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Abstract Aperiodic oscillations in the sorption of hydrogen and deuterium in pal-
ladium have been observed. An expression relating the square of a function, with
the derivative and integral with variable upper limit of the same function has been
proved and proposed to be used as a base for a chaos-vs.-random test. The result of
one “branch” of the test is a real number D ∈ [0, 2]; close to zero for the determin-
istic and smooth datasets, and approaching two for the random or discrete datasets.
Another “branch” of the test, based on the same mathematical relation, produces two
functions that appear to be convergent for deterministic and smooth datasets, but run
totally divergent for random or discrete ones. The D-values yielded by deterministic
time series, recorded in the periodic and quasiperiodic sorptions of H2 or D2 in Pd,
are around 0.001. On the other hand, the databases that were presumably random or
non-smooth yielded the test results from D = 0.2 to D = 1.9. Against these bench-
marks, the experimental, aperiodic oscillations scored around 0.003 in D, which is
much closer to the deterministic than to a random manner.

Keywords Palladium · Hydrogen · Deuterium · Thermokinetic oscillations · Chaos ·
Microcalorimetry

1 Introduction

Oscillatory heat evolution accompanying the sorption of hydrogen or deuterium in
metallic palladium has recently been described in two reports [1,2]. The thermokinetic
oscillations can been induced by admixing hydrogen or deuterium with ca. 10 % vol.
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of an inert gas, such as He, Ne, Ar, Kr or N2, prior to its contact with palladium. The
frequencies turned out to be functionally dependent on the atomic parameters (the first
ionization potential and the square root of atomic mass) of the inert gases being used
in the reaction [2]. Apart from specifying conditions for the oscillatory kinetics to
occur, the calorimetric experiments have also demonstrated a consistent invariance of
the value of the heat of sorption of H2(D2) in Pd, which remains the same over a whole
range of frequencies observed, independent of whether the oscillations are periodic
or quasiperiodic, and irrespective of the process duration. Here, we report occurrence
of aperiodic dynamics in oscillatory heat evolution in the H(D)/Pd system and we
propose a mathematical test to prove that the calorimetric time series in question
represent mathematical chaos rather than a random noise.

Several mathematical methods have been proposed to be used as chaos-vs.-random
test. In the effort to detect the symptoms of chaotic behavior in a given dataset (orbit),
these methods differ by applying their algorithms either directly to the time series, or
to the representations in the phase space. Falling into the first category is the Lyapunov
exponent λ that measures an extent of the so-called sensitive dependence on initial
conditions (also known as the butterfly effect) which is a defining characteristic of the
mathematical chaos [3,4]. The method of surrogate data creates a set of supplementary
datasets by rearranging the original time series in such a way as to retain its linear
statistical characteristics (like the mean and variance) in order to be able to compare
certain statistics, like the correlation dimension [5], computed for the original data,
to those computed for the surrogate datasets. Basing on the results of such compari-
son, there can be rejected or accepted a null hypothesis of the original data as being
generated by a linear Gaussian (stochastic) process [6]. Among the phase space using
methods, the correlation exponent ν measures the spatial correlation of random points
on the trajectory [5]. The method of information dimension σ begins with a partition
of phase space into cells of arbitrary dimension l and then applies the Shannon entropy
formula to account for the probability of a point to fall within the given cell [7]. In
general, therefore, these seemingly most often applied methods make use of certain
intrinsic properties of chaos itself rather than of the fundamental fact that chaos is
related to a mathematical function whereas randomness, by definition, is not.

In this article, a mathematical relationship is being outlined and proposed to be
used as a simple mathematical test that addresses this fundamental difference between
chaos and randomness and in doing so makes it possible to distinguish between random
or functional character of both the experimental and the computed time series. The
validity of the proposed test has been checked against the computed time series, both
random and chaotic, as well as against a considerable body of the experimental data that
has been obtained from a newly found oscillatory reaction of the sorption of hydrogen
in metallic palladium which shows all kinds of nonlinear dynamics including the
periodic, quasiperiodic and aperiodic oscillations.

2 Outline of the concept

Consider a function f (x) which is smooth, continuous and square integrable on the
interval [a, b] ⊂ R (cf. Scheme 1A). Let f ′(x) be the first derivative of f (x) (cf.
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Scheme 1 The essence of relation (4). Starting from a polynomial f (x) (panel A), a sequence of mathe-
matical operations (from i to vi) eventually leads to comparison of a pair of definite integrals, that of the
square [ f (x)]2 (panel F) and that of the pointwise product p(x) (panel G), respectively denoted P and S.
Both the areas under the curves, highlighted in red, are represented to the same scale in panels F and G,
to facilitate visual comparison. On numerical integration, these red areas turn out to be equal in absolute
values but opposite in sign, in agreement with relation (4), even thought it is not immediately evident on
visual examination. The polynomial used here scored D = 0.0000879 (D is the absolute relative difference
of S and P; cf. Sect. 4)
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Scheme 1C) and g(x) be an indefinite integral of the f (x) with the variable upper limit
on the interval [a, b] (cf. Scheme 1D). We define a function p(x) as the pointwise
product of the derivative f ′(x) and the integral g(x) (cf. Scheme 1E):

p(x) = f ′(x)g(x) = d[ f (x)]
dx

x∫

a

f (t)dt (1)

and for x ∈ [a, b] and f (x) = 0, the following relation holds:

−
∫

p(x)dx =
∫

[ f (x)]2dx (2)

To proof this relation, we note that the integral of the pointwise product p(x) within
the interval [a, b], as defined by (1), can be integrated by parts

∫ ⎛
⎝d[ f (x)]

dx

x∫

a

f (t)dt

⎞
⎠ dx = f (x)g(x) −

∫ ⎛
⎝ f (x)

d

dx

x∫

a

f (t)dt

⎞
⎠ dx (3)

We apply the fundamental theorem of calculus (FTC) to the second term in RHS, and
notice that the f (x)g(x) term vanishes for f (x) = 0 or g(x) = 0, with x ∈ [a, b],
leading to the desired relation:

−
∫ ⎛

⎝d[ f (x)]
dx

x∫

a

f (t)dt

⎞
⎠ dx =

∫
[ f (x)]2dx (4)

Two cases can be considered depending on whether the integration of Eq. (3) is definite
or indefinite (with variable upper limit). For the case of the definite integration on the
interval [a, b], the Eq. (3) takes the form:

b∫

a

⎛
⎝d[ f (x)]

dx

x∫

a

f (t)dt

⎞
⎠ dx = [ f (x)g(x)]b

a −
b∫

a

⎛
⎝ f (x)

d

dx

x∫

a

f (t)dt

⎞
⎠ dx, (5)

which for f (a) = f (b) = 0, by virtue of FTC, and on changing the signs to both
sides, reduces to

−
b∫

a

⎛
⎝d[ f (x)]

dx

x∫

a

f (t)dt

⎞
⎠ dx =

b∫

a

[ f (x)]2dx (6)

For this case therefore, it follows from relation (4), that if the a and b are both zero
crossings of the original function f (x), i.e., for f (a) = f (b) = 0, than the areas
under the curves of [ f (x)]2 and p(x), within the interval [a, b], are equal to each
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other in absolute value but opposite in sign. Both sides of (6) represent a real number.
For brevity, subsequently the letters P and S will be used to denote, respectively, the
integrals in LHS and RHS of (6). Since S is always positive, then P must be negative,
and so S = |P| for the conditions under which the Eq. (6) holds. This is illustrated
in Scheme 1: both the areas S and P are represented in red in Scheme 1F and G,
respectively. It should be noticed, that Eq. (6) is also true for f (a) = 0, f (b) �= 0 and
g(b) = 0, as the f (x)g(x) term in Eq. (5) vanishes at these conditions as well, but
this is of less relevance to a potential test application of formula (6).

The second case involves indefinite integration with variable upper limit of (3),
whence by virtue of relation (4) we obtain the following:

−
x∫

a

⎛
⎝d[ f (x)]

dx

x∫

a

f (t)dt

⎞
⎠ dx =

x∫

a

[ f (x)]2dx (7)

The integrals in RHS and LHS of (7) represent two functions, denoted SC and PC ,
respectively. The plots representing the integral SC and the negative of integral PC

(denoted −PC ) intersect for f (x) = 0, or g(x) = 0. This is illustrated in Scheme 1H.
The two lines representing SC (blue) and −PC (green) are both plotted against the
right-hand side axis. It can be seen, that all intersection points of the two lines coincide
with zero points of the original function f (x) (in red, plotted against the left-hand
side axis). There are also possible cases of SC and −PC intersecting for g(x) = 0 and
f (x) �= 0, not represented in this example.

3 Experimental

The experimental procedure leading to periodic or quasiperiodic oscillatory sorption
of H2(D2) in Pd has been recently described in detail in Ref. [1,2]. The oscillatory
kinetics begins with a fresh Pd powder and, after a 20- 30 min, the oscillations cease
(in most cases) when the Pd sample is saturated (cf. Fig. 1A, C), i.e., a state of
dynamic equilibrium between the hydride and the H2(D2) in the gas phase is being
reached. However, aperiodic time series were obtained from Pd sample being already
saturated with hydrogen, with the D2/Kr or H2/N2 mixture still flowing through the
sample bed. It has been found possible to induce oscillatory heat evolution in this
stage by connecting the system to a water aspirator with somehow irregular suction.
The aperiodic response so induced differs from either the periodic or the quasiperiodic
kinetics in that the aperiodic time series oscillates around the zero line (cf. Figs. 1E,
2).

Figure 2 shows the sorption of a D2/Kr mixture in a 0.23 g sample of fine-grained Pd
powder (granularity less then 75 μm, supplied by Aldrich). Starting with a fresh metal,
the reaction is first accompanied by exothermic oscillations, with the power spectrum
(cf. the lower left inset) indicative of quasiperiodic dynamics with two frequencies of
0.0240 and 0.0613 Hz. The integration of the calorimetric curve for this quasiperiodic
stage, i.e., from a start to around 4,000 s, yields the total heat evolution of ca. 17,000 mJ
(ca. 0.07 kJ/g Pd). This thermal effect turns out to be slightly below the average amount
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Fig. 1 Using formula (6) to detect determinism in experimental datasets recorded with gas flow-through
microcalorimeter on the oscillatory sorption of hydrogen (or deuterium) in metallic palladium. The left-
hand panels A, C and D show the original calorimetric time series fn(t), while the right-hand ones compare
their corresponding pointwise product curves pn(t) (green) and their squares [ fn(x)]2 (red). The areas
under the green (P) and red (S) curves are equal in absolute values but opposite in signs (within an error),
in agreement with relation (4), indicative of deterministic origin of the examined time series (Color figure
online)

of heat recorded on reaching saturation for this Pd sample (ca. 0.09 kJ/g Pd) under the
same conditions [2]. Hence, at the point of 4,000 s the Pd sample must be rather close to
the state of saturation with deuterium. The dynamics of oscillations clearly changes at
ca. 4,000 s and the corresponding power spectrum (cf. the upper right inset) confirms
the aperiodic dynamics of oscillations after this point. During this aperiodic stage,
the calorimetric curve, representing the rate of heat evolution, oscillates from above
to below zero, but on integration, a net heat evolution turns out to be only −440 mJ,
an effect negligible within experimental error. It indicates that both the exothermic
and the endothermic effects are on average equal (within en error) in the long run. It
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Fig. 2 Thermokinetic
oscillations in the sorption of D2
(admixed with ca. 10 % of Kr) in
palladium powder at the
temperature of 75 ◦C. The
sustained aperiodic oscillations
develop on Pd saturated with
deuterium (at ca. 4,000 s),
following a stage of the periodic
oscillations accompanying the
sorption process proceeding far
from a dynamic equilibrium.
Insets show the power spectra
(red), separately for the periodic
(lower left) and the aperiodic
oscillations (upper right) (Color
figure online)

appears that the aperiodic thermokinetic oscillations may accompany a non-periodic
sorption-desorption process, which apparently can proceed indefinitely, and with an
overall zero heat production in the long term. It should be stressed, that a necessary
condition for such oscillations to occur is that the reaction mixture must continue to
flow through the Pd powder sample, while the system is being subjected to the irregular
pressure changes.

There are several advantages of using the time series recorded in the thermokinetic
oscillations of sorption of H2(D2) in Pd as the probe datasets for formulae (6) and (7).
First, it is natural for the calorimetric curves to start and end at zero, so the condition
of f (a) = f (b) = 0 (necessary for (6) to be used; cf. previous section) is readily met.
Second, the calorimetric curves obtained in the experiments are practically noiseless,
in other words they are smooth. Thirdly, the microcalorimetric time series are continu-
ous, since they represent a constant process of heat evolution. Finally, the process can
exhibit all kinds of different oscillatory dynamics and the microcalorimetric experi-
ments show very high reproducibility [1,2].

4 Application of the test procedure

Two “branches” of the test, respectively applying formula (6) and formula (7) to the
examined datasets can be devised.

4.1 Using formula (6)

The Eq. (6) is true for a continuous, smooth and square integrable function f (x), so
the reals S and P should be equal for such datasets, but not so for a random sequence.
A departure from Eq. (6) should therefore indicate discontinuity and possibly ran-
domness. Any dataset can be use as a staring function f (x) and have its values of S
and P computed numerically. For the polynomial used as the illustration in Scheme 1,
we obtain S = 1,381.209 and P = −1,381.085, which may be considered equal
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within a numerical error. For the real-life data, the S and P may also be affected by
an experimental error, so usually the two reals will not be strictly equal. A parameter
to evaluate how close to equal the S and P are is therefore needed, and also we want
such parameter to be invariant to the size of the datasets under examination. To this
end, we define the absolute relative difference (ARD) of S and P according to the
following formula:

D =
∣∣∣∣ S − |P|
0.5(S + |P|)

∣∣∣∣ = 2

∣∣∣∣ R − 1

R + 1

∣∣∣∣ , (8)

where R = S/ |P|, and note that D → 0 as R → 1, and D → 2 as R → ∞, or
R → 0. Consequently the test yields a real number D ∈ [0, 2], independent of the
dataset sizes. As a benchmark, it will be close to zero for continuous and smooth, and
hence deterministic datasets, i.e., for S ≈ −P . Conversely, the more disparate the
values of S and −P , the closer D values will be approaching two. The latter will be
indicative of discontinuous and non-smooth data, and possibly of a random character
of the examined datasets. For the polynomial used as a “handle” in Scheme 1 we obtain
D = 0.0000879.

Figure 1 shows examples of application of the test to real-life datasets, namely, to
a periodic f1, quasiperiodic f2 and aperiodic f3 time series recorded on experiments
with thermokinetic oscillations in the sorption of hydrogen ( f1 and f2; Fig. 1A–D)
or deuterium ( f3; Fig. 1E, F) in palladium powder. The figures on the left show the
original calorimetric time series. Each dataset has been subjected to the test procedure,
i.e. a sequence of operations as illustrated in Scheme 1. In Fig. 1B, D, and F, the
corresponding pointwise products are plotted in green, and the squares [ f1]2, [ f2]2

and [ f3]2 are plotted in red, to the same scale. The respective values of areas under
both the square curves and the pointwise product curves, denoted, respectively S
and P , have also been shown in Fig. 1B, D and F. The values of D for f1, f2 and
f3, turned out to be, respectively D( f1) = 0.00060501, D( f2) = 0.0010340 and
D( f3) = 0.0030041. Both the periodic and quasiperiodic datasets f1 and f2 are
certainly deterministic. The aperiodic dataset f3 (Fig. 1E, F) appears to score highest
in D, but still much closer to zero than to the upper limit of 2, which points out to the
deterministic rather than random character of f3.

4.2 Using formula (7)

Instead of comparing the reals S and P resulting from (6), it is possible to compare the
plots representing integrals with variable upper limits defined in formula (7). Figure 3
shows the behavior of the curves SC and −PC for two real-life datasets f1 and f3 (the
same as shown in Fig. 1A, E, respectively), in addition to a random sequence, namely
a string of 3,000 digits of π number [8] denoted f4. The dataset f1, represents the
periodic thermokinetic oscillations, and is shown in red in Fig. 3A, B. The blue curve
represents the indefinite integral with variable upper limit of the squared f1 (RHS of
(7)), whereas the green curve represents the indefinite integral of the pointwise product
defined in LHS of (7), both plotted against the right-hand side axis in Fig. 3A, B. The
real-life oscillations proceed far from equilibrium (in thermodynamic sense), meaning
that for most of the duration of the experiment, the red curve is staying well above the
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Fig. 3 Using formula (7) to detect determinism in the experimental time series A–D in comparison to a
random sequence of π digits (E, F). Determinism of the datasets f1(t) and f3(t) is indicated by intersections
of the SC (blue) and PC (green) curves coinciding with the zero points of the original curves (red). To
appreciate this effect certain fragments are enlarged in the right-hand panels B and D. On the other hand,
the divergent behavior of SC and PC curves characteristic for random datasets can be seen in panels E and
F (Color figure online)

zero line. However, when the process is nearing to completion (due to saturation of Pd
sample with hydrogen) the red curve does make a few dumped oscillations, actually
crossing the zero line several times (cf. Fig. 3B), before reaching final equilibrium.
The periodic reaction kinetics is certainly deterministic and hence, in agreement with
relation (4), the few zero points in the red curve coincide with intersections of the blue
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and green curves, as can be seen more clearly in Fig. 3B, showing enlarged the period
close to the end of the sorption process.

The experimental dataset f3 (Fig. 3C, D) represents the aperiodic oscillations
accompanying the reaction of deuterium with palladium (also shown in Fig. 1E). In
this case, the calorimetric time series (red) oscillates around the zero line, which seems
to suggest that the deuterium/palladium system is in dynamic equilibrium (in thermo-
dynamic sense). Here the zero points are numerous. Note however, that for each zero
in the red, there corresponds an intersection of the blue and green curves (cf. Fig. 3D
for enlargement), thus showing agreement with relation (4). Visually the green curve
looks as though it was oscillating around the blue one. In fact, it can be proposed that
the SC and −PC both converge uniformly to a common limit function. Such conver-
gent behavior is consistent with the relation (4), evidencing a deterministic, and hence
mathematically chaotic character of the aperiodic, thermokinetic oscillations repre-
sented by this dataset. The same convergent behavior of the SC and −PC curves has
also been observed when similar aperiodic oscillations were recorded with hydrogen
rather than deuterium being sorbed in palladium under the same reaction conditions
(not shown).

Figures 3E, F show strikingly different behavior of the SC and −PC curves obtained
for a random numbers represented by dataset f4. The sequence of 3,000 digits of π is
neither continuous nor a smooth function, and so it does not match the assumptions
under which the relation (4) holds. In fact, Fig. 3E shows that the curves SC and
−PC never cross each other, except that they both start from zero. The same totally
divergent behavior of the SC and −PC curves has been confirmed for a larger sequence
of 250,000 digits of π (not shown).

It should be noted, that both the f3 and f4 datasets are visually aperiodic, but it is
difficult to tell the deterministic f3 from the random f4 solely on visual inspection of
the respective plots (compare the red traces in Fig. 3D, F). However, the contrasting
behavior of their corresponding SC and −PC curves reveals the difference very clearly.
Likewise, the value of D calculated using formula (6) for the aperiodic datasets f3
and f4, turned out to be D( f3) = 0.0030041 and D( f4) = 0.24783, therefore in spite
of both databases being visually aperiodic, the much lower score in D by f3 points
out, again, to its deterministic origin.

A similar point is illustrated in Fig. 4. The figure compares the behavior of SC

and −PC curves obtained for three types of computed time series, all three visibly
aperiodic. However, only one of them, namely the Lorenz chaotic time series f5(t) is
deterministic as well as continuous and smooth, while the Hennon chaotic map f6(t)
is deterministic but non-continuous; and the random Fibonacci sequence f7(n), is
non-deterministic and non-continuous [9]. It can be seen, that only the Lorenz system
behaves in accordance with the relation (4) (Fig. 4A, B), as intersections of the SC

and PC curves coincide with the zero-points of original time series (cf. Fig. 4B for
enlargement). On the other hand, the Hennon map yields the curves SC and PC clearly
divergent, similar to those obtained for the sequence of π digits shown Fig. 3C, D. Here
the test fails to detect determinism in the Hennon mapping. This is because in spite of
the map being deterministic it is nevertheless not smooth and not continuous, and as
such does not match the assumptions under which the relation (4) holds. Finally, for
the random Fibonacci sequence (Fig. 4E, F), the test procedures send the SC and PC
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Fig. 4 Using formula (7) to detect determinism in a three computed time series: A deterministic and
continuous a chaotic Lorenz curve; C deterministic but not continuous a Hannon chaotic map; E not
deterministic and not continuous a random Fibonacci sequence. The SC (blue) and PC (green) curves
confirm determinism for the Lorenz chaos, showing intersections coinciding with zero points of the original
Lorenz time series (cf. the blown up fragment in panel B). However, the SC and PC curves run totally
divergently for the Hennon map (cf. panels C, D), in spite of its obvious determinism, no doubts because of
its being discrete rather than continuous, and the same divergent behavior of the curves SC and PC can be
observed for the random Fibonacci sequence (cf. panel E and the enlargement in F) (Color figure online)

curves definitely diverging, and although the green PC curve does incidentally near
the blue one (SC ) at n = 95, yet this does not coincides with any zero point neither
in the original dataset (red), nor in the plot of its indefinite integral g7(n) (shown in
black in Fig. 4F).
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Table 1 The D-scores, calculated with formula (8), for the datasets tested and the reals S and −P calculated
with formula (6)

Dataset examined S −P D

Polynomial in Scheme 1 (cmptd.) 1,381.209 1,381.085 0.0000879

Periodic oscillations (exp.), f 1 1.3227e+06 1.3219e+06 0.00060501

Quasiperiodic oscillations (exp.), f 2 1.3546e+06 1.3532e+06 0.0010340

Aperiodic oscillations (exp.), f 3 576.74 575.01 0.0030041

A sequence of 3,000 digits of π (cmptd.), f 4 88,414 68,918 0.24783

Lorenz chaos (cmptd.), f 5 11,873 11,802 0.0060459

Hennon chaotic map (cmptd.), f 6 56.979 1.1718 1.9194

Random Fibonacci sequence (cmptd.), f 7 7.8840e+09 2.5798e+09 1.0138

exp. experimental, cmptd. computed

As for testing with formula (6), using (6) and (8) to calculate D values for the
datasets presented in Fig. 4, we obtain D( f5) = 0.0060459 (S = 11873; P =
−11802) for the Lorenz chaos, D( f6) = 1.9194(S = 56.979; P = −1.1718) for the
chaotic Hennon map, and D( f7) = 1.0138(S = 7.8840e + 09; P = −2.5798e + 09)

for the random Fibonacci sequence (cf. Table 1).

5 Discussion

The test seems to be relatively simple and quick. It can be applied to real life datasets
directly (rather than to a phase space representation), using the formulae (6) or (7), and
it does not require any surrogate datasets to be created. In the case of using formula
(6) the test conveniently yields a real number D ∈ [0, 2] as the score, so that the
result can be immediately assessed. The only requirement for the dataset itself is that
it has to start and end at zero for applying formula (6) to it, but it is not needed for
using formula (7). On the other hand, a meaningful use of the test requires certain
prior knowledge of the source of the datasets tested, particularly in using formula
(6). Table 1 summarizes the D-scores obtained for the datasets subjected to the test
procedure and presented in Figs. 1, 3 and 4. The result for the polynomial used in
Scheme 1 is understandably the closest to zero (0.0000879). The periodic oscillations
f1 scored the second best (0.00060501), and the quasiperiodic oscillations f2 came
only marginally higher (0.001034). The gas flow-through microcalorimetric technique
used to obtain the oscillatory curves f1 and f2 (as well as f3) makes it possible to
record practically noiseless data. No doubts because of this high signal to noise ratio,
the experimental error did not weight significantly on the test results in those cases.
In fact, the experimental datasets f1 and f2 scored approximately only by one order
of magnitude higher than the computed polynomial. This level of D turned out to be
typical, and has been confirmed for a considerable body of over hundred oscillatory
sorption/desorption cycles in the H2(D2)/Pd system that have been carried out to date
in our laboratory [1,2].
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It is a major purpose of this work to detect determinism in the aperiodic oscilla-
tions f3 recorded in the sorption of D2 in Pd. The D for this system (0.0030041)
turned out to be very similar to that obtained for quasiperiodic oscillations f2. At
the same time, another deterministic dataset, the Lorenz chaotic curve f5, scored
even slightly higher than f3, in spite of f5 being computed rather than experimen-
tal. Hence, the D-score for f3 comes out well within the range of D expected for
deterministic datasets. Using formula (7) confirms the deterministic character of ape-
riodic oscillations represented in dataset f3 (cf. Fig. 3C, D). The characteristically
convergent behavior of its SC and PC curves is analogous to that manifested by
SC and PC curves obtained from the datasets f1 and f5. For all three datasets, the
intersections of SC and PC coincide with zero points in the original datasets, in
accordance with relation (4), indicative of the data being smooth and continuous,
and hence being of deterministic origin. Since it is aperiodic and deterministic at the
same time, therefore, the dataset f3 must represent mathematical chaos. Thus, the
thermokinetic oscillations f3 appears to be a manifestation of chaos in oscillatory heat
evolution accompanying the reaction of hydrogen (deuterium) with palladium. To our
best knowledge, it is the first time that the chaotic dynamics in this system is being
reported.

For the discontinuous, discrete datasets f4, f6 and f7, their SC and PC curves
have no intersections, apart from initial points, and are apparently divergent. Thus,
application of formula (7) cannot detect determinism in the Hannon map f6. Like-
wise, the D scores of the discontinuous and/or random datasets are the highest,
in fact, the Hennon map yielded D as high as 1.9194, which is very close to the
upper limit of two. Again therefore, the formula (6) expectedly failed to detect
determinism in the Hennon maps, as it is neither a continuous nor a smooth func-
tion. The formulae (6) and (7) provide therefore more a test for smoothness rather
than determinism, however, it can be argued, that smoothness itself implies deter-
minism [10,11]. On the other hand, in cases when a deterministic, but a discrete
map may actually be expected from the experiments, an occasional low score in
D may possibly indicate that somehow deterministic in nature, but unexpected by
researchers a by-process, or a perturbation, may be taking place in the experimental
system.

6 Conclusions

Aperiodic, thermokinetic oscillations have been recorded calorimetrically in the reac-
tion of sorption of hydrogen in palladium. An expression relating the integral of a
square of a function f (x) with the integral of a pointwise product of the first deriv-
ative of f (x) and the indefinite integral with variable upper limit of f (x) has been
formulated and proved. Basing on this relation, two procedures to distinguish ran-
dom from determinism has been proposed. The results of such tests applied to aperi-
odic, calorimetric time series suggest, that the aperiodic oscillations demonstrate the
chaotic dynamics in the reaction of hydrogen or deuterium with the metallic palla-
dium. At the same time, the results demonstrate diagnostic value of the newly proposed
test.
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7 Appendix: Differential and difference equations used to obtain the computed
time series

The Lorenz equations were integrated numerically using the fourth order Runge-Kutta
method for the same set of initial conditions: t = 0; x0 = 5; y0 = 0; z0 = 5, and a step
h = .003 s. A QuickBasic program for Runge-Kutta integration has been taken from
Ref. [12]. The program was slightly modified by the present author to enable writing
of integration results into a datafile. The chaotic dynamics has been confirmed using
the power spectra and phase portraits (not shown). The Lorenz equations in the form:

dx
dt = 10(y − x),

dy
dt = x(r − z) − y,

dz
dt = xy − 8

3 z

(9)

was integrated for r=28.
The Hennon equation was iterated using a simple QuickBasic program written for

this purpose by the author. The equations:

xn+1 = 1 − ax2
n + yn,

yn+1 = byn
(10)

was iterated for a = 1.55 and b = 0.3 starting with x0 = 0.02 and y0 = 0.2.
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