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Abstract The fast Padé transform (FPT) was applied to magnetic resonance spec-
troscopic (MRS) time signals encoded in vivo on a 1.5 T scanner from the
parietal-temporal brain region of a pediatric patient who had suffered cerebral
asphyxia. An iterative averaging procedure was implemented to the 9th iteration,
whereby spurious structures on the total shape spectra were effectively suppressed.
The parametric and non-parametric FPT) were verified to reconstruct equivalent
total shape spectra. Via the parametric FPT, the spectral region of interest was cho-
sen to bypass the giant water resonance, automatically generating spectral envelopes
without the need for windowing. The dense component spectra were reliably recon-
structed by the FPT"), in the “usual” mode (mixture of absorption and dispersion
components) and “ersatz” mode (reconstructed phases set to zero). Via the latter, inter-
ference effects were well-visualized for closely-overlapping and hidden resonances.
The most stringent test was performed for the complex frequencies and associated
complex amplitudes reconstructed by the FPT") . Exceedingly small variances were
obtained for all four Padé-reconstructed parameters per genuine resonance, once con-
vergence was achieved at the 7th to 9th iterated averages. This now fully-validated
methodology can generate denoised spectra and accurate spectral parameters for in
vivo MRS data encoded within neurodiagnostics. Such a multi-faceted Padé-based
strategy for processing the dense spectra of the brain could vitally improve pediatric
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neurodiagnostics. A wider range of clinical applications becomes within reach, includ-
ing areas of cancer diagnostics where the added value of in vivo MRS is urgently
needed. The broad theoretical underpinnings of incorporating quantum mechanics
into signal processing provide the basis for these innovative advances.

Keywords Signal processing - Optimization - Fast Padé transform - Magnetic
resonance spectroscopy - Hypoxia - Cancer diagnostics
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Iteration

Lactate

Leucine

Lipid

Myoinositol

Magnetic resonance

Magnetic resonance imaging
Magnetic resonance spectroscopy
Milliseconds

N-acetyl aspartate

@ Springer



306 J Math Chem (2017) 55:304-348

NAAG N-acetyl aspartyl glutamic acid
NMR Nuclear magnetic resonance
PA Padé approximant

PC Phosphocholine

PCr Phosphocreatine

PE Phosphoethanolamine

PRESS Point-resolved spectroscopy sequence
ppm Parts per million

s-Ins Scylloinositol

SNR Signal-noise ratio

SNS Signal-noise separation

SRI Spectral region of interest
SVD Singular value decomposition
Tau Taurine

TE Echo time

TR Repetition time

U Usual

1 Introduction
1.1 Quantum mechanical signal processing and rational polynomials

Within signal processing, rational polynomials in the form of the Padé approximant
(PA), are the key response function to external perturbations of general systems [1,2].
According to Prony, the time evolution of all phenomena can be described by a lin-
ear combination of real-valued exponentials [3]. Via the auto-correlation functions,
quantum-mechanics concordantly also predicts this latter formula, but with an extra
feature in that the exponentials are complex-valued. When this time-domain ansatz is
transformed into the frequency domain, the PA is directly generated, as was known
to Prony. It was actually about 100 years after Prony’s work that Padé, supervised by
Frobenius, published his doctoral dissertation on polynomial quotients [4]. For exper-
imental data for which the energy or frequency parametrized description is rooted
in the class of rational polynomials, the PA is always exact. Since such experimen-
tal signals are abundant across many basic scientific and applied fields, it becomes
clear that a model based upon the PA, also termed the fast Padé transform (FPT) in
spectral analysis, would be the method of choice for processing these signals [1,2].
More generally, as per the Cauchy integral formula, any analytical function can be
expressed by a Padé rational polynomial to within an arbitrary level of accuracy. In
signal processing, an input spectrum is a Maclaurin series (truncated or not), which
is an analytic function and, thus, according to Cauchy, expressible by a polynomial
quotient with any desired precision.

1.1.1 Nuclear magnetic resonance versus magnetic resonance spectroscopy

Among the most noteworthy examples of multi-disciplinarity is the field of nuclear
magnetic resonance (NMR). The methodology of NMR in analytical chemistry and
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that of magnetic resonance spectroscopy (MRS) in medical diagnostics do not differ
essentially. For in vivo medical applications, the term “nuclear” is omitted, and the
instrumentation of NMR compared to in vivo MRS differs. For NMR, spectrometers
are quite small as per the size of the samples. In contrast, in medicine, the same
scanners are used for magnetic resonance imaging (MRI) as well as MRS, and thus
need to be large enough to hold patients. Fundamentally, however, NMR and MRS are
faced with the same challenges, particularly those related to mathematical analysis of
encoded data. In fact, the methods developed herein are even more widely applicable
and can be employed for signal processing in areas that have no connection to magnetic
resonance (MR) per se [1,2].

Besides the importance of generating well-resolved spectra and images within MRS
and MRI, incorporating quantum mechanics into signal processing supplies the basic
framework of a complete theory of physics. In so doing, arbitrary signals can be directly
related to the dynamics of the examined system and its time evolution, as per the first
principles of physics. The dynamics of very complex systems may not be known and/or
may be very elusive. It is via quantum mechanics that the dynamics of the system
can be uncovered and the parametrized full spectral information extracted, insofar as
experimental data such as time signals are available. The reason for this possibility
is the equivalence between quantum-mechanical auto-correlation functions and time
signals. Thereby, with this equivalence, rather than confronting the common challenge
of nonlinear fitting of experimental data yielding non-unique reconstructions, the task
becomes transformed into a quantum-mechanical linear problem for eigen spectra of
the examined system. The unique results obtained from the latter problem retrieve the
unknown dynamics and interactions in the system which has undergone transitions
as a result of perturbations, prior to generating the recorded time signals. In other
words, we are confronting an inverse problem in quantum mechanics, namely that
the experimentally measured data are available, from which the interaction potentials
or, more generally, the underlying causes need to be reconstructed from the observed
effects [1,2].

1.1.2 The quantification problem

The quantification problem (or spectral analysis, as it is called in mathematics) is a
critical challenge in MRS. It consists of the retrieval of the unknown, quantitative
information which is contained within the measured time signals. This quantitative
information can potentially be of diagnostic importance. However, the encoded MRS
time signal, containing tightly packed, multiple, damped sinusoidal oscillations, is
not clinically interpretable in a direct manner. Mathematical transformation of these
encoded data is needed in order to extract the sought information. Thereby, the encoded
data are mapped from the time domain into the frequency domain (or the domain of
spectra). The latter, complementary domain is where the needed quantitative infor-
mation can be extracted from the resonances (peaks) that appear in the spectrum. It
is invariably stated in the MRS literature that spectra are acquired, i.e. encoded. This
is entirely incorrect since it is the MRS time signals that are acquired, whereas the
corresponding spectra are computed. In other words, the time and frequency domains
are the subjects of measurement and theory, respectively.
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1.2 The clinical context

In the present paper, the high-resolution, quantum-mechanical approach is applied
to a specific problem within MRS for pediatric neurodiagnostics, the salient clinical
aspects of which will be now briefly reviewed. Overall, MRS has enhanced the speci-
ficity of MRI by providing insight into the metabolic features of various pathologic
tissues. Within pediatric neurodiagnostics, in vivo MRS has been primarily based
upon a small number of metabolites and their concentration ratios. Among these is
nitrogen acetyl aspartate (NAA), resonating at ~2.0 ppm (parts per million), which
indicates the abundance and viability of neurons. Thus, for example, with cerebral
asphyxia, which is brain impairment due to oxygen deprivation usually at birth, the
concentration of NAA is reduced [5]. This is due to the marked vulnerability of cere-
bral neurons to hypoxia. However, NAA can also be lowered with almost any damage
to the brain, including brain tumors [6]. Another diagnostically important metabolite
is choline (Cho) resonating at ~3.2 ppm, which reflects phospholipid metabolism of
cell membranes, and is a marker of membrane damage, cellular proliferation and cell
density. In cerebral ischemia/hypoxia, a lactate (Lac) doublet, centered at ~1.3 ppm,
is expected, related to the predominance of anaerobic glycolysis. However, Lac can
similarly be observed in brain tumors and sometimes in healthy brain tissue [5,7-9].
Lipids (Lip), also resonating at ~1.3 ppm, often appear, as well, with reperfusion after
hypoxia [9]. Cerebral energy metabolism is reflected by creatine (Cr), which resonates
at ~3.0ppm and whose concentration in the brain is usually stable after the first year
of life [9].

Normally, brain metabolite concentrations as well as metabolite concentrations
ratios depend upon the age, in the pediatric population. Myoinositol (m-Ins) is the
dominant brain metabolite in neonates. In older infants, Cho is normally the largest
peak. As the child’s brain matures, Cr and NAA concentrations increase. Concor-
dantly, Cho to NAA and Cho to Cr concentration ratios normally fall with the child’s
age [10]. One rationale for the clinical focus of the present paper is to enhance pediatric
neurodiagnostics through MRS, aiming towards greater accuracy in identifying cere-
bral hypoxia/ischemia versus other pathology, including brain tumors, which present
differential diagnostic dilemmas.

1.2.1 Implications for cancer diagnostics

Broader implications for cancer diagnostics further motivate the present paper. Espe-
cially, it should be noted that hypoxic regions often occur within tumors. These regions
are particularly resistant to radiation therapy as well as to chemotherapy. Moreover,
hypoxia promotes genomic instability and is associated with the invasive/metastatic
process [11]. Consequently, identifying hypoxic regions via MRS could contribute
overall to better cancer treatment planning.

As will be addressed in more detail later in this paper, phosphocholine (PC), another
MR visible metabolite which reflects hypoxia [ 12], has been detected and quantified via
the fast Padé transform, FPT, [13, 14]. In vitro studies have indicated the importance of
PC as a biomarker of pediatric brain tumors [15, 16], breast cancer [17] and of ovarian
cancer [18].
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Taking this wider view motivates efforts to garner maximal diagnostic information
from MRS. One priority area is early ovarian cancer diagnostics, where the need for an
effective in vivo MRS-based screening method has been underscored for many years
[19-21]. While technological progress is obviously important, mathematical advances
in signal processing are the most critical for MRS, as we will demonstrate. To provide
the needed context for comparison, we will first briefly examine the current signal
processing method used in MRS.

1.3 The current signal processing method within MRS

A digitized free induction decay (FID) curve is the encoded MRS time signal which
holds the entire metabolic content of the scanned tissue. However, the tightly packed,
harmonically oscillating and exponentially attenuated waveforms are difficult to inter-
pret directly from the FID. By mapping the FID into the frequency domain via
mathematical transforms, a spectrum is generated which is more amenable to interpre-
tation. Presently, in MR scanners this mapping is automatic, and is done using the fast
Fourier transform (FFT). Mathematically, the generated Fourier spectrum is expressed
as a single polynomial (a truncated Maclaurin series):

N—1
FFT: F,y = > cpexp(=2mimn/N), 0<m <N —1, (1a)
n=0

where 2rm /T is the fixed mth Fourier grid frequency. Here, the expansion coefficients
are collected in the set of complex-valued time signal points {c,}; further, T is the
total signal duration or total acquisition time, T = Nt, where N is the total signal
length and 7 is the sampling time (dwell time, sampling rate), which is the inverse
of the bandwidth (BW). The variables exp(+2mimn/N) are the undamped sinusoids
and cosinusoids (nmt/T = nm/N).

The FFT algorithm is speedy for signals lengths of the composite form, N =
2" (m = 1,2,3,...). However, the Fourier spectrum is linear, with unaltered noise
being imported directly from the time domain to the frequency domain. The resolution
of the FFT is low and determined solely by 7" as 1/T. Since the Fourier spectrum is
constructed only on the fixed grid points, there is no possibility for resolution improve-
ment by interpolation. Moreover, no extrapolation is provided regarding information
beyond the final encoded time signal point, cy—1. A zero-filling procedure is typically
performed. However, this merely produces sinc-type oscillations on the baseline of an
FFT spectrum. Particularly for closely-spaced resonances, the sinc side lobes coupled
with truncation artefacts can interfere, generating extraneous peaks or dips that are
not part of the true information contained in the investigated FID [2].

The inverse Fourier transform (IFFT) from which the time signal is reproduced
from the Fourier spectrum is:

N-—1
1
IFFT: ¢, = — »_ FpexpQuimn/N), 0<n<N—1. (1b)
N m=0
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Insofar as N is non-composite, i.e. any positive integer, the FFT and IFFT from (1a)
and (1b) become, respectively, the discrete Fourier transform (DFT) and the inverse
DFT, as denoted by IDFT.

Only a total shape spectrum (envelope) can be generated by the FFT, since it is non-
parametric. The spectral parameters needed for quantification are not provided by the
FFT. The next step has generally been to fit the Fourier envelope to a pre-selected
set of Lorentzians, Gaussians or their linear combination mimicking the Voigt profile.
Via least square free-parameter-adjusting techniques, attempts are made to estimate
metabolite concentrations. However, as per Lanczos’ paradox, any number of pre-
assigned peaks can be fitted to the given total shape spectrum, such that genuine
resonances may be missed (under-modeling), while spurious structures may be pro-
duced (over-modeling) [1,2].

1.3.1 Ensuing diagnostic dilemmas

Notably, several metabolites that are informative for neurodiagnostics and more
broadly for cancer diagnostics, such as m-Ins, Lip, glutamate (Glu) and glutamine
(GIn)! decay rapidly, such that they can be detected only at short echo times (TE)
[22,23]. Due to high spectral density, fitting becomes even more problematic at short
TEs. Recall, Lac at ~1.3 ppm generally appears with ischemia/hypoxia and, moreover,
is often associated with malignancy. At short echo times, Lac and Lip overlap since
they both resonate in the chemical shift region of ~1.3 ppm. Difficulties in identify-
ing these two diagnostically important resonances are frequently encountered at short
TEs [23,24]. The accurate assessment of Lac and Lip is recognized to be tenuous,
due to the overlap of these resonances. On the other hand, the use of long TEs causes
attenuation of the magnitude of all resonances [24].

Since spin-spin T,-relaxation times of various metabolites differ, changes in TEs
can affect peak height ratios. Consequently, reliance upon metabolite concentration
ratios becomes particularly precarious. For example, in addition to NAA at ~2.05 ppm,
metabolites Glu and Gln within 2.1-2.5 ppm may contribute to the spectral area around
2.0ppm at short TEs [25]. It thus becomes more difficult to assess NAA levels at short
TEs due to heavily overlapping resonances that cannot be reliably identified using
the FFT followed by fitting. These difficulties regarding the relation of metabolite
concentration ratios and TEs are very relevant for pediatric neurodiagnostics [5] and
for cancer diagnostics, in general [26].

1.4 Advanced signal processing for MRS through the fast Padé transform

Through the fast Padé transform, FPT, many of these problems can be surmounted.
In the FPT, a quotient of two frequency-dependent polynomials, Px/Qk is extracted
from the encoded MRS time signal. A total shape spectrum is produced which is not
limited to the pre-assigned grid of the sweep frequencies, such that interpolation is
provided by the FPT [1].

LA joint acronym for both Glu and Gln is GIx.
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An extra degree of freedom results from the numerator (Px) and denominator
(Qk) polynomials, and this helps cancel noise from the Padé spectrum Pk / Q. This
is not surprising, since the common experience is that when e.g. two observables A
and B are measured in any experiment or numerically computed with finite precision,
errors in A and B are largely cancelled in the ratio A/B which is often used for data
interpretation and analysis. The polynomial Pg reduces noise through the “moving
average”, as per the autoregressive moving average (ARMA) process from statistical
mathematics. In fact, the FPT and ARMA are equivalent [1].

Extrapolation in the FPT is forthcoming from the denominator polynomial Q.
The prediction coefficients from the ARMA process are the same as the expansion
coefficients of polynomial Q. New signal points {c,} forn > N — 1(t > T) can
be computed using these expansion coefficients. Consequently, it becomes possible
to predict time signal data at t = nt for n > N — 1, i.e. beyond the total acquisition
time 7. Due to these properties of extrapolation, interpolation and noise suppression,
resolution and Signal-noise ratio (SNR) in MRS are improved through the FPT.

1.4.1 Solving the quantification problem

The solution to quantification includes K which is the model order, together with
the 4K real-valued spectral parameters (K complex frequencies w; and K associated
complex amplitudes di 1 < k < K) for the K resonances. This is a complete parame-
trization of the encoded FID set {c, }, given through the sum of K physical resonances,
via the geometric progression:

K
cn =Y drexpliogtn), Im(wr) >0 (0 <n <N —1). )
k=1

Recall that since the FID set {c,,;} (0 <n < N — 1) is known, whereas {wy, di} (1 <
k < K) need to be found, this is an inverse problem. The exponentials in (2) are
complex damped harmonics. This harmonic inversion (2) is linear in {d)} and non-
linear in {wy}. For the given Maclaurin expansion, the Padé spectrum or the response
function R(u) in e.g. its diagonal form, is completely and uniquely determined by the
rational function as a ratio of two polynomials Px and Qg of the common degree K :

u =exp(iot). 3)

This can be obtained for any real linear frequency v, related to the angular (circular)
frequency w by w = 27 v. For the encoded FID set {c, }, polynomials Px and Qg are
determined by solving a single system of linear equations deduced from:

N-1
P
;cnz*”: QI;(((Z))’ u=zoru=z . 4)
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By rooting the denominator polynomial Q, the fundamental frequencies {«wy} are
extracted:

Ok () = 0 = Spectral pole frequencies wy (1 <k < K). 5)

The amplitudes {d;} are deduced through the Cauchy analytical formula for the
residues of Px / Qg taken at the frequency of the kth pole @ = wi. When the spectrum
Pk /Qk is non-degenerate, i.e. comprised of simple poles alone, the result for dj. is
given by:

_ Py (ug)
Q' (ug)’

d
k Ok (u) = 3, k@), up=expliogr), 1=<k=K. (6

The reconstructed amplitudes {dy } should be corrected for the 7' - (spin-lattice) and 7' -
relaxation times insofar as the FIDs have not fully decayed to zero. The kth metabolite
concentration is then computed from these corrected amplitudes {dy}.

Within the FPT, for the same input finite z—transform given by the lhs of (4), there
are two versions: the FPT"and FPT(™), with their initial convergence regions inside
(Jz] < 1) and outside (|z| > 1) the unit circle, respectively. The independent variable
u used in (3)—(6) is either variable z = exp(iwt) or = exp(—iwt), corresponding
to FPT™™ or FPT(™), respectively.

Especially within in vivo encoded MRS time signals, a major obstacle is the pres-
ence of noise. Moreover, when the spectra are dense, the number of genuine metabolites
is a very small percentage of the total number of retrieved resonances. Through the
Signal-noise separation (SNS) procedure by which pole-zero coincidences (Froissart
doublets) are identified, the FPT algorithm can distinguish genuine from spurious res-
onances [27,28]. The mechanism by which this occurs will be elaborated in Sect. 2.2
by an analytical derivation.

1.4.2 Proof-of-principle studies

By exact quantum-mechanical spectral analysis, the FPT accurately examines MRS
time signals, yielding quantitative information for a large number of metabolites using
synthesized time signals associated with data from cancerous, benign and/or normal
brain, prostate, breast and ovary, as demonstrated in benchmarking studies [2,13,21,
26,29-40]. In investigations applying the FPT to synthesized MRS time signals that
were very similar to those encoded in vivo from the brain of a healthy volunteer at 1.5
T, proof-of-concept validation was provided. Namely, the spectral parameters were
exactly reconstructed from which the concentrations of metabolites were precisely
computed, including for overlapping resonances whose chemical shifts differed by
0.001 ppm or less [2,29-31].

An MRS study on FIDs encoded from the standard General Electric (GE) phantom
head provided an additional proof-of-principle for the FPT [41]. Therein, extensive
examination of the convergence process substantiated the stability of the recon-
structed spectral parameters. Statistical analysis, via “parameter averaging” in the
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FPT confirmed the accuracy and precision of the reconstructed complex fundamen-
tal frequencies {wx} and the associated complex amplitudes {d\}, including those in
the dense regions of the spectrum, where very small and/or very closely overlapping
resonances were located.

1.4.3 Applications of the FPT to in vivo encoded MRS time signals

In addition to the earlier cited proof-of-principle studies on synthesized FIDs and
time signals encoded from the GE head phantom, the FPT has also been applied to
process MRS time signals encoded in vivo on a 1.5 T MR scanner from pediatric
brain tumor [14], as well as from normal human brain [1,2,42-46]. Further, the FPT
clearly provided better resolution than the FFT for total shape spectra generated from
MRS time signals encoded from healthy human brain at high magnetic field (4 and
7T) and clinical scanners (1.5 T). Even more remarkable is the parametric capability
of the FPT, particularly in spectrally dense chemical shift regions, where extremely
closely-overlapping resonances were resolved and quantified. This includes several
diagnostically important metabolites, some of which are identified cancer biomarkers
[2,14].

A practical challenge encountered very frequently in the MRS literature is incom-
plete suppression of the giant water resonance. Using a step function within the
non-parametric FPT, an information-preserving procedure for suppressing residual
water via windowing was introduced and validated in our study of pediatric brain
tumors [14]. This windowing procedure is superior to the customary Hankel-Lanczos
Singular Value Decomposition (HLSVD) procedure, which involves fitting by artifi-
cial resonances that add further spuriousness to the already noisy MRS time signal.
It was confirmed through subsequent parametric analysis via the FPT that the spec-
tral components within the spectral region of interest (SRI) were not affected by
this windowing procedure. It was only at the edges outside the SRI that some
expected, but inconsequential discrepancy was found between the water residual
suppressed and unsuppressed Padé reconstructions. This windowing procedure was
thus seen as helping to bring us further towards more widespread implementation
of the FPT in the clinical setting. Parametric signal processing within a chosen
SRI can, of course, be performed in any selected window. Advantageously, this
can be done without water residual and without any explicit filtering of the con-
tent of the chosen window. Such a more effective procedure of altogether avoiding
the water residual, which is a nuisance in MRS, will be a part of the present
study.

In our most recent work [47], an iterative averaging procedure was introduced in
the FPT, with the aim of providing denoised non-parametrically computed total shape
spectra from FIDs encoded in vivo using a 1.5 T clinical scanner. This procedure was
shown to stabilize envelope spectra which for different model orders K exhibited many
large noise-like spikes. These findings motivate further investigation of the Padé-based
iterative averaging methodology with the aim of fully benchmarking this stabilization
method for clinical use.
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1.5 Aim of the present paper

We now will apply the FPT to in vivo MRS time signals encoded using a clinical 1.5
T scanner from a pediatric patient who had suffered cerebral asphyxia. A compari-
son will be made between the FPT and DFT regarding resolution performance on the
total shape spectra or envelopes. We will extensively test the parametric version of the
Padé-based iterative averaging procedure for generating not only total shape spectra,
but also for reconstructing spectral parameters. In other words, as an alternative to
Ref. [47], all the average envelopes will presently be generated from the parametri-
cally reconstructed iterates. One of the aims would thus be to thereby overcome a
critical obstacle of all parametric methods: extreme sensitivity of spectral parameters
to any change of the model order K. Detailed examination of the convergence of the
Padé-reconstructed spectral parameters will be undertaken, within the framework of
the iterative averaging procedure. The possibility of a further upgrade of the water
suppression procedure will also be examined through the parametric FPT, with the
aim of bypassing the need for windowing, as stated. Overall, this paper will bring
together a full, multi-faceted testing of the parametric Padé-based iterative averaging
procedure with the aim of its validation for broader applications in the clinical set-
ting. This could directly contribute to pediatric neurodiagnostics through MRS, with
possibilities to more accurately identify hypoxia/ischemia and the effects of cerebral
asphyxia and to better distinguish these from other pathology. This work aims, as
well, to soon extend to other applications of in vivo MRS diagnostics, especially, for
cancer diagnostics and patient care within oncology. The generic relevance of this
approach for the basic sciences and technology is also foreseen, from both a practical
and theoretical standpoint. The latter is the focus of the next section of this paper.

2 Theory of quantum mechanical spectral analysis
2.1 Why is the fast Padé transform a quantum-mechanical spectral analyzer?

There are several reasons why the FPT is a quantum-mechanical spectral analyzer.
These can be ascertained according to Egs. (2), (4), (5) and (6). The first reason
is the equivalence of form (2) for every data point in the time signal {c,} with the
quantum-mechanical auto-correlation function, (®¢|®P,,). The latter is defined by pro-
jecting the Schrodinger non-stationary state @, of the system at time nt onto the
initial state @, with an asymmetric scalar product (a|b) = (b|a). The second reason
is that the finite z— transform is the quantum-mechanical finite-rank Green function
Gz hH = Zflvz_ol cpz . According to (4), this corresponds to the spectrum Pg/Qg
in the FPT. The third reason is that in the FPT, the fundamental frequencies {wy} from
(5) are equivalent to the quantum-mechanical eigen frequencies from the stationary
Schrodinger eigen value problem, QW = wi V. Here, 2 is a non-Hermitean system
operator, i.e. a complex “Hamiltonian”. This is due to the fact that the correspond-
ing Schrodinger secular equation, which is equivalent to the Schrodinger eigen value
problem, is the same as the characteristic polynomial equation Qx = 0 from (5) in
the FPT. The fourth reason is that the fundamental amplitudes {d)} from (6) in the
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FPT are equivalent to (®g|Wy)?, which is their quantum-mechanical counterpart. This
equivalence is due to the uniqueness of the amplitudes {d\} for the same frequencies
{wi}. In other words, various algorithms may differ in how they generate the ampli-
tudes, but they must give the same results for {dy} insofar as the reconstructed sets for
{wy} are identical [1].

Compared to directly solving the Schrodinger eigen value problem on a given set of
basis functions, the FPT provides a twofold advantage. The first is with respect to the
amplitudes and the second is for Signal-noise separation, SNS. As to the former, the
Padé amplitudes {dy} from (5) completely bypass computing the wave functions {\Wy}
required in quantum mechanics for d; = (®o|¥;)2. On the one hand, eigen frequencies
{wr} from the non-stationary Schrodinger equation are variational, such that their
estimates have no first-order errors. On the other hand, however, eigen states {\Wy}
are non-variational. Consequently, the latter contain first-order errors that undermine
the accuracy of the amplitudes (®o|Wx)%. By employing a linear combination of a
set of reconstructions for the amplitudes of the original type (®o|Wy)? these errors
can usually be reduced [1]. However, with the FPT, such errors are altogether avoided
from the outset.

Regarding SNS, the FPT has a unique capability. As noted, it extricates genuine
from spurious resonances by unequivocally identifying Froissart doublets, which are
the coincident spectral poles and zeros. The latter are the solutions of the characteristic
equations, Qg = 0 and Px = 0, respectively. The mechanism by which SNS is
achieved is presented in the following subsection.

2.2 The mechanism of pole-zero cancellation in the FPT)

The phenomenon of Froissart doublets, with the underlying pole-zero cancellation, is
so vital for the concept of Signal-noise separation, SNS, that its mechanism should be
clearly illuminated by analytical means before confirming it in numerical computations
of envelope spectrum P; (z)/ Q}(z) and its components. The most instructive way
towards this goal is to consider a model spectrum in the FPT") consisting of a single
genuine Lorentzian resonance Lf(z) = d1+z /(z— zf). Here, zf’ is the genuine signal
pole and df is the corresponding amplitude. Since there is only one resonance, this
latter single expression for LT(z) represents both the total and component shape
spectra, rewritten as LT(z) = P1+(z) / QT(z) where P1+ (z) = dl+ z and QT(z) =
z— z?‘. The associated model time signal ¢, has only one component via ¢, =
dyexp(in rwf), where cufr =[1/@G7)] In zfr. For a chosen dwell time 7, the signal {c, }
issampledfor 0 < n < N—1,where N is the total signal length. Once the N time signal
pointsc, (0 <n < N—1) are sampled, the knowledge about this FID being comprised
of only one component is deliberately forgotten. This mimics the typical situation in
MRS, where at the end of encoding, only the N data points ¢, (0 < n < N — 1)
become available, whereas the components of each ¢, are unknown and represent the
subject of reconstruction by spectral analysis (quantification).

Since we do not know that the model spectrum has a single component, the appli-
cation of the FPT™") would result, for the simplest case, in generating one extra
Lorentzian L;‘ (z2) = d2+ z7/(z —z;' ) so that the predicted spectrum and the reconstructed
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FID wouldbe LT (z) = LT () + L] (z) and &, = d| exp(in tw]) +d; exp(in tw)),
respectively, where w; =[1/@G7)]In z; . The second Lorentzian has a pole z;' and the
corresponding amplitude is d2+ . However, the input signal ¢, “knows” that it possesses
merely a single component viac, = d exp(in ra)f) and, therefore, the extra harmonic
d2+ exp(in ra);r ) in the predicted time signal ¢,, ought to be false, i.e. spurious. To show
this, we assume that the predicted 2-component spectrum L (z) is non-degenerate, i.e.
its two poles are unequal, z; # z|, which implies d; # d;". With no approximation,
itis convenient to cast L™ (z) into the form LT (z) = [(z—z3)L{ (2) +d5 z1/(z—z).
Here, close to the second pole z;' , the 1st Lorentzian LT (z) is not written as a partial
fraction since therein LT(Z) is a regular, smooth function. Thus, in the vicinity of the
2nd pole, we can set Lf(z) ~ LfL(z;r ) and rewrite the 2-component spectrum L™ (z)
in a way which explicitly exhibits only the polar structure of the 2nd Lorentzian via
L*(z) = P*(2)/ Q7 (z), where PT(2) = (z—23 )L} (z3)+d; zand 0% (2) = z—2; .

The foregoing will enable us to see what actually happens with the extra Lorentzian
L;’ (z). To this end, we first assume that there is a relationship between the two ampli-
tudes dl+ and c12+ , e.g. the magnitude of the latter is much smaller than that of the
former, i.e. |d§ | << |d;], or equivalently, [p*| << 1, where p* is the amplitude
ratio, p™ = d, /d]‘|r . Since |d; | is negligible relative to |d1+ |, it is tempting to imme-
diately ignore the 2nd Lorentzian d;' z/(z — z; ), compared to the first component
df’z/(z - zf’) in their sum L1 (z) = df”z/(z —-zH+ d2+z/(z - z;”). However, this
might be justified only away from the extra pole z, , but not close to it, because in the
vicinity of z;“ , the 2nd Lorentzian L;“(z) = dgL z/(z — Z;r ) has a peak.

To peer into the structure of the additional Lorentzian L;r (z), the presence of the
numerator polynomial P (z) becomes essential, and to explore its feature we solve
the characteristic equation P7(z) = 0.The ensuing zero is denoted by Z;, p» Which is
givenby 23 p = 25 o/[1+ (2 ) =25 p)p 1 where z{ , =z and 25, = z; . If here
we use the assumption [pT| << 1 and retain only the first 2 terms in the binomial
series, it follows that zZP ~ ZZQ[I — (szQ - ZZQ),OJF]. We have szQ - ZIQ £0
for the considered non-degenerate spectrum, but since it is assumed that [p"] << 1,
we can still neglect the term (th — ZZ Q) o7 in the square brackets, and this leads

to ZZ+, p N zZ 0 Hence, the small value of the 2nd magnitude |d;r | from the extra

Lorentzian L;‘ (z) compared to the 1st magnitude |d1+| from LT(z) implies that the
2nd pole Z;—, 0 and the zero ZZ p are approximately the same (pole-zero coincidence).

Conversely, let us now assume that there is a pole-zero coincidence z; o~ z; pin

the 2nd Lorentzian L2+(z), and we aim to estimate the relationship between the 2nd
and the 1st magnitudes, |d2+ | and |ler |, respectively. This can be done by using the
formula for the zero z;P via z;P = z;Q/[l + (zTQ — zzQ),o"’] to extract the 2nd

pole as the expression Z2+,Q = 23 p/nt where nt = (1 — p*z3 )/ — p*zfQ).
It follows from here that a pole-zero coincidence ZZ 0o~ zz p would occur in the
2nd Lorentzian L; (z), provided that ™ ~ 1, which is satisfied for |p"| << 1, i.e.
|d; | << |dl+ |. Therefore, when the pole ZZ 0 and Z;, p coincide, the extra magnitude
|d2+| is much smaller than |d1+|.

Formally, the relation n* & 1 which gives |d;r | << |d]+ |, would also hold if,
alternatively, the numerator cancels the denominator in the quotient (1 — ,o'*‘z;j p)/(1—
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p+ziQ) from the definition of n. This would occur for z2+ p= zfQ which, by way
of the assumed pole-zero coincidence z; o~ ZZ p implies ZZ 0= zfQ. However, the
expression z;' 0= ZTQ contradicts the assumption that the computed 2-component
spectrum L (z) is non-degenerate. Thus, itis the first mentioned line of thought which
is correct, stating that n* would be close to unity only if |p*| << 1, or equivalently,
|d2+ | << |d1+|, as in the above derivation.

Overall, if the predicted 2-component spectrum LT (z) = LT(z) + L;(z) =
d?‘z/(z - th) + d;z/(z — ZZQ) is going to reconstruct the input 1-component
spectrum Lf(z), the extra Lorentzian L2+ (z) must vanish. As we have already
stated, this cannot occur by simply dropping L;‘(z) = d;r z/(z — z; ) on the
basis of the assumption |d; | << |d1+ |. An alternative is to rewrite LT (z) as
L*(z) = LT (2)ST(2), where L] (z) is the genuine and ST (z) is the spurious part
with S7(z) = (1 + pM)(z — ZZ p)/ (@ — zz o)- Here, due to pole-zero confluence,
z; o~ z; p» the denominator z — z;“ 0 with the extra pole z; 0 annihilates the numer-
ator z — z{ p which contains the extra zero z2+ p- This explicitly exhibits pole-zero

cancellation S*(z) = (l+p+)(Z—ZZP)/(Z—Z;:Q) A (1+,0+)(Z/—Z%f/(z/—z%i
and the resultis ST (z) ~ 1+ p* which further simplifies to ST (z) ~ 1, since |pT| <<
1. It is in this manner that the spurious contribution S¥ (z) is washed out, thus enabling
the FPT™ to reconstruct the input spectrum, L (z) = L] (2)S*T(z) ~ L (2).
Furthermore, for |c12+ | << |d1+ [, it is possible at once to neglect the 2nd term
d2+ exp(in rw;r) in the predicted FID, ¢, = dlJr exp(in ra)f) —l—d;r exp(in tw;'), since
the harmonic exp(in ra);r ) is non-singular at z;r . Therefore, the predicted time signal
simplifies toc, ~ d + exp(in rw;r), which amounts to reconstruction of the input FID,
cp = d1+ exp(intw| ), i.e.Cy ~ cy.

It could be argued that pole-zero cancellation might not be the only mechanism for
reduction of the 2-component prediction L™ (z) to the exact input spectrum LT(Z).
The alternative could be that the expansion coefficient p;r of the predicted numerator
polynomial is zero. More generally, one could contend that the exact result in the
FPT™ for the case of K resonances (K =1,2,3,...), might also be obtained if
instead of pole-zero cancellations, all the coefficients p,j' become zero for k > K. To
investigate this, we rewrite the predicted 2-component spectrum LT (z) as L¥(z) =
(pg +pi 2+ D) /[(z=2f ) =75 g)l. where py = 0, pi” = —(d{ 25 o +dS 7 )
and p; =d 1+ + d;' . Evidently, p; # 0. Thus, the said possibility as a confounding
factor ( p; = 0), in fact, does not exist. Therefore, pole-zero cancellation is the only
mechanism for reduction of the prediction L™ (z) to the exact input spectrum LT(Z).

This completes the demonstration of exact reconstruction of the input time signal
and spectrum in the FPT(), The expounded analytical proof uncovers the mechanism
of achieving this result: (a) by eliciting the twofold signature (pole-zero coincidence
and near-zero amplitude) of a Froissart doublet, which is a pole-zero spurious pair,
as well as (b) by explicitly showing how a pole-zero coincidence yields pole-zero
cancellation in the reconstructed spectrum. Moreover, the near-zero amplitude of the
exemplified spurious resonance enables the exact reconstruction of the input time
signal. We shall now proceed to the application of the FPT for processing an actual in
vivo encoded MRS time signal.
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3 Methods
3.1 MRS time signal acquisition

The MRS encoding was made from the parietal temporal brain region of an 18 month-
old child who had suffered cerebral asphyxia. A 1.5 T GE clinical scanner at the
Astrid Lindgren Children’s Hospital in Stockholm was used to encode the MRS time
signals, which contained 512 data points. The bandwidth, BW, was 1000 Hz, and the
Larmor frequency was vp, = 63.87 MHz corresponding to the magnetic field strength
Bo = 1.5tesla (Bp = 1.5T). The sampling time 7 was Ims (tr = 1/BW = 1ms).
Single-voxel proton MRS with the point-resolved spectroscopy sequence (PRESS)
was used. The repetition time (TR) was 2000 ms. A total of 128 encoded FIDs were
averaged to improve SNR. Echo times were 22, 136 and 272 ms. In the present paper,
all analysis was performed based on the encoding at TE = 272 ms. The Fourier analysis
was done with zero-filling, so as to double the original FID length, as is the conventional
practice within the FFT. Consequently, the total signal length N was 1024, so that
T = Nt = 1024 ms. For consistency, this total signal length N = 1024 will also
be used for both the FFT (or DFT) and the FPT. Water was partially suppressed
through encoding with the use of the standard spin-echo procedure. The Regional
Ethics Committee, Karolinska Institutet (Dnr # 2007/708-31/1) stated that they found
no ethical issues to preclude implementation of this research.

3.2 Reconstructions

The DFT and the FPT were employed to process the encoded FID. The FID phase
was corrected via multiplication of the encoded set {c,}(0 < n < 511) by exp(i¢o)
via c,(,o) = cp exp(igo). Here, ¢q is the zero-order phase which was selected to be
1.7499 rad. This value of ¢ is the result of the calculation of the minimum of the real
part of the DFT spectrum, min{Re(Fm)}fn1 1 o for the originally encoded, raw, phase
uncorrected time signal {c,} with no zero-filling. With this phase correction, the FID
data set {cf,o) } is relabeled as {c,, }. Hereafter, only the phase corrected FID reannotated

as {c,} will be used.
3.2.1 Non-parametric reconstructions: Comparison of the DFT and the FPT

By using (1a), the spectrum was reconstructed at the fixed Fourier grid frequencies in
the DFT, where N is truncated to a non-composite partial signal length Np = 760. For
the non-parametric Padé-based reconstructions, we used both variants FPT®) where
the variable u was taken to be z*!, respectively. All reconstructions from the FPT)
were produced by the FPT(™),

In the FPT™ the expansion coefficients of the polynomials PI? and Q% are deter-
mined first from the time signal {c, }. This immediately gives the non-parametrically
computed total shape spectra as the ratios PI? / Qf at any sweep frequency v. If
all the phases <,0ki of the reconstructed FID amplitudes d,;t = |d,§t| exp(i <pki) were
equal to zero, (pzE =0(1 <k < K), its real and imaginary parts, Re (P%/Q,f) and
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Im(PI? / Q;), would be purely absorptive and dispersive, respectively. However, in all
encoded MRS time signals, the phases ¢ of the FID amplitudes dj are typically non-
zero (px # 0), the reason being that dephasing occurs during the course of encoding.
Consequently, the reconstructed values goki are also such that (pki # 0. Thus, absorption
and dispersion lineshapes are mixed in both Re(P;(t / Q;) and Im(PI? / Q;).

3.2.2 Parametric processing with the FPT()

For the parametric reconstructions, we will present the results for the FPT*) alone.
Cross-checking with the FPT(™) has been performed, as well.

The roots of the characteristic equations of the numerator (PI'(F ) and denominator
(Q}) polynomials give the zeros and poles of the Padé spectrum, P;(r / Q}g, respec-
tively. This is the case because PIJ{r / Q; has only polar singularities, namely, the roots
of Q—I; are the poles of PI‘(" / Q‘IE [1]. In other words, the Padé spectrum is a meromorphic
function [1]. The fundamental frequencies cu,j' =[1/@i7)] ln(z,‘:) were reconstructed
via the roots of the denominator characteristic equation Q;g(z) = 0. The amplitudes
d,j were generated through (6) [1].

We will present the component spectra in two different modes. Firstly, we have
the “usual” (U) component spectra which is a mixture of absorption and dispersion
components. Therein, the amplitudes {d,:r }(1 < k < K) are all complex-valued since,
as noted, their phases (p,j are non-zero. Particularly in spectrally dense regions, the
“absorption” components often appear as skewed Lorentzians. In the so-called “ersatz”
(E) mode, the reconstructed phases (p,j are set “by hand” to zero, such that (/)Z_ =
0(1 < k < K). Consequently, the interference effects are eradicated via the said
external suppression. This generates pure absorptive Lorentzians, that can be helpful
for visualization purposes. The “ersatz” mode of the component spectrum for the kth
resonance is:

0F @) r

E

P(2) df|z

( K = 4 (Ersatz component k) (7
k Z— Zk,Q

where {z,;|r Q} is the set of zeros of the characteristic equation Q; (z) = 0 with z,:’ 0=
exp(i a),jQr). From now on, z,j and w,‘: are denoted as z,jQ and a),jQ, respectively,

where the subscript Q refers to the polynomial QJIQ (z). Similarly, the harmonic variable
z,‘: p represents the root of the polynomial P; (z). We obtain the “usual” mode of the
component spectra as:

P+(Z) U d+Z
’i = k—+ (Usual component k). (8)
QK(Z) P 2= %0

In order to proceed from (8) to (7), i.e. by setting (p,zr = 0, we replace d,j =
|d,j' | exp(i go,j) with |d,j' | Thus, the real part of the component shape spectra of the
ersatz form Re(P,j' / Q‘IE)E from (7) is completely in the absorption mode. In contrast,
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the usual form Re(PIJ(r / Q;)kJ from (8) contains both absorption and dispersion modes
[14].

The T-relaxation time in the FPT™) for the kth component is denoted by T2*k+.
This relates to the imaginary part of the reconstructed complex frequency w,:r 0 Or ka 0
via T;}:’ =1/ {Im(w,j’ Q)} =1/ {2nIm(vZ Q)}. We use this quantity in the expressions
for peak heights (Hk+ )Y and (H,j' )E, respectively, as:

d+ +
HHY = D_k+’ (HHE = |DL+|; Df =1—exp(—1/T5").0 < D <1, (9a)
k k

Re(H)Y = (|| /D) cos(eh) = (HF cos(g)h), (9b)

where (Hk+ )E is real-valued.

The peak heights H kc+ of an absorptive conventional Lorentzian, directly expressed
via o instead of z as |d;" | {(Imw,jQ)/r}/{(w - w,jQ)Q + (Imw,;ﬁgﬂ} are given by
HkC+ = |a’,:r | / (rlmw;f Q). This latter result can also be deduced from (9a) for narrow
resonances (long relaxation times). Thus, for small 7/ Ti’}j, the series expansion for
exp(—t/T5;") yields D ~ 1 — (1 —¢/T5;" + ) ~ t/T;;" = tlmo . 1t,
therefore, follows from (9a), that |d,j| /D,‘CF ~ |d,j| /(rIma)ZQ) = H,f+.

The explicit expressions for the numerator ( P,‘g) and denominator (Q‘};) polyno-
mials in (7) and (8) are given by:

Pg(2) = Zprz, Q5 (2) = quz, (10)

where {p;"} and {¢;"} are the expansion coefficients with p = 0. Toextract {p;", ¢;}
from {c,}, either the total signal length N or the partial signal length Np can be used.
When the number Np of the employed FID points is even, we have K = Np/2.
According to (4) for u = z, the expansion coefficients {g;"} for the polynomial Q;g (2)
from (4) are extracted by solving the system of linear equations Zs 0qFcyqs =
0. Thereafter, the solutions {¢;"} are refined through Singular Value Decomposition

(SVD). The expansion coefficients {p;"} in PJr are computed from the analytical
expression p = Zf_g g ., after the set {q;r } becomes available. The free term,
qg can be set to e.g., 1 or —1 without affecting the spectra or the spectral parameters
{w,:f 0 d,:r H1 <k < K) reconstructed by the FPT), The envelopes in the ersatz and

usual modes are given by the Heaviside partial fractions:

E K E

i PEG 41:
—<\oiw) ~ E 1 11
(Q%(z)) ;(Q}@)k Z (Ersatz envelope), - (11)

k= IZ_ZkQ
Uk U
PE(2) PE(2) iz
= = > —FX-— (Usual envel 12
(Q;(z)) /;(QX(Z) . ;Z_ZZ_Q( sual envelope),  (12)
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respectively. Note that the difference between the lhs of (8) and (12) for the kth
usual component (P; / Q‘IE)}CJ and the usual envelope (P;g / Q‘IE)U, respectively, is the
omitted subscript & in the latter and similarly for the ersatz modes in (7) and (11).
Recall that ersatz component spectra are helpful due to the lack of interference
between the absorption and dispersion modes. Consequently, the overlap of closely
lying or hidden resonances becomes apparent. On the other hand, caution is needed in
interpreting these ersatz spectra, because ersatz peak heights may not actually reflect
the true abundance of the metabolites. The definitive output list of the reconstructed
parameters, including the phases (p,j' # 0, is needed to obtain the actual abundance of
metabolites, whenever the phases {(p,j} are retrieved as non-zero quantities from the
encoded MRS time signal. Even though the kth component resonances (P;(r / Q*I;)kU
and (P; / Q‘,’;)E do correspond to each other, their full widths at half maxima (FWHM)
are generally not equal. Thus, the peak areas of a given kth component are likely to
differ in the usual and ersatz modes. Only the parameters {a)ZQ, d,j } with (p,:r #0

from the usual components (P[‘(F / Q;)kJ should be used to estimate the actual metabo-
lite concentrations, because the interference effects occur for (p,j # 0 and this may
significantly influence the peak areas and the metabolite concentrations.

It should be pointed out that the derivation of the envelopes in the representa-
tion of the Heaviside partial fractions (11) and (12) makes use of the expression
2nzo (ZZQ/Z)" =z/(z — Z::Q) where ‘zZQ/z‘ < 1. Here, it is assumed that the
total length of time signal {c,} is infinite (N = o0). However, time signals are actu-
ally finite (N < o00) such that the latter series should be truncated at n = N — 1.
This gives Z,],v:_ol (z:Q /)" = [1 — (z:Q /Z)N] /(- z:Q /z). Thus, the peak heights
from (9a) should be corrected for the factor 1 — (z;‘r o /z)Ntaken at sweep frequency,
V= Re(v;fQ). The corrected peak heights should be:

a’ ‘cos(gﬁ) ‘d+ ‘
Re(HHY = "‘T—Jr" +)E = kif 7
Dk Dk
47| = | {1 = exp(—T/T5)). T = N, (13)

where 0 < 1 — exp(—T/ T;;j') < 1.

Let us now consider the “Stability test” in the FPT. This entails computing suc-
cessive values of spectra using partial signal lengths for components and envelopes,
respectively, in order to verify that the following relationships hold:

N U . \U
M (DY oo, (14)
0in@) “\0i@ )

N U . \U
M - P’i(Z) m=1.2..). (15)
0 (@) 05
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The retrieved fundamental frequencies and amplitudes {a)z 0 d,:r } are acceptable
only when convergence has been attained, as the polynomial degree K + m is
systematically increased (m = 1,2,...). Envelopes from (15) can be computed
non-parametrically and parametrically. The non-parametric spectrum is obtained by
evaluating P; )/ Q;(z) for z = exp(2mivT) at the chosen set of real-valued sweep
frequencies v. For the parametric case, we used (11) and (12) for the ersatz and usual
modes, respectively.

3.2.2.1 Iterative averaging within the parametric FPT™ We will implement the
procedure for iterative averaging of spectra, in order to practically handle the stumbling
block of harmonic inversion, namely, over-sensitivity to changes in model order K.
This stabilization procedure through iterative averaging will be performed for the
computed iterates for envelopes through the parametric F PT ).

In the Padé rational functions:

Pi,@  PEQ)

= =1,2,3,...), 16
0.0 oo " ) (10)

all the spurious resonances will cancel out with stabilization for systematically and
gradually increased polynomial degree K +m(m = 1, 2, 3, ...). Asillustrated by ana-
Iytical means in Sect. 2.2, the mechanism for this is rooted in pole-zero cancellations.
This occurs because spurious resonances exhibit coincidence or near-coincidence of
their poles and zeros. These confluences (known as Froissart doublets) make such
spurious resonances markedly unstable, especially for changes in the model order K.
Each envelope PI?+m (z)/QIHn (z)y(m = 1,2,3,...) will show different spurious-
ness due to random distributions of spurious poles and zeros in the complex frequency
plane.

The complex-valued 31 usual envelopes (PI}F / Q;)Him, that are the iterates, will be
taken for K = 385, 386, ..., 415, with increment AK = 1. Each of these envelopes
uses the encoded FID zero-filled once to 1024. Next, the arithmetic average will be
obtained of these 31 envelopes. The result is denoted by {FPTH')}HV: . Where the
subscripts It:m and Avim (m = 1,2, 3,...) denote the Iteration (It) and Average
(Av). The notation m indicates the iteration number. The complex average envelope
{FPT(J“)}XVW is then subjected to the IFFT and a new FID is produced, to which the
FPT™) will be applied again. The subsequent set of 31 envelopes will represent the
next iteration in which the above-described procedure will be repeated.

3.2.2.2 Water suppression strategy within the parametric FPT) Using the parametric
FPT™), the spectral region of interest, SRI, will be chosen as 0.75-4.5ppm, with
the aim of obviating the giant water peak, whose resonance frequency is set to be
4.61 ppm. The envelopes will be reconstructed from the parameters z,': o and d ,j' whose

v,:“ 0 belong to the SRI. The Padé-reconstructed spectral parameters (frequencies and
amplitudes) given by the inverted first average envelope will be evaluated to assess
the effectiveness of this procedure.
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4 Results
4.1 Conventions

We begin with a brief enumeration of the conventions used to present the results.
Each figure presented in this paper was designed to be entirely self-contained, with
the complete, detailed information included therein. Besides a summarizing title at
the top of every figure, the specifics of each panel are fully described, so that the
reader need not necessarily refer to the main text. The relevant formulae are displayed
for each panel, and the ordinates and abscissae are fully labeled. As was the case
for the equations presented in the methods section, in the figures too, the superscript
U denotes “usual” and E denotes “ersatz”. Recall that the subscript abbreviations
“It” and “Av” indicate, respectively, Iteration and Average. With the exception of the
displayed time signals, the total signal length N will always refer to the zero-filled
FID with N = 1024. The partial signal lengths, Np, employed will always be even,
so that Np/2 = K. The standard conventions “Re” and “Im” indicating the real and
imaginary parts of complex quantities, will be used throughout. We recall that all the
analyses are performed from the FIDs originally encoded at TE =272 ms.

4.2 The encoded MRS time signals

Figure 1 displays the MRS time signals (with the zero-order multiplicative phase
correction, e'#°) encoded with 512 data points. The real part of the encoded FID is
depicted on the top left panel (a), with the imaginary part on the top right panel (d).
A magenta line is drawn across the abscissae, from which it is seen that at end of the
encoding (512ms), the FID has not fully returned to its zero values. Moreover, the
waveforms are asymmetric around the abscissae because the residual water peak is
still about 500 times more abundant than all the other metabolites.

4.3 Total shape spectra reconstructed by the DFT and the non-parametric
FPT

The middle panels (b) and (e) of Fig. 1 display the total shape spectra reconstructed by
the DFT and the non-parametric FPT(™) for the full Nyquist range from about —3.7
to 12.5ppm, at a partial signal length, Np = 760(K = 380). As mentioned, this and
all other spectral reconstructions used the FID zero-filled once to N = 1024 signal
points. The dominant resonance in the spectra reconstructed by the DFT and FPT(™)
is seen at 4.61 ppm. This represents the water residual resonance which appears to
be exclusively in the spectral absorption mode, and pointing downwards. The other
metabolites can just barely be seen in the spectral region between 0.75 and 4.25 ppm,
due to their relative weakness compared to the water peak which remained giant even
after its partial suppression in the course of encoding.

The bottom panels (c) and (f) of Fig. 1 present the total shape spectra reconstructed
by the DFT and the non-parametric FPT(~) between 0.75 and 4.25 ppm, at a partial
signal length Np = 760. Since the upper bound of the chemical shift region excludes
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In Vivo MRS for Cerebral Asphyxia: Encoded FID & Computed Envelopes; Fourier, DFT vs. Pade, FPT®)
512 FID Points Encoded at TE = 272 ms, Zero-Filled to 1024 & Zero-Order Phase-Corrected for Spectra
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Fig. 1 The real and imaginary parts (a and d, respectively) of the FID, {c,}, encoded (and corrected
for the zero-order phase, ¢g) in vivo from the parietal-temporal brain region in an 18 month old patient
with cerebral asphyxia, using a 1.5 T MR scanner with 512 data points at echo time, TE =272 ms. The
horizontal magenta lines are drawn to guide the eye through the departures from the level of the zero-valued
amplitudes in the oscillations of the FID. Panels (b), (¢), (e) and (f) show the real parts of the total shape
spectra at the partial signal length Np = 760 for the encoded FID, zero-filled to N = 1024. The envelopes
for the full Nyquist range are displayed, from —3.7 to 12.5 ppm as reconstructed by the DFT (b) and by the
non-parametric FPT(™) (e). The giant resonance at 4.61 ppm represents the residual water peak. Further,
the envelopes are shown for the chemical shift window between 0.75 and 4.25 ppm, as generated by the
DFT (c) and by the non-parametric FPT(™) (f) (Color online)
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the resonant frequency of water at 4.61 ppm, the other metabolites which appeared as
miniscule in panels (b) and (e), now “pop-out” in panels (c) and (f). Still, many of
the metabolites have decayed at the used long TE of 272 ms and the baseline is also
fairly close to zero due to decay of the relatively immobile macromolecules. With both
reconstructions (Fourier, Padé), a tall, narrow peak is seen as centered at ~3.7 ppm
which corresponds to m-Ins. The Cho and NAA peaks centered at ~3.2 and ~2.0 ppm,
respectively, are notably attenuated in the DFT, compared to the FPT(™). The Cho to
Cr metabolite concentration ratio is much lower in the envelopes generated by the
DFT than those from the FPT(™). The serrations at ~2.1 and ~3.8 ppm are seen only
in the FPT(™). On the whole, the resolution of the total shape spectra from the DFT is
markedly inferior to that of the FPT(™), such that many of the peaks in the DFT are
blunter and rougher, whereas many more structures appear in the FPT(™). Most vitally,
as opposed to the DFT, which can, on its own, generate nothing more than the total
shape spectra, the FPT via parametric analysis (to be presented in the next subsection)
can provide much more information which may be diagnostically important.

4.4 Tterative averaging of envelopes via the parametric FPT"

We now will apply the described stabilization procedure within the FPT™) through
iterative averaging of parametrically computed envelopes.

4.4.1 The Ist iteration and its average

The first set of iterates is seen in Fig. 2a, where the real parts of 31 usual envelopes
Re(P;/Q})HJ are shown for K = 385, 386, ..., 415, withincrement AK = 1, from
the encoded FID and doubled in its length by zero-filling once to N = 1024. Therein,
many large noise-like spikes are observed. Next, the arithmetic average, labeled by
{FPT(*‘)}KV:1 is taken of the corresponding 31 complex envelopes (P; / Q}DH:]‘ In
panel (b) of Fig. 2, the result denoted by Re{FPT(H}XV: | is displayed, namely, a
“clean” spectrum. Thus, in this average spectrum, the stable structures remain, while
the spikes are markedly attenuated or have practically disappeared. Recall that the
subscripts It:m and Av:im (m = 1,2, 3, ...) denote the Iteration, It, and Average, Av,
whereas the notation m indicates the iteration number.

Taking the arithmetic average of a pre-computed sequence of the retrieved envelopes
(31 envelopes in Fig. 2) is a straightforward and powerful method for stabilizing total
shape spectra. Whereas many sharp, narrow spikes appeared in Fig. 2a, indicating
sensitivity of estimation to model order K, in panel (b) the average envelope simultane-
ously suppresses the instability (spuriousness) and confirms the stability (genuineness)
of spectral structures. The mechanism of this finding is the ability of the arithmetic
average to damp the unstable (noise-like) peak heights by a significant factor, which is
less than or equal to /31 ~ 5.6 for Fig. 2. This procedure of “spectra averaging” is the
frequency-domain concomitant of the well-known SNR-improving “FID averaging”
in the time domain where encoding is performed. In MRS, each individually encoded
FID is heavily corrupted with noise, which precludes any meaningful estimation. To
cope with this obstacle, many FIDs (100-200) are encoded and subsequently aver-
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In Vivo MRS for Cerebral Asphyxia: Iterative Averaging of Parametric Envelopes in FPT™
For FID Data Encoded at Echo Time of 272 ms: Suppression of Spurious Noiselike Spikes
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Fig. 2 The real parts of 31 usual envelopes Re(P,'("/Q',?)}{:I are plotted for K = 385,386, ...,415
(Np = 2K = 770,772, ..., 830) from the FID with 512 original data points, zero-filled to N = 1024
encoded in vivo from the parietal-temporal brain region in an 18 month old patient with cerebral asphyxia,
using a 1.5 T MR scanner at TE =272 ms (a). Many noise-like spikes are seen. The associated 31 complex
envelopes (P[}L /QZ)}{:I are averaged and denoted by {FPT("')}XV:1 whose real part Re{FPT("')}XV:1 is
shown in (b), where a “clean” spectrum is generated. In this average spectrum, the stable structures remain,
but the spikes are not seen. The metabolite assignments are shown in (b). See the list of abbreviations for
their full names (Color online)
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aged. This signal averaging improves the SNR by a factor equal to ~/N’, where N’
is the number of encoded FIDs. However, there are significant advantages of “spectra
averaging” relative to the “FID averaging” in that, for example, the former can be
iterated to substantially aid the exact reconstructions.

In the average spectrum Re{FPT*) }Hvzlof Fig. 2b, the metabolite assignments are
displayed. Therein, the largest peak in the total shape spectrum is Cho at ~3.2 ppm.
Other prominent peaks in the average envelope are Cr at ~3.0 ppm, NAA at ~2.0 ppm,
a large component of m-Ins at ~3.75ppm, a Glx doublet centered at ~3.85 ppm and
the component of the Lac doublet resonating at ~1.35 ppm. The other component of
the Lac doublet is smaller and wider at ~1.3 ppm, adjacent to which two small, sharp
Lip peaks are seen, followed by a serrated valine (Val) peak centered at ~1.0 ppm, and
leucine (Leu) at ~0.9 ppm. A number of the larger spectral structures are also serrated,
such that, e.g. on the left side of the large Cho peak at ~3.2 ppm, the PC + glycerophos-
phocholine (GPC) peak appears at ~3.25 ppm. An even more marked NAAG (N-acetyl
aspartyl glutamic acid) peak at ~2.1 ppm splits on the left side of NAA at ~2.0 ppm.

In Fig. 2, and afterwards, all the parametrically generated envelopes (P;<r / Q})U,
that are computed using the Heaviside partial fraction sum (12), include only the
components (P; / Q'IE)E with chemical shifts from the analyzed SRI, i.e. Re(v,i Q) €
[0.75, 4.5] ppm. The consequence of this procedure can be seen by comparing Figs. 1
and 2. In Fig. 1, the Padé non-parametrically computed envelope includes the residual
water peak located at4.61 ppm, which is outside the SRI, [0.75, 4.5] ppm. The negative
peak (i.e. a dip) of the residual water resonance from panel (e) in Fig. 1 pulls down
the contributions from the other nearby metabolites, particularly those with chemical
shifts above 4.25 ppm. This produces a drop in the envelope below the abscissa as per
panel (f) in Fig. 1. Such a drop is absent from the parametrically generated envelopes
comprised exclusively of components from the SRI, [0.75, 4.5] ppm, i.e. without
water, as seen in Fig. 2. As a result, the Lac quartet centered at 4.25 ppm becomes
more distinct in Fig. 2b.

4.4.2 The reconstructed FID built from Padé-reconstructed parameters

In Fig. 3 the originally encoded MRS time signal is compared with the FID recon-
structed by the parametric FPT") from the st average envelope. As a reminder, the
real and imaginary parts of the originally encoded FID from Fig. 1, are shown once
again in panels (a) and (c) of Fig. 3 where, as before, the phase was corrected via mul-
tiplication of the encoded set {c,}(0 < n < 511) by exp(i¢o) where g9 = 1.7499 rad.
Also, recall that the magenta line is drawn across the abscissa, showing that at end of
the encoding (512 ms), the original FID has not completely returned to its zero value
and that the waveforms are highly asymmetric around the abscissa, due to the presence
of the residual water peak which is, as stated, about 500 times more abundant than all
the other metabolites.

Panels (b) and (d) of Fig. 3 present the real and imaginary parts, respectively,
of the FID given by the IFFT-based inversion of the complex 1st average envelope
which contains only the components with Rev,i o€ [0.75, 4.5] ppm. For purposes of
comparison with the encoded time signal from panels (a) and (b), the reconstructed
FID from panels (c) and (d) is truncated so as to have 512 data points. The phase
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In Vivo MRS for Cerebral Asphyxia: Comparison of the Original & Reconstructed Time Signals or FIDs
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Fig. 3 The real (a) and imaginary parts (¢), of the FID, {c;;}, encoded (corrected for the zero-order phase,
@p) in vivo from the parietal-temporal brain region in an 18 month old patient with cerebral asphyxia,
using a 1.5 T MR scanner with 512 data points at echo time, TE =272ms. Here, water was partially
suppressed through encoding by the standard spin-echo procedure, but the water residual remains, and
distorts the waveforms. Real (b) and imaginary (d) parts of the FID given by the inverted complex 1st
average envelope in the SRI between 0.75 and 4.5 ppm, with phasing ¢y = 1.7499rad preserved. Water
is automatically excluded since its resonant frequency 4.61 ppm is above the upper limit of this SRI. The
FIDs reconstructed by the parametric FPT™H) are fully centered around the abscissae, with a complete
regularization and symmetrization of their shapes. The horizontal magenta lines are drawn to guide the eye
through the departures from the level of the zero-valued amplitudes in the oscillations of the FIDs (Color

online)
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correction g9 = 1.7499 rad of the originally encoded FID being inherently present in
the envelope from panels (a) and (c) is also inherited by the reconstructed FID from
panels (b) and (d), respectively, of Fig. 3. Recall that the residual water resonance
has been automatically excluded from the reconstructed FID on panels (b) and (d) of
Fig. 3, since the corresponding resonant frequency 4.61 ppm is above the upper limit
of this SRI. It is clearly seen that the reconstruction by the parametric FPT*) results in
an FID with a complete regularization of its shape, which now appears as symmetrical
around the abscissa. Because this was achieved through creating the envelopes from
the parameters Z}j, and d,j' whose v,j: belong to the SRI, there was no need for any
windowing procedure, be it through filtering using a box-function [14] or via any other
filter. In fact, the outlined procedure of the FID reconstruction amounts to enabling a
local spectral analysis with no recourse to windowing at all.

4.4.3 Further iterations and averages: convergence of envelopes

We now proceed to further iterations and testing the robustness of the stability of the
average envelopes. The complex first average envelope {FPT(JF)}XV:1 is subjected to
the IFFT to produce a new FID. The FPT™) is then applied to this reconstructed FID
and the real parts of the new 31 envelopes for K € [385, 415] are shown on panel (b)
of Fig. 4, alongside the 1st iteration repeated on panel (a). The 2nd iteration with the
31 newly obtained envelopes from panel (b) has notably fewer spikes, and these are
of much smaller heights compared to the corresponding spurious structures from the
Ist iteration, shown in panel (a). Averaging is performed once again, and this time for
the 31 complex envelopes whose real parts are from panel (b) of Fig. 4, generating
the complex envelope for the 2nd arithmetic average, {FPT(H}XM. This, in the next
round, is subjected to the IFFT to produce a new FID. The FPT™) is then applied to
this reconstructed FID and the real parts of the newly generated 31 envelopes for K €
[385,415] are displayed in panel (c) of Fig. 4. This is the 3rd iteration, whose spurious
structures are further attenuated and much sparser compared to the 2nd iteration on
panel (b). Using the 31 complex envelopes from iteration #3 with the real parts shown
in panel (c), the complex 3rd arithmetic average, {FPT(H}H\,S, is produced. In panel
(d), the real parts of the complex 1st, 2nd and 3rd arithmetic averages are overlain, in
the respective colors of green, magenta and blue, following the like colors on panels
(a), (b) and (c). It is seen therein that these three curves closely coincide, with just a
few scattered small deviations.

The entire procedure displayed in Fig. 4 for iterations and averages ## 1-3, is
repeated in Fig. 5 for the iterations and averages ## 4-6. The spikes have practically
disappeared in panels (a), (b) and (c), for iterations ## 4, 5 and 6, respectively. The
4th, 5th and 6th averages presented in panel (d) of Fig. 5 show even rarer deviations
than in Fig. 4, such that it is only with substantial scrutiny that discrepancies among
the green, magenta and blue curves can barely be seen.

Further iterations ## 7, 8 and 9, shown respectively on panels (a), (b) and (c¢) of
Fig. 6, appear to be identical, and no spikes whatsoever can be seen. Moreover, the
average spectra ## 7, 8 and 9, displayed in panel (d) cannot be seen to differ at all from
their respective iterates from panels (a)—(c). On panel (d) from Fig. 6, no deviations
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In Vivo MRS for Cerebral Asphyxia: Iterative Averaging of Parametric Envelopes in FPT™

Convergence of the 1st, 2nd & 3rd Sets of Iterations and the Ensuing Three Average Envelopes
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Fig.4 The convergence rate of the first set of 3 iterations Re(P;(r / Q} )H: 1.2.3 (@), (b) and (c), respectively,

are shown. The corresponding three average envelopes Re{FPT(+) }szl 23 displayed on panel (d) are in
quite close agreement, as seen by predominant coincidence of the green, magenta and blue curves (Color
online)
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In Vivo MRS for Cerebral Asphyxia: Iterative Averaging of Parametric Envelopes in FPT®

Convergence of the 4th, 5th & 6th Sets of Iterations and the Ensuing Three Average Envelopes
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Fig. 5 The convergence rate of the second set of 3 iterations Re(P; / QZ)H: 45.6 (a), (b) and (c¢), respec-

tively, are shown. The corresponding three average envelopes Re{FPT("')}HV: 4.5.¢ displayed on panel (d)

are in very close agreement, as seen by nearly complete coincidence of the green, magenta and blue curves
(Color online)
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In Vivo MRS for Cerebral Asphyxia: Iterative Averaging of Parametric Envelopes in FPT™

Convergence of the 7th, 8th & 9th Sets of Iterations and the Ensuing Three Average Envelopes
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Fig.6 The convergence rate of the third set of 3 iterations Re(P1}L / Q; )gﬁ 8.9 (a), (b) and (c), respectively,

are shown. The corresponding three average envelopes Re(FPT(H) }Xvﬂ g ¢ displayed on panel (d) appear
to be in full agreement, as seen by the indistinguishable green, magenta'and blue curves (Color online)
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whatsoever can be noted among the green, magenta and blue curves corresponding to
averages ##7, 8 and 9, respectively. Thus, through this iterative averaging of envelopes,
convergence can be said to have been fully achieved.

4.5 Equivalence of the Padé-generated parametric and non-parametric
envelopes

In Fig. 7 we compare the non-parametrically (panel (b)) and parametrically (panel
(c)) computed envelopes in the FPT™ at K = 450. They were reconstructed as
follows: via the IFFT-based inversion of the complex 9th average envelope, with its
real part displayed in panel (a), the FID is generated first and then used to compute the
total shape spectra shown in panels (b) and (c) of Fig. 7. Panels (b) and (c) show the
full coincidence of the Padé estimation using non-parametric and parametric analyses.
Furthermore, the spectrum from panel (a) coincides with those from panels (b) and (c).
This is an essential verification which confirms the correctness of the reconstructed
FID which will be subsequently subjected to Padé-based quantification. The same
results from panels (b) and (c) for K = 450 have also been obtained for the middle
of the interval of the K values, i.e. K = 400 = (385 + 415)/2. The case with
K = 450 demonstrates the extrapolation feature of rational polynomials from the
Padé approximant, which remains valid beyond the originally selected interval for
K. This corroborates our earlier finding using an FID encoded at TE = 136, that
through the extrapolation feature of the FPT, the same results are generated beyond
the originally chosen interval for K [47]. Figure 7 deals explicitly with the 9th average,
but the corresponding agreements between the non-parametrically and parametrically
retrieved envelopes, similar to panels (b) and (c), have also been recorded in the
present reconstructions (not shown) starting with the average envelopes built from
lower iterates (8th, 7th, 6th, etc.).

4.6 Reconstruction of the component spectra through the FPT

In Fig. 8, from the complex 9th average envelope, with its real part shown in panel
(a), an FID is generated from which the component spectra in the usual mode are
reconstructed by the parametric FPT") as displayed on panel (b). Many absorption
spectra are seen with admixtures of dispersion components because the amplitudes
{a’,:r } are all complex-valued with their non-zero phases go,:r(l < k < K). Panel (¢)
shows the super-resolution of the component spectra in the ersatz mode, where the
abundant closely-overlapping resonances are clearly distinguished. Several underlying
and closely overlapping resonances can be seen in association with the most promi-
nent peaks such as Lac at ~1.3 ppm, NAA at ~2.0ppm, Cr at ~3.0ppm and Cho at
~3.2 ppm.

The corrected peak heights shown as open circles on panels (b) and (c) in Fig. 8 for
the usual and ersatz component spectra, respectively, are computed from the analytical
expressions for Re(Hk+ )Y and (H,:' )E given in (13). On panel (c) the peak heights
(HkJr )E quite closely match the tops of the resonances. On the other hand, the peak
heights Re(H k+ )Y on panel (b) show two different patterns. For Cr and Cho at ~3.0
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In Vivo MRS for Cerebral Asphyxia: Twofold Retrieval of Average Envelopes in FPT®

Equivalence of Non—-Parametric and Parametric Reconstructions of Total Shape Spectra

(a) : . (+hU  _ 415 + A+ \U
_3 Real Part of the Usual Average Parametric Envelope : Re{FPT )Av:Q =(1/31 )ZK:385 Re(PK /QK )n:9
x 10 T T T T T T T
10l The 9 th Average FPT() : TE = 272 ms
)
&
@
22
z
—
o
[T
K3
4
Average Envelope Using 31 Envelopes From lteration # 9 With Partial Signal Lengths NP =770,772,...,830
-5 | | | | | | |
4 35 3 25 2 1.5 1
Chemical Shift (ppm)
(b) Real Part of the Usual Non-Parametric Envelope : Re(P; /Q;; ) = Re({=s ,p'z M=K a2
x 1073
). TE = _ _
1ol FPTY:TE=272ms K'=450 (N, = 900) -

Envelope by Non-Parametric Retrieval From the FID as the Inverted Complex 9th Average Envelope
| | | | | |

-5 |
4 35 3 25 2 15 1
Chemical Shift (ppm)
(c) Real Part of the Usual Parametric Envelope : Re(Py /Qy ) = Re(Zf ,diz/(z - 7, ) . {Qu(z; o ) = 0}
x 1072 T T T T T T T
1ol FPTM:TE=272ms K =450 (N,, = 900) i

Envelope by Parametric Retrieval From the FID as the Inverted Complex 9th Average Envelope

-5 I I I I I I I
4 3.5 3 25 2 1.5 1

Chemical Shift (ppm)
Fig. 7 The complex 9th average envelope {FPT(H) }XV:9 [with its real part shown in (a)] is inverted by the
IFFT to obtain the FID from which two envelopes are generated in the mode R(:(P[;r / QE)U, one by the

non-parametric FPT(H) (b), and the other by the parametric FPT(H) (c). The envelopes from panels (a)—(c)
are essentially indistinguishable (Color online)
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In Vivo MRS for Cerebral Asphyxia: Envelopes, Components (Usual, Ersatz) and Peak Heights
Full Lines: Envelopes Re(P; /Qj ) and Components Re(P, /Qy ), , Circles: Peak Heights H
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Fig. 8 The FID from the IFFT-based inversion of the complex 9th average envelope [with its real part
shown in (a)] is subjected to the FPT(™H to generate the usual and ersatz component spectra in (b) and (c),
respectively. The usual components (b) mix the absorption and dispersion lineshapes. Ersatz component
spectra (c¢) display many closely-overlapping positively-oriented resonances that are clearly identified, all
in the absorption mode. Peak heights computed from the analytical expressions in Eq. (13) are presented
as open circles (Color online)
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and 3.2 ppm, for example, there is quite close matching between the peak heights and
the tops of these absorptive resonances. Another pattern is also seen for dispersive
lineshapes, wherein the peak heights are somewhat displaced from the tops of the
resonances; these departures depend upon the angle (p,;F of the amplitudes of d,j' . The
location of the open circles denoting peak heights for dispersive resonances is closer
to the dominant of the two lobes (recall the dispersive lineshapes have two lobes).

Figure 9 presents the concept of Signal-noise separation, or SNS, with the under-
lying pole-zero coincidence, as Froissart doublets, through the FPT" from the FID
given by the inverted complex 9th average envelope. The Argand plot, as imaginary,
Im(vZ Q), versus real, Re(vZ Q), frequencies is shown on panel (a). Poles and zeros
are symbolized by open circles and dots, respectively, that completely coincide for
spurious resonances. Open circles for poles of the genuine and spurious resonances
are drawn in blue and red colors, respectively. A full separation is seen between gen-
uine and spurious frequencies that lie in the positive and negative imaginary frequency
regions, respectively. An auxiliary horizontal green line facilitates visualization of this
separation. The pole-zero coincidences result in complete annihilation of the ampli-
tudes for spurious resonances, as seen on panels (b) and (c) for magnitude plots and
ersatz component spectra, respectively (recall Sect. 2.2). Note, that poles and zeros
can on occasion be quite close for genuine resonances (e.g. the Val doublet close to
1.0 ppm). However, these near pole-zero coincidences are not Froissart doublets since
they are located in the positive imaginary frequency region and, most importantly,
they are stable against changes in model order K.

Observe that in the title of panel (b) of Fig. 9, the expression |de | =
|PIJ{(ZZQ)/[(d/dz,fQ)Q;(ZZQ)]I is a shortened notation for d,j = P;(ZZ:Q)/
{[(d/d) 0} (2)].—; - Here, pole-zero coincidence (zf o = 2z p) implies P (2 p)

= Oand, consequently, d,:r = 0, as one of the two signatures of Froissart doublets (zero-

valued amplitudes). Furthermore, on panel (b), the same amplitude d,j' is given by the

equivalent canonical form d;" = (p}/q%) ]_[,If,:l(z,':Q - Z;’P)/{(ZZ_Q - zj;Q)m#k}.

In the numerator (z:‘ 0~ z;“ P), we can have m = k, in which case d,j = 0. This is in

agreement with the same result from the Cauchy residue formula (6) in the FPT(),
e df = PEGf )/ /d2) Qf ]z ) =O0forzf o =2 .

4.7 Detailed examination of the convergence of spectral parameters as
reconstructed via the FPT)

We now perform the most stringent test of convergence on the level of the parameters
reconstructed by the FPTPfor the genuine resonances with the pertinent illustra-
tions shown in Figs. 10, 11 and 12. Figure 10 presents the results generated from
the FIDs given by the inverted complex 1st, 2nd and 3rd average envelopes, color-
coded as green, magenta and blue, respectively. Quantification is carried out with
K = 450(Np = 900). The results for Re(PkJ“/Q,j)E, UZQ, d,ﬂ and ga,j are also
color-coded (curves, for the ersatz component spectra Re(Pk+/ QZ‘)E and circles, for
the reconstructed parameters UZ:Q, d,j' ’ and go,j, where UZQ =[1/Qmit)] ln(z,':’ Q).
For these findings of quantification, green, magenta and blue colors are used, respec-
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Fig. 9 Illustration of Signal-noise separation, or SNS, from the 9th average envelope. The Argand plot
of imaginary, Im(vlj Q)’ versus real, Re(v;r Q)’ frequencies, with a complete separation of genuine from
spurious frequencies reconstructed by FPT() (a). The twofold signature of a spurious resonance is pole-
zero coincidence (confluence of an open circle with a dot) as per (a) and a zero-valued amplitude as per (b).

Zero-valued magnitudes indicate zero-valued peak heights (c). In panels (a), (b) and (c¢) circles indicate the
genuine (blue) and spurious (red) resonances (Color online)
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Fig. 10 Distributions of spectral parameters generated by the FPT") from the FIDs given by the inverted
complex 1st, 2nd and 3rd average envelopes (whose real parts are in green, magenta and blue, respec-
tively). The ersatz components and their peak heights (a), Argand plot of imaginary, Im(v,j' Q)’ versus real,
Re(v,i Q), frequencies (b), magnitudes Id]j' | versus chemical shifts (¢) and phases \(p]j'\ versus chemical
shifts (d) (Color online)
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tively, when the 1st, 2nd and 3rd average envelopes have been inverted to generate the
corresponding FIDs employed in the Padé quantification. Panel (a) displays the ersatz
components Re(Pk+/ Q,':)E and peak heights (H k+ )E. Therein, results from the three
averages generally coincide, although there are a few discrepancies, at e.g. 1.0ppm
where the magenta peak, which is very small, from the 2nd iteration is about 3 times
larger than the blue peak from the 3rd iteration. In the chemical shift region above
~3.9ppm, four green individual peak heights are noted. Another region of visible
discordance in panel (a) is around 2.1-2.2 ppm. The Argand plot in panel (b) shows
the imaginary, Im(v,j: Q), versus real, Re(v,j: Q), frequencies, where a substantial num-
ber of discrepancies among the green, magenta and blue circles appear. In particular,
isolated green, magenta and blue poles are seen in the chemical shift region from
~2.1 to 2.3 ppm, as well as around 1.65 ppm. In contrast, with a few exceptions, the
green, magenta and blue circles are quite close or coincident in the magnitude plot,
|d,:r | versus chemical shift, shown in panel (c). The plot of phase (p,;|r versus chemical
shift is shown in panel (d). The lower and upper range of variation from —x to +,
respectively, of the phases (plgL are demarcated by two black horizontal lines. It can
be seen in panel (d) that there are several isolated green, magenta and blue circles
indicating lack of concordance in the reconstructed phases from the FIDs given by the
1st, 2nd and 3rd average envelopes.

In Fig. 11, the results for the Padé reconstructions from the FIDs given by the
complex inverted 4th, 5th and 6th average envelopes show quite a different picture
from those of Fig. 10. Namely, in panel (a) for the ersatz components Re(P,:r / Q,j)f and
peak heights (H, k+ )E, except for slight discrepancies at 1.0 and at 2.45 ppm, the results
are in agreement. The Argand plot in panel (b) shows much more concordance than
was the case for Fig. 10b, although there is still one isolated green circle at ~2.45 ppm
very close to the zero axis and a few other regions in which the three colored circles
are slightly discordant. Other than the one green circle which is of practically zero
magnitude at ~2.45 ppm, the magnitude plot in panel (c) indicates agreement among
the three reconstructions. The phase plot of panel (d) is substantially less discrepant
than was the case for the phase plot in Fig. 10d.

We finally proceed in Fig. 12 to the Padé reconstructions from the FIDs given
by the complex inverted 7th, 8th and 9th inverted average envelopes. For all four
corresponding panels (a)—(d): ersatz components with peak heights versus chemical
shifts, as well as Argand plots, magnitude plots and phase plots, it can be said that
convergence has been attained, such that the very minimal deviations are considered
to be within the realm of stochasticity.

5 Discussion and conclusion

Using MRS time signals encoded from a pediatric patient with cerebral asphyxia, this
study provides further evidence of the super high-resolution features of the fast Padé
transform, FPT. The FPT produced better resolved lineshapes compared to the Fourier
analysis. The major metabolites such as Cho and NAA were accurately identified by
the FPT, whereas in the Fourier envelope, the heights of these peaks were diminished.
For the present clinical assessment, reliance upon the Fourier-generated total shape
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Fig. 11 Distributions of spectral parameters generated by the FPT") from the FIDs given by the inverted
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tively). The ersatz components and their peak heights (a), Argand plot of imaginary, Im(v/j' Q)’ versus real,

Re(v,j' ), frequencies (b), magnitudes |d,j' | versus chemical shifts (¢) and phases |¢;2’| versus chemical
shifts (d) (Color online)

@ Springer



J Math Chem (2017) 55:304-348

341

(a)

x1073

In Vivo MRS for Cerebral Asphyxia: Comprehensive Statistics of the Results of Quantification via FPT®

For the FIDs From the Inverted Complex 7th, 8th & 9th Average Envelopes: Distributions of Parameters

E E & &
Re(P, /Qy ); =Re(ld,1 2/(z - z;vQ ), (Hy )= |dka|/D; , De=1-exp(-t/ Ty ), Ty = 1/[2n|m(v;Q )

T T
o4t = ot
1071 = 14,7101 - exp(=T/ Ty )]

T=Nt,t1=1ms

T T
FPT™® : TE=272ms

K = 450 (N,, = 900)

H; )E : Circles i

4 3.5 3 25 2 1.5 1
Chemical Shift (ppm)
b ) o . + PN
( ) Spectral Poles (Circles, o): Yea [1/(2"”)]I"(Zk,Q ), {QK(ZK,Q )=0}
0 03 T T T T T T T
- Argand Plot FPT®) : TE =272 ms K =450 (N, = 900)
= (o)
g 0.02 o o © o o ® O g
= o 6 o ° % o © o ©°
9 0.01F o © o 9
5 o %00, %0 o © o © © ©° o0
E . 0% o 5 o o o(jpo [¢] 000 @ o 0 %g
Frequencies From the 3 FIDs Given by the Inverted 7th, 8 th, 9 th (Green, Magenta, Blue) Average Envelopes
| | | | | | |
4 3.5 . 25 1.5 1
Re(v o) (ppm)
(c) Absolute Values (Magnitudes) of Amplitudes (Circles, ) : |dy | = | Py(z, o )/ {(d/dz,  )Qu(z, o M
" .Q kQ "~ k%ka
x 10 T T - T T T T
01L Magnitude Plot FPT® : TE = 272 ms K =450 (N, = 900) i
o o
0.08 - o o B
§, 0.06 - o B
T 0.04F o o 4
o] O
= 0.02 o.o o o © 5
o o O
ol 2% "0 02 00 PP Py © o0 %fon @O 0,0 % 02D
Magnitudes From the 3 FIDs Given by the Inverted 7 th, 8 th, 9 th (Green, Magenta, Blue) Average Envelopes
| | | | | | |
4 35 3 25 2 1.5 1
Chemical Shift (ppm)
(d) Phases of Complex Amplitudes (Circles, o) :q)*k = Arg(d;) = Arctan({lm(d;))/(Re(d;)})
T T T T T T
4L Phase Plot FPT!) : TE=272ms K=450 (N, =900) _
o© [¢] +7
_2r oo 00 O 5 0O OOo OOO OO . i
S ,
g o 0. 00 © ©® o HPo o “oo00 o % o oOOQ
e © o 0o o o) o o
& e} @ e}
-2t © S ® %o L o |
Q a n
-4 Phases From the 3 FIDs Given by the Inverted 7 th, 8 th, 9 th (Green, Magenta, Blue) Average Envelopes 7
| | | | | | |

4 35 25

Chemical Shift (ppm)

2 1.5 1

Fig. 12 Distributions of spectral parameters generated by the FPT") from the FIDs given by the inverted
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spectrum would thus incorrectly suggest a lower NAA concentration, which could
indicate greater damage to cerebral neurons. Moreover, the Fourier envelope under-
estimated the metabolite concentration ratio of Cho to Cr. It is this ratio which has
been very frequently used in neurodiagnostics, including for determining whether a
new contrast-enhancing lesion post-radiation therapy is radiation necrosis or recur-
rence of the primary brain tumor [48]. The results in the present investigation, of an
improved resolution of the Padé-generated total shape spectra compared to the Fourier
envelope for the same number of in vivo encoded FID points, complements earlier
findings [1,2,14,42-45,47]. Moreover, with fewer FID points, the FPT can achieve
the same resolution as that in the Fourier envelope. These two practical advantages of
high relevance to the efficiency of MRS in clinical settings stem directly from the use
of the Padé quotient of two polynomials instead of a single Fourier polynomial.

The “spectra averaging” procedure in the frequency domain has been thoroughly
validated in the current work. This represents a Padé-based counterpart to “signal aver-
aging” as routinely performed in the time domain. In the latter, the SNR is improved by
taking typically the arithmetic average of some 128 FIDs, as was the case in the present
study. Since noise varies randomly, it diminishes by v/ N’ where N’ denotes the num-
ber of transients. However, as opposed to signal averaging in the time domain, spectra
averaging in the frequency domain can be carried through iterations that systematically
improve the Padé reconstructions. The spectra averaging procedure takes advantage
of the stabilization capabilities of the FPT. This is accomplished by the envelope-
averaging procedure, using the computed Padé total shape spectra for a sequence of
values of the model order K. In the average envelopes, with each iteration, there is an
increased level of suppression of spurious spectral structures that are very sensitive to
changes in K.

In our earlier studies with the input noise of controlled levels [26,36], the query was
made as to how can one be certain which of the resonances are spurious and which are
genuine, especially for cases when pole-zero coincidence may be either lacking or not
complete. The “stability test” was presented as an important step towards handling
this problem. Namely, spurious resonances are recognized by their instability with
even a slight change in the noise level or model order K. This line of reasoning is now
developed further, by iteratively transforming back and forth from the frequency to
the time domain, such that ultimately a spectrum is produced which is essentially free
from spurious structures. These structures arise not only from the noise associated
with encoding, but are also produced by the highly over-determined system of linear
equations, as well as from numerical computations themselves whenever the finite
arithmetic precision is used, as in our work. This over-determination is, in fact, imposed
by both noise and a high spectral density, such as those associated with the MRS
data encoded from the brain. Since this procedure is herein fully validated, we can
now confidently suggest that iterative averaging could be automatically applied, to
suppress the spurious, noise-like spikes and thereby generate the “clean” spectra so
vitally needed in clinical MRS for further analyses and interpretations.

For benchmarking purposes, the present study extensively applies the iterative aver-
aging procedure, all the way to the 9th iteration. With regard to the total shape spectra or
envelopes, the progressive disappearance of all spurious structures is shown. The 7th,
8th and 9th iterations generate converged envelopes, with the corresponding average
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envelopes being practically indistinguishable. This finding is particularly remarkable
within the FPT") whose initial convergence region in the harmonic variable is located
inside the unit circle (|z] < 1), implying that, through analytical continuation by
numerical means, it must induce convergence into the input series which is divergent
in this region [49]. The large spikes seen on Fig. 2a in the 1st iteration reflect the dif-
ficulty of this task. The FPT(™) has, in contrast, a less stringent requirement, namely
it ought to accelerate convergence of the input series outside the unit circle, which
is where its convergence in the harmonic variable z~! already exists. However, with
the FPT(™), both the spurious (pole-zero coincidences) and the genuine resonances all
reside within the same positive imaginary frequency region in the complex frequency
plane. The FPT™) provides distinct separation of signal from noise, because all the
found spurious frequencies lie in the negative imaginary frequency region, while the
genuine content resides in the positive imaginary frequency region, as was displayed
in the Argand plot of Fig. 9a. In our benchmarking studies based on synthesized data
associated with in vitro encoded time signals [50] from benign and cancerous ovary
with added noise [21,51], the powerful noise separation capabilities of the FPT™ were
demonstrated. These capabilities of the FPT(*) are seen to be of vital importance in
the clinical setting, as well, in which the FIDs are encoded at quite short total signal
lengths using MR scanners of relatively weak magnetic field strength, By = 1.5 T.
Cross-validation is provided since the same envelopes are obtained by the two algo-
rithmically different versions of the fast Padé transform, the FPT™ and FPT(, that
perform signal processing in the complementary domain of the complex plane of the
harmonic variable z and z~!, inside and outside the unit circle, respectively. We have
also herein confirmed that parametric and non-parametric Padé reconstructions gen-
erate undistinguishable envelopes from the MRS time signals given by the complex
inverted average envelopes. This was examined both within the interval [385, 415] of
the K values and for K above that interval. The latter case for K further confirms the
extrapolation capabilities of the FPT, as a rational polynomial. It should be noted that,
in sharp contradistinction to the FPT, when ordinary polynomials are employed (as
in Fourier processing) to approximate a function in a given interval, they generally
perform inadequately outside that interval. This multiple cross-validation is the pre-
requisite for estimation reliability which is critical to clinical MRS-based diagnostics.
All the signal processors are vexed with pronounced sensitivity to changes in the
otherwise unknown model order K, which is the number of the component metabolites
in the spectral analysis (quantification). Via spectra averaging, this sensitivity can be
fully suppressed, such that, at convergence, the shape estimations are stabilized.
Verifying that the parametric and non-parametric Padé estimations generate iden-
tical total shape spectra allows us to choose which procedure will be used for further
analyses. The non-parametric Padé is faster since the set of complex frequencies and
amplitudes do not need to be reconstructed. However, the advantage of parametric
Padé processing is that after the amplitudes d,j' and harmonics z:" o are reconstructed
for the full Nyquist range, one can choose the spectral region of interest, SRI, from
which to build the envelopes. Since our SRI is between 0.75 and 4.5 ppm, where the
main diagnostically important metabolites lie, the envelopes are built only from the
components whose chemical shifts Re(v,j: Q) are in this interval. Thereby, the residual
and still giant water resonance is automatically bypassed. In contrast, for the non-
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parametric FPT, it is not possible to pre-select the frequency region of interest without
a windowing procedure which is needed to suppress the water residual. In our earlier
study [14], we confirmed that within the non-parametric FPT, the windowing pro-
cedure with a step function fully preserves the spectral information, excepting the
non-consequential part at the edges of the selected window. All told, the advantages of
the parametric FPT compensate for the extra processing time needed. Not only is the
water suppression problem completely obviated, but the most abiding aim of MRS,
namely, quantitative analysis of the metabolic content of the scanned tissue can be
accomplished forthwith through the parametric FPT. Moreover, by avoiding the water
and other noisy content, the dimensionality of the problem is diminished, i.e. there is
less over-determination in the system of linear equations. Overall, the parametric FPT
is more powerful in suppressing noise than is the non-parametric FPT.

Going beyond total shape spectra to analyze the components, as achieved through
the parametric FPT, is the most important goal, especially given the high density of MR
spectra from the brain. Fitting procedures cannot even ascertain the number of peaks
underlying, e.g. the prominent Cho at ~3.2 ppm, Cr at ~3.0 ppm or NAA at ~2.0 ppm.
The relative abundance of the resonances in these crowded spectral regions would,
therefore, be entirely equivocal if one relied upon the conventional Fourier analysis
with post-processing via fitting. As noted, the chemical shift region around 1.3 ppm,
where lactate and lipids overlap, is of particular importance for identifying hypoxia [9].
Assessment of this spectral region has also been helpful for distinguishing cancerous
from non-malignant pathology from the brain [5,7-9], and from other organs, such as
the ovary [52] and the breast [53,54]. However, in vivo proton MRS studies [24,52]
indicate that much uncertainty arises in attempts to assess this chemical shift region. We
have seen from the Padé-reconstructed “‘ersatz”” component spectra that in addition to
the Lac doublet, a number of other resonances are closely overlapping even at along TE
of 272 ms, when the broad lipid resonances have already decayed. Not only were each
of the resonances in the chemical shift region of 1.3 ppm clearly identified through
the FPT, but their peak parameters were all precisely ascertained. The latter case
was verified by detailed examination of convergence of all four spectral parameters.
Phosphocholine, PC, another indicator of hypoxia [12], and which is also a biomarker
of malignancy [15-18], was likewise identified and its peak parameters accurately
assessed via the FPT. This was the case despite the fact that PC overlaps extremely
closely with GPC and the much more prominent free Cho resonance centered at
3.2 ppm. Heretofore, assessment of PC has been limited to in vitro NMR studies.

The present and our most recent results [14,47] show that parametric Padé-based
processing of MRS time signals encoded on 1.5 T scanners is entirely feasible.
Wide-ranging possibilities emerge for multivariate exploration to find metabolite pat-
terns that best characterize various types and grades of cancer versus diverse benign
pathology which cause differential diagnostic dilemmas. Comparisons with normal,
non-infiltrated tissue are also essential. This perspective holds promise for improved
clinical diagnostics through in vivo MRS.

In Ref. [5], a quite similar in vivo MRS study was performed on neonates with
cerebral hypoxia/ischemia. Nearly the same encoding parameters (Byp = 1.5T, 512
FID points, 128 transients, TE =31, 136 and 272 ms, TR = 2000 ms) were used. The
FIDs were zero-filled 8 times to a total signal length of 4096 points. Analysis of the
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computed FFT spectra was also carried out in the interval between 0.75 and 4.5 ppm.
This was done through curve fitting by means of AMARES (Advanced Method for
Accurate Robust and Efficient Spectral fitting). Altogether, at TE =31 ms, only five
metabolites were quantified (NAA, Cr, Cho, GIx, m-Ins) within 2.0-4.5 ppm. Further,
fitting in Ref. [5] omitted resonances between 0.8 and 1.3 ppm, with the explanation
that this region contains the main contribution from mobile lipids and macromolecules.
By comparison, the FPT in the present study at much longer echo time (TE =272 ms)
quantified some 49 resonances in the interval 2.0-4.5 ppm, and altogether some 70
resonances between 0.75 and 4.5 ppm.

In our previous paper on the FIDs encoded from the standard GE phantom head
[41], we exhaustively examined the convergence of the Padé-reconstructed spectral
parameters. Therein a high level of precision was attained, as seen in very small
standard deviations obtained from the analysis of the reconstructed parameters from
several consecutive values of the model order (or rank) K, after convergence had been
reached. A similar approach is applied in the present paper, for the first time, on in vivo
MRS time signals encoded from human brain. This provides full corroboration that
exceedingly small variances are obtained for all four Padé-reconstructed parameters
per resonance once convergence was achieved. By scrutinizing the nine consecutive
iterations, progressively fewer and smaller discrepancies appear, until these reach the
minimal level which is consistent with stochasticity contained in the encoded time
signals. As to the rate of convergence of the spectral parameters, consistent with our
previous study [21] on synthesized time signals associated with in vitro data encoded
from ovarian lesions [50] and with controlled levels of added noise, the chemical
shifts converged most rapidly, whereas the peak widths were the slowest to achieve
convergence. These slowly converging peak widths are noted particularly, though not
exclusively, as being located deep in the complex frequency plane.

Broadly speaking, we have herein addressed a type of inverse problem, whose
basic characteristic is mathematical ill-conditioning or ill-posedness. This difficulty is
due to the lack of continual dependence of observables on the independent variables
(time in the FID for the studied harmonic inversion problem). Most troublesome is
that the solution to an inverse problem is, in principle, non-unique. In other words,
this ill-conditioning is seen in that some markedly different solutions are obtained
for even a minimal change of the input data (e.g. slightly different truncation of the
total acquisition time, etc.). With regard to total shape spectra, this ill-conditioning is
reflected in the sensitivity of lineshapes to changes in model order K. The procedure
of iterative averaging of envelopes through the FPT computed for a sequence of values
of K is shown to be capable of fully stabilizing the total shape spectra. Stabilization of
the spectral parameters is the most critical next step, and this is also achieved through
Padé reconstructions from the FIDs given by the inverted averaged envelopes. In other
words, the set of stabilized fundamental spectral parameters (complex frequencies and
complex amplitudes) represent the unique solution to the harmonic inversion problem.
We have thus seen that the fast Padé transform is fully capable of unequivocally solving
the harmonic inversion problem for encoded time signals that are heavily corrupted
with noise.

By parametrizing a general complex system, the system’s performance and dynam-
ics are depicted through a fairly small set of its main features. For quantum mechanics,
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this complete information is contained in two equivalent concepts: the Schrodinger
eigen value problem and the resolvent spectrum. Both approaches generate the fre-
quency or energy spectrum as Heaviside partial fraction decomposition which exactly
sums up to the quotient of two polynomials, in other words, to the Padé approximant.
The fundamental frequencies and amplitudes are the parameters in the partial fractions
that contain the complete information about the examined system. Thereby, quantum
mechanics, through its completeness relation, fully and exactly parametrizes any sys-
tem. Since the quantum mechanical spectrum is the unique ratio of two polynomials,
the fast Padé transform is the optimal method of quantitatively describing the system’s
performance. Stable dynamical parameters are the key to the stability of a given sys-
tem, and this is the hallmark of a robust system. This stability can be achieved through
the iterative averaging procedure, as has been thoroughly demonstrated herein.
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