. Lys was associated with the malignant ovarian lesions. Choline
and Lac were reportedly found in progressively higher levels in benign versus BL
versus malignant ovarian lesions. It was suggested that different metabolic patterns
might help distinguish various histological types of cancerous ovarian cystic fluid, and
that cancer biomarkers as well as therapeutic targets might be identified through this
methodology.

There have also been some in vitro MRS studies of cells obtained from ovarian
cancer and benign ovarian lesions. Via proton MRS, only mean intracellular Lac at
1.32 ppm was found to be significantly higher in cells obtained from ovarian cancers
as compared to benign ovarian cysts; the total Cho level was marginally significantly
higher in the cancer cells [63]. The chemical shift region between 3.20 and 3.24 ppm
has been examined in more detail, comparing human epithelial ovarian carcinoma
cell lines with normal or immortalized ovarian epithelial cells, with phosphocholine
(PC) found to be three- to eight-fold higher in the cancer cells [64]. It has thus been
suggested that there may be possibilities for improving the diagnostic yield of MRS
for ovarian cancer by identifying the components of total Cho, in particular PC, which
is a recognized biomarker of malignant transformation [65].

1.5 More advanced signal processing applied to MRS data from the ovary:
results to date

The described results for in vivo and in vitro MRS have been based upon conventional
signal processing via the fast Fourier transform, FFT. This occurred becauseMR scan-
ners have the FFT built-in, such that generally the MRS time signals are automatically
processed to yield the total shape spectra from which metabolite peaks, or resonances
are visually identified. Reliance upon the FFT for analysis of MRS time signals has
limited the diagnostic yield especially of in vivo MRS for ovarian cancer. The main
reasons for this limited yield are that the FFT is a low resolution, non-parametric
processor which can only provide total shape spectra. Most of the total shape spectra
generated by the FFT from in vivoMRS time signals encoded from the ovary are quite
rough, often with very poor SNR.

By contrast, the fast Padé transform, FPT, an advanced signal processor with high-
resolution capabilities and parametric (quantification-equipped) features [66–69], is
particularly amenable to processing MRS time signals from the ovary. In the FPT,
the spectrum is given by a non-linear response function as the unique ratio of two
polynomials. The high resolution of the FPT is due to extrapolation and interpolation
capabilities, as well as to its nonlinearity which is responsible for noise suppres-
sion. The FPT has two variants: the FPT(+) and FPT(−) that, by definition, converge
inside and outside the unit circle, respectively. Moreover, the FPT(+) and FPT(−) are
also convergent in their complementary domains (outside and inside the unit circle,
respectively) by way of the Cauchy analytical continuation. For example, the FPT(−)

for |z| > 1 (outside the unit circle) is an accelerator of the already existing conver-
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gence of the input series given by the Green function in the harmonic variable z−1. On
the other hand, since this latter input series diverges inside the unit circle, the FPT(+)

for |z| < 1 converts a divergent into a convergent series via the said powerful concept
of the Cauchy analytical continuation [70].

Wewill herein highlight the results obtained to date applying the FPT to synthesized
MRS time signals similar to those encoded from benign and cancerous ovary. In the
next sub-section, a succinct overview of the mathematical properties of the FPT will
be given.

The first applications of the FPT were to synthesized noiseless time signals asso-
ciated with MRS data for benign and cancerous ovarian cyst fluid from Ref. [59].
Including the closely-lying resonances, such as Iso (1.023 ppm) and Val (1.042 ppm),
all the input spectral parameters were correctly reconstructed thereby, for each of the
twelve true metabolites. With only 64 signal points (N /16) of the full time signal
N = 1024, the metabolite concentrations were accurately computed [66,71]. These
results remained stable at longer signal lengths. In sharp contradistinction, at NP = 64,
the FFT generated very crude spectra that were completely uninterpretable and neces-
sitated 8192 signal points to coarsely resolve all 12 resonances. Even then, a number
of the peak heights were not correct in the FFT. For full convergence of the absorption
total shape spectra for the noiseless data from benign and malignant ovary, the FFT
required 32768 signal points [66,71]. These results [66,71] clearly showed the superior
resolving power of the FPT. For these noiseless ovarian data, besides reconstructing
the twelve physical resonances, at convergence, some twenty non-physical resonances
were also generated. Via the Signal-noise separation (SNS) procedure associated with
the FPT [72] (see next sub-section), these spurious resonances were identified by their
pole-zero confluences and zero amplitudes, and were discarded. Subsequently, the
FPT was applied to simulated MRS time signals associated with ovarian cancer, for
which noise was added with standard deviation σ = 0.01156 RMS, where RMS is
the root-mean-square of the noise-free time signal [73–75]. With this added noise,
convergence required 128 signal points (N/8, N = 1024) for correct reconstruction
of the spectral parameters for the twelve physical resonances, with the additional
52 spurious resonances identified by their pole-zero confluences and the associated
zero-valued amplitudes [73]. The pole-zero coincidence was not always complete in
the FPT(−) with higher levels of noise (σ = 0.1156 RMS, σ = 0.1296 RMS and
σ = 0.2890 RMS) and near zero amplitudes rather than actual zero amplitudes were
observed for someof the spurious resonances [74,75]. Since genuinemetabolites could
be present at low concentrations, the peak amplitudes could be very small, as well.
Thus, we raised the question as to how to be entirely certain which resonances are non-
physical and which are genuine?We emphasized that this question is vitally important
when proceeding from proof-of-principle studies with synthesized, i.e. theoretically
generated input data to encoded time signals for which the number of resonances and
their parameters are not known prior to spectral analysis.

The so-called stability test was shown to be a practical strategy for the FPT. Namely,
by varying the partial signal length and/or by adding more noise, there was a set of
resonances (even with very small peak heights) that showed a pronounced stability.
Therefore, they were classified as physical (genuine). By contrast, with the same type
of the mentioned perturbations, another set of resonances was identified that exhibited
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marked instability. Hence, these latter resonances were categorized as non-physical
(spurious) [74,75].

Detailed analysis has been recently performed [76] on the synthesized noise-
corrupted benign ovarian cyst data based upon the encoded time signals from Ref.
[59]. All the genuine resonances were clearly identified by both FPT variants, FPT(±),
with the correct metabolite concentrations computed at short total signal lengths. It
should be noted that for the final analysis, both the FPT(+) and FPT(−) are always used
for cross-checking. Signal-noise separation, SNS, was most efficient in the FPT(+)

where the genuine and spurious resonances were segregated inside and outside the
unit circle, respectively. In the FPT(−), both these resonance types were mixed and
were all located outside the unit circle. Pole-zero coincidence of spurious resonances
remained complete in the FPT(+), with a denoised spectrum produced automatically
for these MRS data from benign ovary. These latter findings were deemed particularly
advantageous for practical applications as needed for the in vivo setting.

1.6 Mathematical features of the fast Padé transform of particular relevance for
MRS

1.6.1 The limitations of Fourier-based processing of MRS time signals

As noted, clinical scanners use the fast Fourier transform, FFT, to convert the encoded
time signal or free induction decay (FID) into its spectral representation in the fre-
quency domain. The Fourier spectrum is expressed as a single polynomial:

FFT: Fm =
N−1∑

n=0

cn exp(−2π imn/N ), 0 ≤ m ≤ N − 1, (1a)

where 2πm/T is the fixed mth Fourier grid frequency, and {cn} is the set of complex-
valued time signal points. Here, T is the total signal duration or total acquisition
time, T = Nτ , where N is the total signal length and τ is the sampling time (dwell
time, sampling rate), which is the inverse of the bandwidth (BW). The variables
exp(±2π imn/N ) are the undamped sinusoids and cosinusoids (nmτ/T = nm/N ).
Note also that the time signal can be reproduced exactly (including all the intact noise)
from the Fourier spectrum via the inverse Fourier transform (IFFT):

IFFT: cn = 1

N

N−1∑

m=0

Fm exp(2π imn/N ), 0 ≤ n ≤ N − 1. (1b)

When the signal lengths are in the composite form, N = 2m(m = 1, 2, 3, . . .), the
FFT algorithm is a rapid processor, which is the main reason for its widespread usage.
Whenever N is non-composite, i.e. any positive integer, the FFT and IFFT from (1a)
and (1b) become, respectively, the discrete Fourier transform (DFT) and the inverse
DFT (IDFT).
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The low resolution capabilities of Fourier processing stem, in part, from the fact that
the Fourier-generated total shape spectrum is obtained from pre-assigned frequencies
with a minimal separation fixed by the total acquisition time, T , without any possibil-
ities for interpolation based on the analyzed N data points of the FID. In attempting to
improve resolution, SNR inevitably worsens, since with longer T , the FID will have
decayed such that predominantly noisewill be recorded. This is especially problematic
with low field (1.5 and 3 T) MR clinical scanners [68]. Further contributing to poor
resolution and SNR are the linearity of the Fouriermethod, and its lack of extrapolation
capabilities. As to the latter, no information can be gleaned beyond the final encoded
signal point, cN−1. The customary zero-filling of {cn}(0 ≤ n ≤ N −1), e.g. to double
the total FID length N , cannot improve resolution. This is the case because the original
N data points in the FID already contain the entire information. As such, zero-filling
or zero-padding can only serve to somewhat improve the visual presentation of the
ensuing FFT spectrum, albeit with sinc-type artificial oscillations along the baseline.
However, the said improved visual effect is irrelevant for quantitative analysis which
is the main task of MRS.

Recall that only a total shape spectrum (envelope) can be produced with the Fourier
analysis, since this is exclusively a non-parametric estimator. The subsequent step is
often post-processing via fitting. Thereby, the number of resonances included in a
given model is actually just a mere speculation, from which estimates of metabolite
concentrations are frequently biased and inaccurate, as discussed in Ref. [67].

1.6.2 How these limitations are overcome by the fast Padé transform

In sharp contrast to the FFT, the fast Padé transform, FPT, is optimally suited for
processing MRS time signals [67,77]. As noted, the FPT-produced spectrum is a non-
linear response function via the unique ratio of 2 polynomials. In the diagonal form,
this spectrum is PK /QK , where K is the polynomial degree (also called the model
order). The fixed Fourier mesh 2πmτ/T (m = 0, 1, 2, . . .) is not necessary in the FPT,
such that the spectrum can be computed at any sweep frequency. Since resolution is not
limited by the total acquisition time, T, there is no conundrum between increasing T in
attempts to improve resolution at the expense of deterioration of SNR. Moreover, the
FPT can extrapolate beyond T via the unique polynomial quotient PK /QK , extracted
directly from the investigated FID. This is opposed to the FFT, which, as noted, is
limited by a sharp cut-off of the FID at the end of the acquisition time. The non-
linearity of the FPT further contributes to its high resolution properties by suppressing
noise, thus improving SNR [67,68,77]. The presence of the numerator (PK ) and
denominator (QK ) polynomials aids in noise cancellation from the Padé spectrum
PK /QK . This occurs because both PK and QK contain a similar amount of noise
imported from {cn} by the expansion coefficients of these two polynomials. Note,when
e.g. two observables A and B aremeasured in an experiment, or theoretically generated
by numerical computations with finite precision, errors in A and B are substantially
cancelled in the ratio A/B,which is frequently used for data interpretation and analysis.

The number of physical metabolites as well as their spectral parameters, the
fundamental frequencies {ωk} and the associated amplitudes {dk} in the set {ωk ,
dk}(1 ≤ k ≤ K ) of the specified time signal {cn}(0 ≤ n ≤ N − 1), are accurately
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reconstructed by the FPT. Consequently, metabolite concentrations are correctly com-
puted thereby [69,77]. The angular (or cyclic) frequencies ωk are connected to the
linear frequencies νk by ωk = 2πνk (with the like relation also existing for the sweep
frequencies, ω = 2πν).

The infinite-rank Green function G(z−1) gives the exact response function. This
is defined by the Maclaurin series with the time signal points {cn} as the expansion
coefficients:

G(z−1) =
∞∑

n=0

cnz
−n, z = eiτω (Exact Green series). (2)

It should be noted, however, that in realistic situations, only a finite number N (N <

∞) of signal points {cn} is available. A truncated response function must then be
provided, as the finite-rank Green function given by the Green polynomial GN (z−1):

GN (z−1) =
N−1∑

n=0

cnz
−n (Exact Green polynomial). (3)

In the terminology of analysis of discrete time series, these infinite- and finite-
rank Green functions can also be termed the infinite and finite z−transform [67]. In
the FPT(±), the input response function GN (z−1) from (3) is approximated by the
Green-Padé functions G±

K (z±1), as the diagonal rational polynomials in the harmonic
variables z±1:

GN (z−1) ≈ G−
K (z−1) = P−

K (z−1)

Q−
K (z−1)

≡
∑K

r=0 p
−
r z

−r

∑K
s=0 q

−
s z−s

;

FPT(−)(Anti-causal Green-Padé function), (4)

GN (z) ≈ G(+)
K (z) = P+

K (z)

Q+
K (z)

≡
∑K

r=1 p
+
r z

r

∑K
s=0 q

+
s zs

;

FPT(+) (Causal Green-Padé function). (5)

Here,
{
p±
r

}
and

{
q±
s

}
are the expansion coefficients of the polynomials P±

K and
Q±

K , respectively. Notice, that the linear term p+
0 is absent from the expansion for

G(+)
K (z), i.e. p+

0 ≡ 0.
The expansion coefficients {p±

r , q±
s } of the numerator P±

K (z±1) and denominator
Q±

K (z±1) polynomials are extracted uniquely from the time signal points {cn} by solv-
ing a single system of linear equations from definitions (4) and (5), respectively. The
spectra P±

K (z±1)/Q±
K (z±1) from the FPT(±) can also be expressed in the canonical

forms:

P±
K (z±1)

Q±
K (z±1)

= p±
K

q±
K

K∏

k=1

z±1 − z±k,P
z±1 − z±k,Q

. (6)
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The solutions of the characteristic equations, P±
K (z±1) = 0 and Q±

K (z±1) = 0, have
the roots denoted by z±1

k,P ≡ z±k,P and z±1
k,Q ≡ z±k,Q(1 ≤ k ≤ K ), respectively. Here,

we relabel z+k as z+k,Q , where the second subscript Q is introduced to indicate that this

harmonic variable is the root of the denominator polymial Q+
K (z). This is done in order

to distinguish this variable from the corresponding root z+k,P of the numerator polyno-

mial P+
K (z). Complex variables {z+k,Q} are constituents of the fundamental harmonics

in the sets {z±k,Q, d±
k }. The fundamental amplitudes d±

k are the Cauchy residues of the

spectra P±
K (z±1)/Q±

K (z±1) taken at the fundamental harmonics z±1 ≡ z±k,Q .When the
roots are non-degenerate, i.e. representing simple poles alone, these amplitudes are:

d±
k = P±

K (z±k,Q)

Q±′
K (z±k,Q)

, Q±′
K (z±1) = d

dz±1 Q
±
K (z±1), 1 ≤ k ≤ K . (7)

The equivalent expressions for d±
k derived from (7) are:

d±
k = p±

K

q±
K

K∏

k′=1

z±k,Q − z±k′,P
(z±k,Q − z±k′,Q)k′ �=k

. (8)

Each numerator on the rhs of (8) is proportional to z±k,Q − z±k′,P (k, k
′ = 1, . . . , K ).

Consequently, the amplitudes d±
k are proportional to the pole-zero distance (a metric):

d±
k ∝ z±k,Q − z±k,P . (9)

Therefore, the Cauchy residue reflects the behavior of a line integral of a meromor-
phic function around a specified pole. Reconstruction of the 2K complex fundamental
parameters {ω+

k,Q, d±
k } is thereby completed.

The expressions forG(−)
K (z−1) andG(+)

K (z) from (4) and (5) approximate theGreen
function GN (z−1). The Green function G(z−1) from (2) is convergent outside the unit
circle (|z| > 1), and divergent inside the unit circle (|z| < 1). The convergence
rate of G(−)

K (z−1) is faster than the original Maclaurin series, such that the FPT(−) is
an accelerator of convergence. The convergence radii RN and R−

K of GN (z−1) and
G−

K (z−1) are both non-zero RN �= 0 and R−
K �= 0, respectively. In addition, the latter

is larger than the former R−
K > RK .

In contrast, the FPT(+) viaG(+)
K (z) uses the variable z and converges inside the unit

circle (|z| < 1) which is where the exact Green function G(z−1) diverges. As stated,
by the Cauchy concept of analytical continuation, the FPT(+) converts a divergent into
a convergent series. The convergence radius R+

K of G+
K (z) is markedly changed from

being exactly zero (RN = 0 for |z| < 1 for GN as N → ∞) to R+
K > 0. In this

way, the FPT(+) extends the validity of the response function (spectrum) to |z| < 1
where the input Green series G(z−1) and polynomial GN (z−1) do not exist, due to
their divergence inside the unit circle.
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It follows from the definitions (4) and (5) that the same truncation level of N would
have a very different effect in the input polynomial GN (z−1) and the Padé rational
polynomials P±

K (z±1)/Q±
K (z±1). Namely, if in (2) we truncate n to e.g. M = N/2,

the resulting spectrum GM (z−1) would be based only on the N/2 time signal points.
On the other hand, e.g. for the FPT(−), the same truncation of n to N/2 in (2), which
is transferred to (4), would generate the spectrum P−

K (z−1)/Q−
K (z−1) which includes

the information from the entire non-truncated set {cn}(0 ≤ n ≤ N − 1). Such an
occurrence comes from the fact that expanding P−

K (z−1)/Q−
K (z−1) in its Maclaurin

series (in power of z−1) would reconstruct exactly the full input N time signal points
{cn}(0 ≤ n ≤ N − 1). This remarkable property of the rational Padé polynomials
explains why the FPT(−) is able to achieve a better resolution that the FFT by using
the same number of FID data points. Likewise, the FPT(−) can achieve the same
resolution as that of the FFT by using fewer signal points. These features that are
rooted in definition (4) for the FPT(−) have also been systematically observed in the
explicit computations by this variant of the FPT. Relative to the FPT(−), the other
variant, i.e. the FPT(+), usually requires more signal points (a more over-determined
system of linear equations for the polynomial expansion coefficients) because it must
induce convergence into the divergent input expansion of G(z−1) or |z| < 1.

The FPT(+) and FPT(−) are complementary. When full convergence is achieved in
the FPT(±), internal cross-validation is provided thereby. In other words, at the end of
the analysis, we obtain ω+

k,Q ≈ ω−
k,Q ≈ ωk and d+

k ≈ d−
k ≈ dk , where {ωk, dk} are

the complex frequencies and amplitudes from the input time signal cn or FID which
reads as:

cn =
K∑

k=1

dke
inτωk , 0 ≤ n ≤ N − 1 (Input Time Signal or FID). (10)

Having solved the quantification problem by the FPT(±), the complex total shape
spectra from (4)–(6) can alternatively be computed by using the Heaviside partial
fraction expansions:

P±
K (z±1)

Q±
K (z±1)

= p±
0

q±
0

+
K∑

k=1

d±
k z±1

z±1 − z±k,Q
(Heaviside Partial Fractions), (11)

where p+
0 = 0, as in (5).

Quantification inMRS is actually the harmonic inversion problem. The FPT(+) and
FPT(−) solve this problem exactly, using only the equidistantly sampled time signal
{cn} to reconstruct all the complex fundamental frequencies and amplitudes {ωk, dk},
from (10).

1.6.3 Signal-noise separation

Since poles are the only singularities of the FPT(±), the spectra P±
K (z±1)/Q±

K (z±1)

are meromorphic functions. The poles {z±k,Q} and zeros {z±k,P } of these spectra are the
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roots of Q±
K (z±1) = 0 and P±

K (z±1) = 0, respectively. The spectral poles and zeros
provide the physical parameters of the system which generated the time signals as
a response to an external excitation. The amplitudes are also directly related to the
spectral poles and zeros since d±

k ∝ z±k,Q − z±k,P , according to (9).
The poles that are stable against external perturbations are physical. On the other

hand, the poles that oscillate widely when exposed even to minimal perturbation are
unstable and, hence, unphysical. In addition, unstable poles never converge and, thus,
behave like noise, i.e. as random fluctuations.

By examining the spectral poles and zeros in the FPT(±), stable versus unstable
poles can be identified. For stable structures, the poles and zeros do not coincide,
z±k,Q �= z±k,P , i.e. they are distinct. Contrarily, the unstable structures display pole-zero
confluence, i.e. z±k,Q ≈ z±k,P , and are called Froissart doublets. Genuine resonances

(z±k,Q �= z±k,P ) have non-zero amplitudes (d±
k �= 0), since d±

k ∝ z±k,Q − z±k,P , as per
(9). On the other hand, spurious resonances (z±k,Q = z±k,P or z±k,Q ≈ z±k,P ) have zero

or nearly zero amplitudes (d±
k = 0 or d±

k ≈ 0).
After the model order K in P±

K /Q±
K has stabilized, such that all the physical res-

onances have been reconstructed, computing the Padé spectra for a higher degree
polynomial, K + m(m = 1, 2, 3, . . .), would only generate more non-physical reso-
nances. These spurious resonanceswould exhibit pole-zero coincidence (z±k,Q = z±k,P )

and, hence, d±
k = 0 for k = K + m(m = 1, 2, 3, . . .). All the numerator and denom-

inator terms with spurious poles and spurious zeros in the canonical forms from (6)
would cancel each other. This occurs in all the representations of the FPT(±), be it the
non-parametric spectra P±

K (z±1)/Q±
K (z±1) (computed directly from this ratio at any

sweep frequency ν) or their parametric counterparts from the canonical forms in (6)
or via the Heaviside partial fractions in (11). As such, pole-zero cancellations lead to
stabilization of the computed spectra:

P±
K+m(z±1)

Q±
K+m(z±1)

= P±
K (z±1)

Q±
K (z±1)

(m = 1, 2, 3, . . .). (12)

Moreover, with Padé reconstruction the number of physical resonances, i.e. the number
of fundamental harmonics K is treated as an unknown, and its valuemust also be found.
This occurs when the reconstructed frequencies and amplitudes have converged. In
other words, the running (or sweep) model order K ′ (or equivalently, the degree K ′ of
the Padé rational polynomials P±

K ′/Q
±
K ′ ) for which the reconstructed frequencies and

amplitudes have stabilized, would be the exact number K of harmonics contained in
the input FID from (10).

In summary, by gradually increasing the degree of the Padé polynomials until
the genuine frequencies and amplitudes stabilize, any further increase in the polyno-
mial degree generates exclusively spurious resonances. The latter are identified by
their instability as well as by their pole-zero confluences that yield zero or near-zero
amplitudes. This procedure is termed “Signal-noise separation”, SNS, and has been
thoroughly validated within MRS for noiseless as well as noise-corrupted synthesized
time signals [72,78].
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Most recently, the mechanism of SNS has been shown analytically [79]. Therein,
the exact reconstruction of the input time signal and spectrum was demonstrated by
eliciting, via an analytical derivation, two key features: pole-zero coincidence and
near-zero amplitude of a Froissart doublet, which is a pole-zero spurious pair. The
mathematical formalismwas provided, showing precisely howapole-zero coincidence
yields pole-zero cancellation in the reconstructed spectrum.

This stabilization byway of its mechanism of pole-zero cancellation is a key feature
of the FPT(±). It is unique to the FPT(±) because of the special form of the rational
polynomials P±

K /Q±
K for the Padé spectra. It is in this latter quotient of two poly-

nomials that pole-zero coincidence can occur first, and then, pole-zero cancellation
follows. Overall, detection of Froissart doublets via pole-zero confluences yielding the
stabilization of the Padé spectra represents a veritable signature that the entire infor-
mation from the input time signal has been exhausted by the FPT(±). And, it is in this
remarkable way that the FPT(±) can reconstruct exactly all the physical parameters
{ωk, dk} from the examined FID in (10).

1.7 Other proof-of-principle studies for benchmarking the FPT

In addition to the described results applying the FPT to theoretically synthesized
FID data, reminiscent of the time signals encoded from cancerous and benign ovary,
detailed proof-of-principle studies have also been performed using MRS data from
other tissues. The FPT has been demonstrated to accurately quantify MRS time sig-
nals, yielding quantitative information for a large number metabolites from cancerous,
benign and/or normal brain, breast and prostate as shown in studies on simulated time
signals [69,77,80–88]. In investigations applying the FPT to synthesized FIDs that
were akin to those encoded in vivo from the brain of a healthy volunteer at 1.5 T, proof-
of-concept validation was provided. Exact reconstruction of the spectral parameters
was accomplished, and thereby the concentrations of metabolites were correctly com-
puted. This was the case for very closely overlapping resonances with chemical shifts
differing by a mere 0.001 ppm or less [69,77,81].

A further proof-of-principleMRS studywas carried out on the time signals encoded
from the standard General Electric (GE) phantom head [89]. Through detailed inspec-
tion of the convergence process via “parameter averaging”, the accuracy and stability
of the Padé-reconstructed spectral parameters, i.e. the complex-valued fundamental
frequencies {ω+

k,Q} and the associated amplitudes {d+
k }, were confirmed, even for those

resonances that were very closely overlapping.

1.8 The fast Padé transform for processing in vivo encoded MRS time signals:
results to date

Besides the previous studies on synthesized FIDs, and the FIDs encoded from the GE
phantom, the FPT has also been used to process MRS time signals encoded in vivo on
a 1.5 TMR scanner from pediatric brain tumor [90], as well as from pediatric cerebral
asphyxia [79,91] and from healthy adult brain [92]. Studies applying the FPT were
also done on MRS time signals encoded from healthy adult human brain using higher
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field MR scanners (4 and 7 T) [67,68,77,93–95]. In all these studies, the resolution
of total shape spectra was markedly superior with the FPT, compared to the FFT.

Most notable has been the parametric capability of the FPT, particularly in spec-
trally dense chemical shift regions, where very closely-overlapping resonances were
resolved and quantified. Among these identified were cancer biomarkers and other
diagnostically important metabolites [77,79,90,91].

1.8.1 Water suppression

Suppression of the residual (and still giant) water resonance is a major practical chal-
lenge for in vivo MRS. In our recent work [79,90,91] applying the FPT(+) to in vivo
MRS time signals encoded from the brain via a 1.5 T MR scanner, suppression of
the water residual has been an important consideration. The conventional procedure
for residual water suppression has used the Hankel–Lanczos Singular Value Decom-
position (HLSVD) which includes fitting by artificial resonances that produce more
spuriousness in addition to the already noisy MRS time signal. Via a step function
with the non-parametric FPT, we introduced an information-preserving procedure for
suppressing residual water by windowing [90]. It was verified that this windowing
procedure did not affect the spectral components within the spectral region of interest
(SRI). There were some non-essential effects at the edges outside the SRI when com-
paring the water residual suppressed and unsuppressed Padé reconstructions. Since the
full equivalence of the non-parametrically and parametrically generated total shape
spectra in the FPT(+) was confirmed, we subsequently chose the latter, employing
only the components (P+

K /Q+
K )k with chemical shifts from the SRI selected in a way

which avoids the giant residual water resonance [79]. These parametrically generated
envelopes via P+

K /Q+
K were computed using the Heaviside partial fraction sum (11).

Thus, with the parametric FPT(+) and appropriate choice of SRI, the water residual
suppression problem can be completely overcome without the need for windowing.
The same procedure has been verified to work with the FPT(−), as well.

1.8.2 Iterative averaging: a stabilization procedure through the FPT

The iterative averaging procedure was recently introduced as a powerful and efficient
strategy for regularizing spectra against the destabilizing effect of changes in the sought
model order K. This was implemented using in vivo MRS time signals encoded from
the brain with a 1.5 T clinical scanner [79,91]. The initial step yielding the 1st average
envelope can be viewed as a counterpart to “signal averaging” which is routinely car-
ried out by averaging about 200 encoded FIDs in the time domain to improve SNR. It
is seen that for different model orders K , many large noise-like spikes appear in the
spectra. Using a sequence of values of the model order K , the 1st average envelope
(arithmetic average) is produced. Further, this complex envelope is inverted (byway of
the IFFT or IDFT) to generate the 1st reconstructed FID. Such an FID is subjected to
the FPT to obtain the next set of envelopes for the same sequence of values of K as con-
sidered in the previous iteration. This new sequence of envelopes is averaged and the
outlined procedure can be repeated until the prescribed accuracy of the reconstructed
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spectral parameters has been attained. With each iteration, there is a progressively
greater level of suppression of spurious spectral structures that are very sensitive to
changes in K . Not only the total shape spectra, but all four Padé-reconstructed spectral
parameters for each genuine resonance also showed progressively reduced fluctuations
with consecutive iterations. Convergence was thereby achieved, such that the values of
spectral parameters were fully stabilized to the minimal level of deviation consistent
with stochasticity [79].

Our overall conclusion from these most recent in vivo studies [79,90,91] was that
this multi-faceted Padé-based strategy for processing the dense spectra of the brain
could vitally improve not only pediatric neurodiagnostics, but that a much wider
range of clinical applications could also become within reach. Among these are areas
of cancer diagnostics where in vivo MRS could potentially have the greatest added
value. We have singled out early ovarian cancer diagnostics, where the need for an
effective in vivo MRS-based screening method has been highlighted for nearly two
decades [58,76,96].

1.9 Aim of the present study

Exhaustive proof-of-concept testing on synthesized data has shown the FPT to be a
super high resolution processor of MRS time signals, providing exact quantification
of metabolites that can distinguish benign from malignant tissue. Particularly detailed
benchmarking studies with the FPT using synthesized FIDs for benign and cancerous
ovarian cyst fluid have been made. Since then, the FPT has been extensively validated
for in vivo MRS time signals encoded using MR clinical scanners. Through the Padé
methodology, solutions have been provided to major problems associated with in
vivo MRS, such as how to most effectively handle the giant residual water resonance
and how to achieve full stabilization of total shape spectra as well as of spectral
parameters. In the present study, our aim is to apply the FPT for the first time to in
vivo MRS time signals encoded from the ovary. We anticipate that through the fast
Padé transform, much richer metabolic information will be gleaned from in vivoMRS
encoded from ovarian tissue (especially at shorter echo times) thanwhat has heretofore
been the case using the conventional Fourier-based processing. The possibility for
more effective early detection of ovarian cancer is the over-arching motivation for this
line of investigation.

2 Methods

2.1 Acquisition of the MRS time signal from a borderline serous cystic ovarian
lesion

The encoded FID data were kindly provided by our colleagues from the Department
of Obstetrics and Gynecology, Radboud University Nijmegen Medical Center in the
Netherlands. These data are from a 56 year-old patient with an enlarged left ovary as
detected on TVUS, and who was included in their in vivo MRS study [50] (see also
the present meta-analysis, Appendix 1). A 3 T Magnetom Tim Trio, Siemens clinical
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scanner was used to encode the MRS time signals, each of which contained 1024
data points. The bandwidth, BW, was 1200 Hz, and the Larmor frequency was νL =
127.732 MHz corresponding to the magnetic field strength B0 = 3 tesla (B0 = 3 T).
The sampling time τ was 0.833 ms (τ = 1/BW ≈ 0.833 ms).

Single-voxel proton MRS with the point-resolved spectroscopy sequence (PRESS)
was used, with the voxel of interest (3 cm x 3 cm x 3 cm) in the inferior cystic part of
the tumor. The repetition time (TR) was 2000 ms and two echo times, TE = 30 and 136
mswere employed in the study of Kolwicjk et al. [50]. A total of 64 encoded FIDswere
averaged to improve SNR. In otherwords, in the standard terminologywithinMRS, the
number of excitations (NEX) was 64. In the present paper, we examine only the time
signals encoded at 30 ms. In Ref. [50], the giant water peak was partially suppressed
through encoding viaWET (water suppression through enhanced T1 effects) andwater
non-suppressed FIDs were also encoded for referencing. The residual water content
from the encoded FIDs was not further suppressed nor removed in the present study.
Subsequent to the in vivo MRS encoding, the ovarian tumor was surgically removed
and the diagnosis on histopathology was a borderline serous cystic lesion [50].

2.2 Reconstructions using the encoded MRS time signal

The encoded FIDs were processed with the DFT and the FPT. The FID phase was not
corrected for the zero-order phase ϕ0.

2.2.1 Comparison of the DFT and the FPT: non-parametric reconstructions

Via (1a), the spectra were computed in the DFT, since non-composite partial signal
lengths NP were employed (NP �= 2m;m = 0, 1, 2, . . .). Both variants, the FPT(+)

and FPT(−), were used for the non-parametric Padé-based reconstructions. All the
envelopes from the FPT(−) were reproduced by the FPT(+).

The expansion coefficients of the polynomials P±
K and Q±

K in the FPT(±) are
calculated from the time signal {cn} using the definitions in (4) and (5). After this
initial step of the analysis, the non-parametrically computed total shape spectra are
obtained at a given set of real-valued sweep frequencies ν. In the present compu-
tations, the envelopes were evaluated at 1024 sweep frequencies ν. Insofar as the
phases ϕ±

k of the reconstructed FID amplitudes d±
k = ∣∣d±

k

∣∣ exp(iϕ±
k ) were all equal

to zero, ϕ±
k = 0(1 ≤ k ≤ K ), the real and imaginary parts of the complex spec-

tra, i.e. Re (P±
K /Q±

K ) and Im(P±
K /Q±

K ), would be purely absorptive and dispersive,
respectively. In every encoded MRS time signals, however, the phases ϕk of the FID
amplitudes dk are mostly non-zero (ϕk �= 0), due to dephasing which takes place
during encoding. Thus, the reconstructed values ϕ±

k are also such that ϕ±
k �= 0. Con-

sequently, absorption and dispersion lineshapes are mixed in both Re(P±
K /Q±

K ) and
Im(P±

K /Q±
K ).

2.2.2 Averaging procedure

We herein employ the method of the arithmetic averaging of spectra, which has
been demonstrated to overcome a major obstacle for harmonic inversion, namely,

123



J Math Chem (2017) 55:349–405 373

over-sensitivity of spectra (envelopes, components) as well as of the fundamental fre-
quencies and amplitudes to changes in model order K [79,91]. Spectra averaging was
previously done with three [91] and nine [79] iterations for the purpose of benchmark-
ing this stabilization procedure. Presently, the iterative averaging of spectra has also
been performed during the test computations. It turned out that already the 1st average
envelope provided very accurate reconstructions. Therefore, in the current work, it
suffices to place the main focus on the 1st averaging of spectra. As done in Ref. [91],
prior to averaging, we shall use the non-parametric FPT(+) to generate a number of
envelopes for a range of K .

Recall, that in the Padé rational functions, as per (12), the spurious resonances can-
cel out with stabilization for systematically and gradually increased polynomial degree
K +m(m = 1, 2, 3, . . .). The mechanism for this is rooted in pole-zero cancellations,
which occurs because spurious resonances display coincidence or near-coincidence
of their poles and zeros [79]. These confluences (Froissart doublets) render spuri-
ous resonances highly unstable, particularly for changes in the model order K . Each
envelope P+

K+m(z)/Q+
K +m(z) (m = 1, 2, 3, . . .) will display different spuriousness

due to random distributions of spurious poles and zeros in the complex frequency
plane.

The complex 11 usual envelopes (P+
K /Q+

K )U are computed for K = 575−625,
in increments of 5 from the FID encoded at TE = 30 ms. Subsequently, we take the
arithmetic average of these 11 envelopes, with the result indicated by {FPT(+)}UAv.
We use the subscript Av to indicate the Average (Av). The complex average enve-
lope {FPT(+)}UAv is then subjected to the IDFT to generate a new FID, to which the
parametric FPT(+) is applied. In Refs. [79,91], the increment 
K for equidistantly
augmenting the value of K was equal to unity, 
K = 1. With such a small 
K ,

some 31 envelopes for K ∈ [375, 415] were generated for iterative averaging [79,91].
Alternatively, in the present study, a larger interval for K is chosen to be spanned, i.e.
K ∈ [575, 625], but with a larger increment, 
K = 5, for generation of 11 envelopes
for spectra averaging. Any two adjacent spikes are likely to bemoremarkedly different
from each other in the case with 
K = 5 than for 
K = 1.

2.2.3 Parametric processing with the FPT(+)

The results for the FPT(+) alone will be presented for parametric processing (quan-
tification). As noted, cross-checking was performed throughout with the FPT(−). The
zeros and poles of the Padé spectrum, P+

K /Q+
K are given, respectively, by the roots

of the characteristic equations of the numerator (P+
K ) and denominator (Q+

K ) poly-
nomials. This is the main step in quantification within the FPT(+), where Padé-based
parametric processing is carried out via polynomial rooting. As mentioned, the Padé
spectrum is a meromorphic function because P+

K /Q+
K has only polar singularities,

namely, the zeros of Q+
K are the poles of P+

K /Q+
K [67]. The fundamental frequencies

ω+
k,Q = [1/(iτ)] ln(z+k,Q) were generated through the roots of equation Q+

K (z) = 0.

The amplitudes d+
k were reconstructed via (7) [67].
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2.2.4 Modes of the component spectra

The component spectra will be shown in two different modes. We begin with the
“usual” (U) component spectra where the absorption and dispersion lineshapes are
mixed together. Recall that the amplitudes {d+

k }(1 ≤ k ≤ K ) are all complex-valued
because their phases ϕ+

k are non-zero. In chemical shift regions with many closely-
lying or overlapping resonances, the “absorption” components frequently appear as
skewed Lorentzians. Employing the “ersatz” (E) mode signifies that the reconstructed
phases ϕ+

k have been set “by hand” to zero, and consequently, ϕ+
k ≡ 0(1 ≤ k ≤ K ).

Interference effects are thereby eliminated, such that purely absorptive Lorentzians are
produced. These are often helpful for visual inspection. The “ersatz” and the ”usual”
mode of the component spectra for the kth resonance are, respectively, given by:

(
P+
K (z)

Q+
K (z)

)E

k

≡
∣∣d+

k

∣∣ z
z − z+k,Q

(Ersatz component k), (13)

(
P+
K (z)

Q+
K (z)

)U

k

≡ d+
k z

z − z+k,Q
(Usual component k). (14)

Via setting ϕ+
k = 0, we can return from (14) to (13) by replacing d+

k ≡∣∣d+
k

∣∣ exp(iϕ+
k )with

∣∣d+
k

∣∣.We reemphasize that the usual formRe(P+
K /Q+

K )Uk extracted
from (14) contains both absorption and dispersionmodes. Contrary to this, the real part
of the component shape spectrum of the ersatz form Re(P+

K /Q+
K )Ek deduced from (13)

is entirely in the absorption mode [90]. When juxtaposing the plots for Re(P+
K /Q+

K )Uk
and Re(P+

K /Q+
K )Ek , the peak position Re(ν

+
k,Q) needs to be properly understood. Sup-

pose, for example, that Re(P+
K /Q+

K )Uk is a dispersive Lorentzian. It will be mapped to
an absorptive Lorentzian in Re(P+

K /Q+
K )Ek . The peak position Re(ν+

k,Q) of this latter

absorption mode for Re(P+
K /Q+

K )Ek will be located between the two lobes of the usual
dispersive componentRe(P+

K /Q+
K )Uk . On the other hand, in caseswhenRe(P

+
K /Q+

K )Uk
is in the absorption mode, the positions, i.e. chemical shifts Re(ν+

k,Q) of both the usual
and ersatz peaks would coincide.

In the FPT(+), the T ∗
2 -relaxation time for the kth component is denoted by T ∗+

2k .
This is related to the imaginary part of the reconstructed complex frequency ω+

k,Q or

ν+
k,Q via T ∗+

2k = 1/{Im(ω+
k,Q)} = 1/{2π Im(ν+

k,Q)}. This quantity is employed in the

expressions for the peak heights (H+
k )U and (H+

k )E, respectively, as:

(H+
k )U ≡ d+

k

D+
k

, (H+
k )E ≡

∣∣d+
k

∣∣

D+
k

; D+
k = 1 − exp(−τ/T ∗+

2k ), 0 < D+
k < 1,

(15)

Re(H+
k )U =

∣∣d+
k

∣∣

D+
k

cos(ϕ+
k ) = (H+

k )E cos(ϕ+
k ), (16)
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where (H+
k )

E
is real-valued. There is also another expression, H c+

k ≡ ∣∣d+
k

∣∣ /
(τ Imω+

k,Q), for the peak heights H c+
k of an absorptive conventional Lorentzian,

which is directly expressed via ω instead of z as
∣∣d+

k

∣∣ {(Imω+
k,Q)/τ }/{(ω − ω+

k,Q)2 +
(Imω+

k,Q)2}. This latter result can also be deduced from (15) for narrow resonances

with long relaxation times. Namely, for small τ/T ∗+
2k , the series expansion for

exp(−τ/T ∗+
2k ) yields D+

k ≈ 1 − (1 − τ/T ∗+
2k + · · · ) ≈ τ/T ∗+

2k = τ Imω+
k,Q . It

follows from (15), therefore, that
∣∣d+

k

∣∣ /D+
k ≈ ∣∣d+

k

∣∣ /(τ Imω+
k,Q) = H c+

k .

As per (5), the explicit expressions for the numerator (P+
K ) and denominator (Q+

K )

polynomials in (13) and (14), are given by:

P+
K (z) =

K∑

r=1

p+
r z

r , Q+
K (z) =

K∑

s=0

q+
s zs . (17)

Therein, {p+
r } and {q+

s } are the expansion coefficients with p+
0 ≡ 0. In the FPT,

we can use either the total signal length N or the partial signal length NP. Insofar
as the number NP of the employed FID points is even, we would have K = NP/2.
The expansion coefficients {q+

s } for the polynomial Q+
K (z) are extracted by solving

the system of linear equations
∑K

s=0 q
+
s cs′+s = 0 stemming from (5). The solutions

{q+
s } are subsequently refined via Singular Value Decomposition (SVD). After the set

{q+
s } becomes available, the expansion coefficients {p+

r } in P+
K are computed from

the analytical expression p+
r = ∑K−r

r ′=0 cr ′q+
r ′+r . The free term, q+

0 can be set to e.g. 1
or−1 without affecting the spectra or the spectral parameters {ω+

k,Q, d+
k }(1 ≤ k ≤ K )

reconstructed by the FPT(+). Likewise in the FPT(−), a similar pair of equations exist
for generating the expansion coefficients {p−

r , q−
s } with p−

0 �= 0 [67,77]. Overall, the
two different algorithms in the FPT(±) are both simple and efficient. This is because
the only numerical work involved is to solve a single system of linear equations for
the expansion coefficients {q+

s } or {q−
s } and subsequently to root the characteristic

polynomials Q+
K or Q−

K to reconstruct the fundamental frequencies {ω+
k,Q} or {ω−

k,Q} in
the FPT(+) or FPT(−). Unlike the HLSVD which generates the amplitudes by solving
yet another system of linear equations, the FPT(+) and FPT(−) provide {d±

k } from
the analytical formulae in (7) as the Cauchy residues. We perform the characteristic
polynomial rooting by expediently solving (with machine accuracy) the equivalent
eigenvalue problem of the extremely sparse Hessenberg, or companion matrix [67].

The complex-valued total shape spectra in the ersatz and usual modes are provided
through (13) and (14) via the Heaviside partial fractions:

(
P+
K (z)

Q+
K (z)

)E

≡
K∑

k=1

(
P+
K (z)

Q+
K (z)

)E

k

=
K∑

k=1

∣∣d+
k

∣∣ z
z − z+k,Q

(Ersatz envelope), (18)

(
P+
K (z)

Q+
K (z)

)U

≡
K∑

k=1

(
P+
K (z)

Q+
K (z)

)U

k

=
K∑

k=1

d+
k z

z − z+k,Q
(Usual envelope), (19)
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respectively. The difference between the lhs of (14) and (19) for the kth usual com-
ponent (P+

K /Q+
K )Uk and the usual envelope (P+

K /Q+
K )U, respectively, is the omitted

subscript k in the latter and, by the same token, for the ersatz modes in (13) and (18).
As mentioned, because of the lack of interference between the absorption and dis-

persion modes, the ersatz component spectra are helpful for visualizing the overlap
of closely lying or hidden resonances. However, there are caveats about which one
must be aware in interpreting these ersatz spectra. Namely, ersatz peak heights do not
reflect the actual abundance of the metabolites. Rather, usage of the actual numerical
reconstructed parameters, including the phases ϕ+

k �= 0, is essential to ascertain the
true abundance of metabolites, whenever the phases {ϕ+

k } are retrieved as non-zero
quantities from the encoded MRS time signal. Although the number of component
resonances (P+

K /Q+
K )Uk and (P+

K /Q+
K )Ek is the same, their full widths at half maxima

(FWHM) are not equal. Consequently, the peak areas of a given kth component will
differ in the usual and ersatz modes. Overall, the parameters {ω+

k,Q, d+
k } with ϕ+

k �= 0

from the usual components (P+
K /Q+

K )Uk should be used in assessing metabolite con-
centrations, since interference effects occur for ϕ+

k �= 0. The peak areas are affected
by ϕ+

k �= 0 and so are the metabolite concentrations. Overall, the usual components
(P+

K /Q+
K )Uk alongside {ω+

k,Q, d+
k } should be used to extract the metabolite concentra-

tions, rather than their ersatz counterparts (P+
K /Q+

K )Ek with {ω+
k,Q, |d+

k |}.
The derivation of the envelopes in the representation of the Heaviside partial

fractions (18) and (19) employs the expression
∑∞

n=0 (z+
k,Q

/z)n = z/(z − z+
k,Q

)

where |z+k,Q/z| < 1. The implicit assumption therein is that the total length of
time signal {cn} is infinite (N = ∞). In reality, however, time signals are finite
(N < ∞). Consequently, the latter series should be truncated at n = N − 1, and thus∑N−1

n=0 (z+
k,Q

/z)n = [1 − (z+
k,Q

/z)N ]/(1− z+
k,Q

/z). As such, the peak heights from (15)

need a correction for the factor 1−(z+
k,Q

/z)N taken at sweep frequency ν whichmatches

Re(ν+
k,Q), i.e. at ν = Re(ν+

k,Q). The corrected peak heights should, therefore, read as:

Re(H+
k )U ≡

∣∣d+
k,T

∣∣ cos(ϕ+
k )

D+
k

, (H+
k )E ≡

∣∣d+
k,T

∣∣

D+
k

,

∣∣d+
k,T

∣∣ = ∣∣d+
k

∣∣{1 − exp(−T/T ∗+
2k )}, T = Nτ, (20)

where 0 < 1 − exp(−T/T ∗+
2k ) < 1.

In the FPT(+), the ”Stability test” involves computing consecutive values of spectra
of partial signal lengths NP(NP = 2K for NP even) for components and total shape
spectra:

(
P+
K+m(z)

Q+
K+m(z)

)U

k

=
(
P+
K (z)

Q+
K (z)

)U

k

(m = 1, 2, . . .), (21)

(
P+
K+m(z)

Q+
K+m(z)

)U

=
(
P+
K (z)

Q+
K (z)

)U

(m = 1, 2, . . .), (22)
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respectively. Only when convergence has been attained, as NP is systematically
increased are the fundamental frequencies and amplitudes {ω+

k,Q, d+
k } acceptable.

Total shape spectra from (22) can be computed non-parametrically or parametrically.
By evaluating P+

K (z)/Q+
K (z) for z = exp(2π iντ) at any chosen set of real-valued

sweep frequencies ν, the non-parametric spectrum is obtained. For the parametric
case, the total cross sections via the Heaviside partial fraction decompositions (18)
and (19) are employed in terms of the ersatz and usual components, respectively.

3 Results

3.1 The in vivo MRS time signal encoded from a borderline serous cystic
ovarian lesion

The MRS time signal encoded from a BL serous cystic ovarian lesion with a total
number of 1024 data points is shown in the top two panels of Fig. 1. As noted,
the present paper uses the FID encoded with a TE of 30 ms. The real part of the
encoded time signal is displayed on the top left panel (a), with the imaginary part
on the top right panel (d) of Fig. 1. Across the abscissae of panels (a) and (d) is a
magenta line, from which it is seen that at about 300 ms, the FID exhibits oscillations
nearly symmetrically around the abscissa. However, below 300ms the FIDwaveforms
are asymmetric around the abscissae because the residual water peak is much more
abundant (about 7 times) compared to all the other metabolites.

3.2 Total shape spectra reconstructed by the DFT and FPT(−)

The middle panels (b) and (e) of Fig. 1 display the total shape spectra reconstructed
by the DFT and the non-parametric FPT(−) for the full Nyquist range from about
−0.2 to 9.7 ppm, at a partial signal length, NP = 800(K = 400). The dominant
resonance in the spectra reconstructed by the DFT and FPT(−) is seen at 4.5 ppm.
This represents the water residual resonance which is in the spectral dispersion mode.
The other resonances, although much smaller than the residual water peak, can still be
seen across the Nyquist range particularly around 2.0 ppm. At first glance, the spectra
for the entire Nyquist interval appear quite similar in the reconstructions by the DFT
and FPT(−).

At the same partial signal length NP = 800, the bottom panels (c) and (f) of
Fig. 1 show the total shape spectra reconstructed by the DFT and the non-parametric
FPT(−) between ∼1.2 and 3.4 ppm. Since the upper bound of the chemical shift
region excludes the resonant frequency of water at 4.5 ppm, the other metabolites
which appeared very small in panels (b) and (e), are now well visualized in panels (c)
and (f). The dominant peak in both total shape spectra is centered at about 2.06 ppm.
Its amplitude is slightly lower in the DFT compared to the FPT(−) and the serration
to the right is more distinct in the FPT(−). The multiply serrated structure centered
around 1.35 ppm is also somewhat blunted in the DFT. In particular, the serration
at about 1.3 ppm, corresponding to threonine, Thr, is notably absent in the DFT. In
the FPT(−) there are two peaks deeply split apart, corresponding to glutamine (Glu)
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Fig. 1 The real (a) and imaginary (d) parts of the FID encoded in vivo with a 3 T MR scanner from a
borderline, BL, serous cystic ovarian lesion.Water partially suppressed via theWET procedure in the course
of encoding.Horizontal magenta lines guide the eye through departures from the level of the zero-valued
amplitudes in the oscillations of the FID. Encoded FID data courtesy of the group from Ref. [50]. The real
parts of the total shape spectra for the encoded FID for the full Nyquist range reconstructed by the DFT (b)
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the total shape spectra for the chemical shift window or SRI between ∼1.2 and 3.4 ppm, as generated by
the DFT (c) and non-parametric FPT(−) (f) (Color online)
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plus Gln, at about 2.45 ppm. However, here at 2.45 ppm the DFT shows only one
peak with a slight shoulder to the right. Overall, at this relatively short partial signal
length, with the DFT the resolution of the total shape spectrum between ∼1.2 and
3.4 ppm, i.e. well below the large residual water resonance, is substantially poorer
compared to the FPT(−). A number of the peaks in the DFT are blunter and coarser,
while several additional structures can be seen in the FPT(−). From now on, we shall
analyze only the results for the FPT(+) for which all the envelopes will be computed
non-parametrically.

3.3 Averaging of envelopes through the FPT(+)

3.3.1 For the full Nyquist range

In Fig. 2a, the real parts of 11 usual envelopes Re(P+
K /Q+

K )U generated by the non-
parametric FPT(+) using the encoded FID are shown for K = 575, 580, . . . , 625,
with an increment of 5. This is for the full Nyquist range between −0.2 and 9.7 ppm.
Note that the green color is used in panel (a). Besides the largest structure of the
residual water peak, there are many large noise-like spikes, especially in the region
above 4.8 ppm. The largest of these is around 6.5 ppm, and there are several prominent
spikes between ∼4.9 and 5.4 ppm. In the chemical shift region below 4.5 ppm where
the residual water peak resides, the tallest spike is at about 3.5 ppm. In panel (b) of
Fig. 2, we see the result of the arithmetic average of these 11 envelopes as denoted
by Re{FPT(+)}UAv. Therein, a “clean” spectrum, is produced. This is marked in blue.
The stable structures remain in this average spectrum, whereas the spikes are greatly
diminished or have even disappeared in some places. In panel (c) the results of panels
(a) and (b) are superimposed with the colors retained, namely the real parts of the
11 usual envelopes are presented in green, while their average envelope is in blue.
Therein, it can most clearly be seen that there is a marked attenuation of all the spikes
in the average envelope. Notably, even in the presence of the giant residual water peak,
the distinctly split NAA and acNeu peaks in the chemical shift range 2.0–2.1 ppm can
be identified.

3.3.2 Spectral region of interest (SRI)

For this and all subsequent figures, our focus will be upon a spectral range of interest,
SRI, chosen between 0.75 and 3.75 ppm. With this selected SRI, the giant residual
water peak and its surroundings are formally not in the field of view. However, as
mentioned earlier, the residual water peak has not presently been suppressed and,
thus, it contributes to all the computed total shape spectra.

We now proceed in Fig. 3 in a similar fashion as in the previous figure, but
within the said SRI. In the top panel (a), again in green, we show the real parts
of 11 usual envelopes Re(P+

K /Q+
K )U generated by the non-parametric FPT(+) for

K = 575, 580, . . . , 625(NP = 1150, 1160, . . . , 1250), with an increment of 5; the
largest structure is a spike at about 3.4 ppm. There are numerous other tall spikes
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Fig. 2 The real parts of 11 usual envelopes Re(P+
K /Q+

K )U for K = 575, 580, . . . , 625, with increment

K = 5, from the FID encoded in vivo from a BL serous cystic ovarian lesion [50], using a 3 TMR scanner
for the full Nyquist range (a). Many large noise-like spikes are seen. These 11 envelopes are averaged
as denoted by {FPT(+)}UAv (b), where a “clean” spectrum is generated. The plots from (a) and (b) are
superimposed in (c) (Color online)
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Fig. 3 The real parts of 11 usual envelopes Re(P+
K /Q+

K )U for K = 575, 580, . . . , 625, with increment

K = 5, with the FID encoded in vivo from a BL serous cystic ovarian lesion [50], with a 3 T MR scanner
in the SRI = [0.75, 3.75] ppm (a). Many large noise-like spikes are seen. These 11 envelopes are averaged
as denoted by {FPT(+)}UAv (b), where a “clean” spectrum is generated. Metabolite assignments are shown
in (b). See the list of abbreviations for full names. Plots from (a) and (b) are superimposed in (c) (Color
online)
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interspersed throughout the entireSRI.Nevertheless, the split betweenNAAandacNeu
peaks at about 2.05 ppm is still very prominent.

The arithmetic average of these 11 envelopes denoted by Re{FPT(+)}UAv within
the SRI is shown in panel (b). As in Fig. 2b, this average envelope is also marked
in blue. The abbreviations for the metabolites are written above the corresponding
peaks. Overall, the two largest structures are genuine resonances, centered at about
2.05 ppm. These two peaks appear with a deep split between them, clearly delineating
the taller narrower acNeu (2.06 ppm) resonance from the shorter and wider NAA
(2.03 ppm). Abundant other structures are also identified as marked on panel (b).
These assignments are based upon Refs. [50,59,61,62]. Starting from about 0.94
ppm, a doublet and triplet of Leu can be discerned, followed by Iso, Val and glycine
(Gly) at ∼1.02, 1.04 and 1.20 ppm, respectively. A Lip resonance, followed by a
Thr peak, a second resonance of Lip and a Lac doublet are seen on a protuberance
centered at about 1.3 ppm. In the valley thereafter, a multiplet of Iso centered at 1.48
ppm is seen and then a Lys multiplet with a prominent peak around 1.52 ppm. An
Ala doublet is noted thereafter, with one of the peaks being quite tall. Within the
subsequent valley, two small Leu peaks are seen centered at about 1.73 ppm, and then
a Lys peak. Within the next protuberance are a small Ace doublet and then a Lys
doublet, abutting on the right side of the large NAA peak. A number of small peaks:
Gln, Met, Gly and Pyr are seen to the left of AcNeu. Then, the large Glu and Gln
peaks appear centered at about 2.45 ppm. Abutting on the left side is a small Cit peak,
followed by a myoinositol (m-Ins) triplet centered at ∼2.6 ppm, which is followed
by betaine (Bet), Gln, NAA and then Cit. At 3.0 ppm a small Cr peak can be seen
and to its left is phosphocreatine (PCr), followed by a small tyrosine (Tyr) multiplet
and a creatinine (Crn) peak. At 3.2 ppm, a narrow, distinct Cho resonance can be
seen, adjacent to which is a smaller PC resonance at ∼3.22 ppm, followed by a small
glycerophosphocholine (GPC) peak. Another Bet peak is then seen at about 3.27 ppm,
followed by histidine (His), mannose (Mann) and a multiplet of m-Ins. At ∼3.54 ppm
is a miniscule glucose (Glc) peak after which is another m-Ins multiplet and Gly at
the upper extent of the SRI.

The results of panels (a) and (b), with the retained green and blue colors, respec-
tively, are superimposed in panel (c) of Fig. 3. This provides a striking contrast between
the spurious structures that, in many cases, are much taller than the genuine peaks.
Most dramatically, the spike at about 3.4 ppm completely overwhelms the tiny peaks
in that chemical shift region. The Glu peak at about 2.45 ppm is entirely overridden
by the larger spike. On a smaller scale, the Lac doublet centered at about 1.34 ppm
is substantially more difficult to discern in the presence of the spike in that region.
Panel (c) clearly demonstrates the value of spectral averaging in reducing the spurious
content so that the genuine structures, which are very small in many instances, can be
visualized even on the total shape spectrum.

Of particular importance is to note that the 12 spectra (11 in green and 1 in blue)
are practically coincident in e.g. the extended interval 1.8–2.45 ppm with no spikes at
all. Here, dense genuine resonances abound with the dominance of acNeu and NAA.
In fact, therein, all the physical resonances are so tightly packed together that virtually
no spurious structure can enter this interval. Overall, close agreement among the 11
green curves and their arithmetic average plotted in blue at ν ∈ [1.8, 2.45] ppm as seen
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in panel (c) of Fig. 3 permits the following conclusion to be drawn. For a high density
of genuine metabolites condensed in an extended band of the given SRI, convergence
is manifestly accurate and fast, thus making obsolete the over-sensitivity of Padé-
estimation to model order K . It then appears that the so-called ”spectral crowding”
(abundanceof closely locatedphysical peaks, especially for FIDs encoded at shortTEs)
is actually beneficial for the FPT. The reason for this is that the Padé estimation is most
accurate for detecting the genuine resonances present in the processedMRS data. This
is dictated by e.g. the polar representation of the parametric Padé spectrum by which
every true signal pole in the analyzed FID will straightforwardly be reconstructed
with utmost precision and efficiency. The same feature is also implicitly present in the
non-parametrically computed Padé spectrum PK /QK since the polar singularities are
sensed by the minimal values of the denominator polynomial QK .

These remarks highlight the default advantage of rational (Padé) over ordinary
(Fourier) polynomials for signal processing in MRS and beyond. Functions with polar
singularities, such as those in all frequency spectra from MRS are most naturally
described by ratios of two polynomials PK /QK since the spectral zeros and poles
are automatically and expediently provided by the roots of the numerator (PK ) and
denominator (QK ) polynomials, respectively. By contrast, for the same spectra built
frompolar functions, Fourier processingwith a single polynomial Fm(0 ≤ m ≤ N−1)
from (1a) is notoriously inadequate. This occurs because all polynomials are non-
singular, implying that a very long signal length N (corresponding to a long acquisition
time T ) is necessary with abundant constructive and destructive interferences required
to generate all the peaks located near the actual signal poles.

3.4 Reconstruction of the component spectra through the FPT(+)

We now proceed in Fig. 4 to the parametric analysis through the FPT(+) by which
the actual components of envelopes can be visualized. It should be particularly noted
that the chemical shifts along the abscissae of panels (a)–(c) of Fig. 4 are precisely
aligned, so that the reader can easily examine these three panels in concert.

The average envelope from Fig. 3b, including all the metabolite assignments, is
repeated in Fig. 4a. The complex-valued counterpart of this average envelope was
subsequently inverted by the IDFT to generate an FID to which the parametric FPT(+)

was applied. The partial signal length used was NP = 1200, i.e. K = 600, which is
in the middle of the interval K = 575 to 625, from which the 11 envelopes from Fig.
3a were reconstructed.

Panel (b) displays the usual component spectra. Therein, a very dense admixture is
seen of absorption and dispersion spectra, due to the amplitudes {d+

k } being complex-
valued with non-zero phases ϕ+

k �= 0(1 ≤ k ≤ K ). Nevertheless, much diagnostic
information can be gleaned with careful inspection. It is notable that the NAA peak
appears to be larger than acNeu. The reason for this is that the acNeu is in the dispersion
mode,with a narrow positive lobe aswell as a sizable negative lobe. This latter negative
lobe is responsible for lowering the peak height of acNeu relative to the case when
acNeuwould be in a pure absorptivemode. In contrast,NAA ismainly in the absorption
mode, appearing as a slightly skewed absorptive Lorentzian. In the chemical shift
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Component Spectra Stem From the Time Signal Given by the Inverted Complex Average Envelope

Fig. 4 The FID from the IDFT-based inversion of the complex average envelope, with the real part shown in
(a) is subjected to the FPT(+) to generate the usual and ersatz component spectra in (b) and (c), respectively.
The usual components (b) mix the absorption and dispersion lineshapes. Ersatz component spectra (c)
display many closely-overlapping positively-oriented resonances, all in the absorption mode (Color online)
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region around 1.3 ppm, two resonances in the dispersionmode are themost prominent.
These correspond to lipids responsible for the protuberance on the total shape spectrum
in that region. Namely, as noted, they can also be seen on the total shape spectrum as
isolated Lip peaks at about 1.25 and 1.34 ppm, with Thr in between them. The Thr and
Lac resonances are relatively small in the usual component spectra and, as mentioned,
appear in the total shape spectrum as serrations jutting above the protuberance, which
we now can see is mainly due to Lip. Large, wide resonances are also observed in
the chemical shift region from about 3.45 to 3.75 ppm. These resonances are also
in the dispersion mode, with the negative lobes substantially larger than the positive
lobes. These resonances correspond to macromolecules and contribute to the marked
oscillations in the baseline in this chemical shift region. It should be recalled that with
the parametric FPT, when the SRI excludes the chemical shift region of water, as is
the case herein, there is no structure whatsoever from the residual water peak [79].
However, since the total shape spectrum, as shown in Fig. 4a, was generated via the
non-parametric FPT, the residual water contributes to the rising baseline from about
3.6 ppm to the end of the SRI.

The ersatz component spectra in panel (c) provide yet another means of distinguish-
ing the numerous closely-overlapping resonances. Therein, interference effects are
eliminated with display of purely absorptive Lorentzians with ϕ+

k = 0 (1 ≤ k ≤ K ).
With the removal of the phase of the amplitude, the right negative lobe of acNeu,
has merged with the left positive lobe, such that acNeu peak now appears taller than
NAA, as in the envelope from panel (a). Similarly, the Lip resonances centered at 1.3
ppm now appear as larger, symmetrical Lorentzians, under which the Lac and Thr
doublets lie. Identification of individual resonances such as the Leu quintet towards
the lower limit of the SRI, at about 0.94 ppm is also facilitated by the ersatz component
spectra. Overall, the plethora of resonances, well over 90 within this SRI, can each
be distinguished. Nevertheless, despite the clarity provided by the presentation of the
ersatz component spectra, the caveat should be reemphasized. Recall that in the ersatz
mode, all the reconstructed phases ϕ+

k (1 ≤ k ≤ K ) have been set to zero, ”by hand”.
The ersatz mode cannot be used to assess the actual peak heights, since the heights
of the ersatz peaks do not reflect the true abundance of the metabolites. Earlier, we
made a remark concerning the chemical shifts of the ersatz peaks corresponding to
the dispersive Lorentzians from the usual mode. This remark applies most clearly to
the two Lip dispersion component spectra (P+

K /Q+
K )Uk around 1.3 ppm in panel (b)

of Fig. 4. The corresponding two Lip absorptive Lorentzians (P+
K /Q+

K )Ek from panel
(c) of Fig. 4 have their peak positions Re(ν+

k,Q) centered in between the left and right

lobes of the two Lip dispersion spectra (P+
K /Q+

K )Uk from panel (b).

3.5 Separation of the spurious from the genuine resonances in the FPT(+)

Figure 5 presents a detailed examination of Signal-noise separation, SNS, through
the FPT(+). Panel (a) of Fig. 5 reiterates Fig. 3c, namely the real parts of 11 usual
envelopes Re(P+

K /Q+
K )U generated from the non-parametric FPT(+) with the numer-

ous spurious spikes (in green) and the arithmetic average of these 11 envelopes denoted
by Re{FPT(+)}UAv (in blue).
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plot (poles: circles, zeros: dots) with complete separation of genuine from spurious frequencies (b). In the
latter, pole-zero coincidences occur. The genuine and spurious poles are shown in blue and red circles,

respectively. In (c), a magnitude plot
∣∣∣d+
k

∣∣∣ versus chemical shift shows zero-valued magnitudes of spurious

resonances (red), with genuine resonances (blue) having non-zero magnitudes (Color online)
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We now proceed to the parametric analysis, for which, as in the previous subsection,
the complex average envelopewas inverted by the IDFT to generate anFID towhich the
parametric FPT(+) was applied using a partial signal length NP = 1200, i.e. K = 600.
In panel (b) theArgand plot is shown, namely the Padé-reconstructed imaginary versus
real frequencies, Im(ν+

k,Q) versus Re(ν+
k,Q), respectively. Open circles denote poles

and dots symbolize zeros. An auxiliary horizontal green line facilitates visualization
of the separation between the genuine and spurious frequencies that lie in the positive
and negative imaginary frequency regions, respectively. In the latter region, the poles
are also depicted in red to distinctly point out the pole-zero coincidences that indicate
spuriousness. Well over 60 pole-zero coincidences can be identified within the SRI,
many ofwhich are quite densely packed. It should also be noted that the negative extent
of the ordinate is limited to−0.09 ppm, and there are some pole-zero coincidences that
lie even deeper and are thus not visualized herein. In the positive imaginary frequency
region, the blue open circles denote poles which, in most cases, are empty, i.e. with no
inscribed dots symbolizing spectral zeros. There are, however, some red-dotted zeros
that are close to the centers of the blue circles for the genuine poles. This near pole-
zero coincidence is known to occur for some genuine resonances [76]. Nevertheless,
these are stable and, as such, do not represent Froissart doublets. It should be noted
that the pole corresponding to NAA is deep within the imaginary part of the complex
frequency plane. This indicates a wide resonance with faster decay, whereas the pole
corresponding to acNeu is closer to zero, consistent with a narrower peak with a longer
T ∗+
2k . Similarly, each of the resonances in the Lip doublet at around 1.34 ppm is wide

with their poles deep in the imaginary plane, as are the two poles corresponding to
macromolecules in the region around 3.7 ppm. These also have shorter T ∗+

2k , and thus
would be most likely to appear with the short TEs, such as in the present investigation.

A plot of magnitude
∣∣d+

k

∣∣ versus chemical shift is presented in panel (c) of Fig. 5.
Open circles with blue color denote magnitudes

∣∣d+
k

∣∣ of amplitudes d+
k of the Padé-

reconstructed genuine resonances. The spurious resonances have zero amplitudes and
are depicted in red to aid their visualization. A direct correspondence between the
pole-zero coincidences in panel (b) and the zero magnitudes is observed, as expected.
The genuine resonances have non-zero magnitudes, although for several of these,
the magnitudes are very small. This includes PC and GPC at ∼3.22 and 3.23 ppm,
respectively. The magnitudes of both Lip doublets at about 1.34 ppm are large. For
NAA at about 2.03 ppm, the magnitude is even larger, whereas the adjacent acNeu
has a much smaller magnitude.

As stated earlier [see also (15) and (16)], it should be emphasized that peaks heights
in the absorption mode of a conventional Lorentzian lineshape are given by (H+

k )
c =∣∣d+

k

∣∣ /[τ Im(ν+
k,Q)]. In panel (a), the NAA peak is shorter and broader than acNeu.

On the other hand, the larger width of NAA at 2.03 ppm compared to acNeu at
2.06 ppm was clearly seen in the Argand plot of panel (b) where {Im(ν+

k,Q)}NAA >

{Im(ν+
k,Q)}acNeu. For this reason, there will be more attenuation of the magnitude of

NAA than of acNeu and, consequently, (H+
k )

c
NAA < (H+

k )
c
acNeu. Thus, the patterns

for NAA and acNeu seen in panels (a) − (c) are entirely coherent.
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4 Discussion and conclusions

This is the first study to apply the fast Padé transform, FPT, to in vivo MRS time
signals encoded from the ovary. Overall, the multi-faceted Padé-based strategy that
was previously established for processing in vivo time signals encoded from the brain,
and fromwhich very dense spectra were generated [79,90,91], is herein also validated
for the ovary. The expectation that much richer metabolic information from the ovary
would be gleaned through the FPT, than has heretofore been the case using conven-
tional Fourier estimation with post-processing fits of the FFT spectra is now borne out.
On the most basic level of comparing the total shape spectra generated at a relatively
short partial signal length of NP = 800 within the spectral region of interest, SRI, the
non-parametric FPT(−) was shown to provide substantially better resolution than the
discrete Fourier transform, DFT. This corroborates previous benchmarking studies on
synthesized MRS time signals associated with the ovary, in which the high resolution
capabilities of the FPT were shown [66,71,74–77].

The spectra averaging procedure [79,91], inwhich the arithmetic average is taken of
a pre-computed sequence of the retrieved envelopes (11 such envelopes in the present
paper) is hereby further confirmed to be a simple and powerful way to stabilize the
process of shape estimation in face of a marked sensitivity to alteration in model order
K . The FPT(+) with its initial convergence region in the harmonic variable z located
inside the unit circle (|z| < 1), through analytical continuation, must in this region
induce convergence into the input divergent series [70]. The large spikes seen when
the 11 usual envelopes computed for K = 575,580,…, 625, with an increment of 5
are plotted reflect the difficulty of the task of performing analytical continuation by
numerical means. When these 11 envelopes were averaged, however, a clean total
shape spectrum resulted. This points to the random, noise-like nature of the instability
of spurious resonances with change in model order K. A new insight provided by
the present paper is that an increased increment, i.e. 
K = 5 rather than 
K = 1,
between the two consecutive model orders K of computed envelopes appears to be
a more effective procedure, providing better washout of the spikes. It should also be
noted that we have presently carried out the quantification for one K in the middle
of the interval. A similar pattern is seen for other values of K within the interval and
outside the interval of the averaging.

The total shape spectrum generated as the average of these 11 usual envelopes was
seen to be informatiive. A large number of metabolites, including several doublet,
triplet and even multiplet resonances could be discerned. Since the MRS time signal
was encoded at a short echo time, TE, of 30 ms, the total shape spectrum was very
dense. This was due, in part, to the fact that many short-lived metabolites had not
yet decayed. Consequently, clinical interpretation of such a dense envelope spectrum
would be very difficult. How could one ascertain the relative abundance of each of
these identified metabolites? How should the oscillating baseline be analyzed? Could
there be even more resonances underlying these large structures? The answers to these
questions would be utterly impossible to ascertain without parametric analysis, such
as an unambiguous quantification in the FPT.

As previously emphasized in Refs. [66,71,73–76] and clearly seen in this work,
it is vital to go beyond the total shape spectra to analyze the components. In the
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present study this is achieved through the parametric FPT(+). Not only were all the
true resonances clearly identified, but also their peak parameters were all precisely
ascertained. A number of clinically important insights can be gleaned thereby. Firstly,
in the region around 1.3 ppm, the usual and ersatz component spectra elucidate the
overlap among Lip, Lac as well as Thr and other resonances. The lifting of the baseline
in that region is seen to be due to wide Lip resonances. This clarification could help
resolve the uncertainty as to whether or not the presence of Lip distinguishes benign
from cancerous ovarian lesions. According to our meta-analysis (Table 1), Lip at
1.3 ppm was more often identified in malignant lesions, but this difference was not
statistically significant. On the other hand, the presence of Lac at 1.3 ppm was a
significant predictor of cancerous lesions, but thereweremainlymissing data regarding
this metabolite. With Padé-based parametric analysis, a short TE can be employed so
that both Lip and Lac could not only be identified, but also quantified in the chemical
shift region around 1.3 ppm.

With the FPT, the presence of Cho at 3.2 ppm was also clearly detected and its
peak parameters reconstructed. For the first time phosphocholine, PC, as well as glyc-
erophosphocholine, GPC, were both clearly delineated via in vivo MRS time signals
encoded from the ovary. Since the histopathology of the present case was borderline, a
relatively small PC peak could be expected. Given that PC is a recognized biomarker
of malignant transformation [64,65], with Padé optimization it now becomes possi-
ble to assess this key metabolite non-invasively, with an anticipated improvement in
identifying ovarian cancer. Quantification of PC could also aid in timelier detection
of ovarian cancer progression, based upon studies of ovarian tumor cell lines [64].

In the present meta-analysis, no diagnostic conclusions regarding the presence
of NAA could be gleaned from Fourier-based analysis of in vivo MRS. In sharp
contrast, through Padé reconstructions, the two resonances between 2.0 and 2.1 ppm
corresponding toN-acetyl aspartate, NAA, andN-acetylneuraminic acid, acNeu, were
clearly distinguished, as being split apart nearly to the baseline level, even on the
total shape spectra. With this distinction between the two closely-lying resonances,
as well as the possibilities for their quantification through the FPT, clarification could
be forthcoming as to the actual significance of NAA versus acNeu in identifying
malignant as opposed to benign ovarian lesions.

Fundamental to the entire Padé-based strategy is to disentangle genuine from spu-
rious resonances. In our previous proof-of-principle studies based on synthesized time
signals similar to the corresponding encoded FIDs from cystic ovarian lesions with
added noise, the particular utility of the FPT(+) was seen. This was due to the clear
separation of the genuine and spurious resonances inside and outside the unit circle,
respectively. In the present study, even after spectra averaging, the Froissart doublets
within the SRI were of the order of abundance of the genuine resonances. Through
the FPT(+), the pole-zero coincidences were found in the negative imaginary fre-
quency region, whereas the genuine resonances (poles) were all located in the positive
imaginary frequency region. This separation is vitally important for identifying true
(physical) resonances with very small magnitudes, especially in chemical shift regions
of high density, as was the case for the present study.

It should, moreover, be emphasized that this Padé-based strategy would render
the use of short echo times, TE, to be not only feasible, but desirable, given the rich
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spectral information to be gleaned thereby from short-lived resonances. This obviously
requires the unequivocal disentangling of overlapping resonances, a task for which
the parametric FPT is fully-equipped, as seen herein. In sharp contrast, only 3 of the
13 studies in the meta-analysis used a short TE of 30 ms. This was undoubtedly due
to the difficulties inherent therein with Fourier-based processing. In particular, the
overlap of Lip and Lac has been problematic at short TE. Thus, the more common
practice has been to use a TE of 136 ms, so that an inverted Lac doublet appears
due to J-modulation, while the lipids have already decayed. However, with the FPT,
the Lac and Lip doublets can unequivocally be identified as separate structures by
analyzing the component shape spectra. In fact, it is only after the components have
become available byway of quantification thatwe can,with certainty, assign the known
metabolites to the found distinct spectral structures in the total shape spectra, as was
presently done in panel (b) of Fig. 3.

With the presently expounded and validated procedure of spectra averaging through
the parametric FPT, it would also be possible in the future to choose an SRI contain-
ing frequencies above the chemical shift of the large residual water resonance. This
chemical shift region may also yield diagnostic insights [62] that warrant further
examination.

The present results are the first steps showing the effectiveness of the FPT for
processing in vivo MRS time signals encoded from the ovary. From here, application
of the FPT to in vivo MRS time signals encoded from various ovarian cancer types,
as well as to a wide range of benign ovarian findings and to entirely normal appearing
ovary is clearly warranted. The diversity of ovarian pathology, as can be seen in
our meta-analysis, is an admitted challenge which will further require painstaking
attention.

Solid versus cystic ovarian cancers appear to differ substantially. Our meta-analysis
indicates that Cho was significantly less likely to be detected in voxels from cystic
ovarian cancers than from voxels encoded from solid ovarian cancer tissue. The in
vitro data of Boss et al. [59] showed that median concentration of Cho in the cancerous
ovarian fluid (42µM/L ww, where ww denotes wet weight) was actually the lowest of
all the twelve examinedmetabolites. This suggests the need to broaden the exploration
to include other metabolites besides Cho when investigating cystic ovarian lesions
through MRS. Moreover, the vast majority of epithelial ovarian cancers reportedly
contain cysts [97], the metabolic characteristics of which warrant further examination.

The overriding task would be to perform extensive multivariate exploration to find
the metabolite patterns from MRS that best distinguish benign from borderline or
unequivocally cancerous ovary. With the rich, quantitative metabolic information that
can be gleaned through Padé-optimization, we anticipate that a substantial improve-
ment will be forthcoming compared to the results thus far achieved with conventional
Fourier-based processing of in vivo MRS time signals encoded from the ovary. The
limitations of the latter are underscored by the meta-analysis performed herein. The
overall paucity of in vivo MRS studies of the ovary speaks to the difficulty of acquir-
ing good quality time signals from this small, moving organ, and that heretofore the
diagnostic yield from in vivo MRS has been insufficient to motivate further clinical
studies.
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The present results strongly motivate further applications of Padé-optimized in
vivo MRS, with the main aim of contributing towards early ovarian cancer detection,
and exploring the potential to more clearly identify benign ovarian lesions, for which
unnecessary invasive procedures could be avoided. A major advantage of MR-based
methods, as well as ultrasound, is that there is no exposure to ionizing radiation.
Especially for women at increased risk of ovarian cancer, this is a vital consideration,
since exposure to diagnosticmedical radiationmay be associatedwith further elevation
in risk for radiation-induced ovarian cancer [98]. Radiation exposure may also occur
with e.g. radiation therapy of cervical cancer. For women who are at increased risk
of ovarian cancer, whether due to ionizing radiation exposure, hereditary and/or other
risk factors, Padé-optimized MRS could be particularly helpful for surveillance. Of
key importance is that early detection of ovarian cancerwould greatly improve survival
for women afflicted with this malignancy. Effective methods are needed to achieve
this goal, for which Padé-optimized in vivo MRS definitely holds promise.
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89. Dž. Belkić, K. Belkić, Quantification by the fast Padé transform of magnetic resonance spectroscopic
data encoded at 1.5 T. J. Math. Chem. 54, 602–655 (2016)
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