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Abstract This paper discusses the Lorenz family of chaotic systems under the influ-
ence of poisson noise. We obtain the sufficient and necessary conditions for stochastic
stability under some assumptions for stochastic Lorenz family of chaotic systems
with jump. We then investigate the estimation of the global attractive set and sto-
chastic bifurcation behavior of the family of stochastic Lorenz system. Numerical
experiments illustrate the results.
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1 Introduction

The Lorenz attractor (also known as butterfly attractor) was found in 1963 by E. N.
Lorenz [1] for a dynamical system generated by a three dimensional autonomous
differential equation describing a meteorological problem, he has created a new era
of nonlinear dynamical systems [2–10]. A classical Lorenz family of chaotic systems
has the following form: ⎧

⎨

⎩

ẋ(t) = a(y − x)
ẏ(t) = cx − xz − dy
ż(t) = xy − bz

(1.1)
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with initial condition (x0, y0, z0) = u0 and parameters a, b and d are positive con-
stants, c ∈ (−∞,+∞). To study the qualitative behavior of a Lorenz family of chaotic
system, the property of attractors play an important role in the study of the asymptotic
behavior of Lorenz family of chaotic systems. Many scholars have studied Lorenz
family of chaotic systems carefully. Tucker [11] firstly rigorously proved existence of
the Lorenz attractor, he pointed out that it was very difficult to obtain information of
the attractor directly from the differential equation itself. The Russian scholar, Leonov
[12,13] was the first one to investigate the estimation of the global attractive set of the
Lorenz system. Liao et al. [14,15] discussed the stability and global attractive set of
the Lorenz system. Li et al. [16] applied the method of Lagrange multiplier to obtain
an estimation of the global attractive set for the Lorenz system. For stochastic chaotic
systems, however, comparably little progress has been made by now.

An important chaotic systems component in nature is that chaotic systems are
inevitably affected by environmental noises. Arnold, [17] has pointed out that the
parameters in the chaotic systems exhibit random fluctuation to a greater or lesser
extent due to various environmental noises. Currently, one of the important ways
to model the in influence of the environmental fluctuations in chaotic systems is to
assume that the random noises affect the parameters. Scholars usually estimate them
by average values plus some error terms. In general, by the well-known central limit
theorem, the error terms follow normal distributions. That is

ax → ax − σ1xdW (t), ay → ay + γ1xd N (t),

cx → cx + γ2xd N (t), dy → dy − σ2 ydW (t),

where W (t) are mutually independent Brownian motions, N (t) is a Poisson process
with intensity λ, σ1, σ2, γ1 and γ2 represent the intensities of random noises. Then, the
corresponding Itô’s-type family of the stochastic Lorenz system with jumps becomes:

⎧
⎨

⎩

dx(t) = [a(y − x)]dt + σ1xdW (t)+ γ1 yd N (t),
dy(t) = [cx − xz − dy]dt + σ2 ydW (t)+ γ2xd N (t),
dz(t) = [xy − bz]dt.

(1.2)

As the stochastic disturbances are unavoidable, it is reasonable to study the sto-
chastic stability and stochastic bifurcations for the family of stochastic Lorenz system
(1.2). Keller [18] have studied attractors and bifurcation of the stochastic Lorenz
system. Schmalfuß estimate the Hausdorff dimension of the attractor [19]. Global
stability of the family of Lorenz system has been studied by a lot of authors [20,21].
Most of the papers consider the situations at which deterministic Lorenz system are
present. Essentially, the point is globally asymptotically stable if there is the domi-
nation of the deterministic Lorenz system. However, we find few papers referring to
how the sharp domination is. In other words, there are few studies giving necessary
and sufficient conditions for the global stability of stochastic Lorenz family of chaotic
systems. In this paper, we obtain the sufficient and necessary conditions for stochas-
tic stability under some assumptions for stochastic Lorenz family of chaotic systems
with jump. As theory of stochastic bifurcation is still in its infancy [22,23], there are
few rigorous general theorems, and many phenomena have been only by computer
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simulations, or for particular models. In particular, some bifurcation phenomena were
observed numerically [24], experimentally, and by approximations based on averag-
ing, phenomenological or scaling methods [25–29]. In this paper, we investigate the
estimation of the global attractive set by Lyapunov direct method, and we show that
random attractors provide an important tool to analyze the bifurcation behavior of the
stochastically perturbed family of Lorenz system [30,31].

2 Preliminaries and notations

Let {�,F ,P} be are probability space. On � we define a flow θ of maps θt : � → �

with t ∈ R, i.e.
θ0 = id� θt ◦ θs = θt+s s, t ∈ R,

(for brevity we write θt ◦ θs = θtθs) such that (t, ω) → θtω is F ⊗ B(R)-measurable
and θtP = P (measure preserving). In addition P is assumed to be ergodic w.r.t. the
flow θ. We call {�,F ,P, θt t∈R} or θ for short, a metric dynamical system.

Definition 2.1 A function φ : T × � × Rd → Rd is called a random dynamical
system(RDS) over the metric dynamical system θ, if φ is B(T) ⊗ F ⊗ B(R�

),

B(R�

)-measurable and if the mappings φ(t, ω) := φ(t, ω, ·) : Rd → Rd form a
cocycle over θ, i.e. for all ω ∈ �

θ(0, ω) = idRd φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω), s, t ∈ T.

Further, φ is called continuous RDS, if φ(t, ω) is continuous for all ω ∈ �, t ∈ T.

Definition 2.2 A random variable x : � → Rd is called a random fixed point (or
stationary solution) of a given RDS φ if φ(t, ω)x(ω) = x(θtω), for all ω ∈ �, t ∈ T.

Definition 2.3 A random compact set D(ω) maps � into the space of nonempty
compact subset of R

n such that for all x ∈ R
n the mapping ω → d(x, D(ω)) is

measurable, where d(x, D(ω)) = inf y∈D(ω) ‖x − y‖.
A nonempty family D consisting of the random compact sets is called inclusion

closed system (IC-system), if it is maximal w.r.t. to inclusion (i.e. if D ∈ D and
D

′
(ω) ⊂ D(ω) for all ω ∈ � is a random compact set then also D

′ ∈ D).

Definition 2.4 Let D be an IC-system. A random compact set B ∈ D is called
D-absorbing for an RDS φ, if for only ω ∈ � and D ∈ D there exist a τD(ω)

such that φ(t, θ−tω, D(θ−tω)) ⊂ B(ω), for all t > τD(ω). where φ(t, ω)A :=⋃
y∈A φ(t, ω, x). for all A ⊂ Rn .

Similarly we now can define a random attractor.

Definition 2.5 Let D be an IC-system. A random compact set A ∈ D is called
D-attractor of an RDSφ, if

(i) A is invariant, i.e. φ(t, ω, A(ω)) = A(θtω), f or allt > 0, ω ∈ �.
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(ii) A is D-attracting, i.e. for all ω ∈ � and D ∈ D

lim
t→+∞ dist (φ(t, θ−tω, D(θ−tω)), B(ω)) = 0,

where dist (A, B) = supx∈A inf y∈B d(x, y) is the usual Hausdorff semi-metric.

Theorem 2.1 [31] Let φ be continuous RDS and let D be an IC-system, Moreover
let B ∈ D be an random compact set which is D-absorbing. Then there exist a unique
D-attractor A ∈ D for the cocycle φ given by

A(ω) =
⋂

t≥0

⋃

t≥τ
φ(τ, θ−τω), B(θ−τω).

If B(ω) is connected then so is A(ω).

3 Stochastic stability

The purpose of this section is to seek the necessary and sufficient condition for the
global asymptotically exponential stable of the equilibrium point S0(0, 0, 0) of (1.2).
The result is the following:

Theorem 1 The equilibrium point S0(0, 0, 0) of (1.2) is globally asymptotically expo-
nential stable for all a > 0, b > 0, d > 0, σi > 0, γi > 0, c ∈ (−∞,+∞) if

L = max {κ,−b}
min

{ 1
a ,

1
2

} + λ log

(

1 +
1
2 max

{( 1
a γ1 + γ2 + 1

)
,
( 1

a γ1 + γ2 + 1
a

)}

min
{ 1

a ,
1
2

}

)

< 0

where

κ =
σ 2

1 − 2a + aσ 2
2 − 2ad +

√

(σ 2
1 − a(2 + σ 2

2 − 2d))2 + 4a2(c + 1)2

4a
< 0

Proof Define the Lyapunov function on �3

V (x, y, z) = 1

2

(
1

a
x2 + y2 + z2

)

. (3.1)

Obviously,

min

{
1

2a
,

1

2

}(
x2 + y2 + z2

)
≤ 1

2

(
1

a
x2 + y2 + z2

)

≤ max

{
1

2a
,

1

2

}(
x2 + y2 + z2

)
.
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Applying Itô’s formula yields, we have

dV (x, y, z) =
[

−x2 − dy2 + (c + 1)xy − bz2 + σ 2
1

2a
x2 + σ 2

2

2
y2

]

dt

+
( σ1

2a
x2 + σ2

2
y2
)

dW (t)+ 1

2

[
1

a
(2γ1xy + y2)+ 2γ2xy + x2

]

d Nt

≤
[

−x2 − dy2 + (c + 1)xy − bz2 + σ 2
1

2a
x2 + σ 2

2

2
y2

]

dt

+
( σ1

2a
x2 + σ2

2
y2 + z2

)
dW (t)

+1

2

[(
1

a
γ1 + γ2 + 1

)

x2 +
(

1

a
γ1 + γ2 + 1

a

)

y2 + z2
]

d Nt

≤
[
max {κ,−b}

(
x2 + y2 + z2

)]
dt + max

{ σ1

2a
,
σ2

2
, 1
}

×
(

x2 + y2 + z2
)

dW (t)

+1

2
max

{(
1

a
γ1+γ2+1

)

,

(
1

a
γ1+γ2+ 1

a

)

, 1

}(
x2+y2+z2

)
d Nt

≤
[

max {κ,−b}
min

{ 1
2a ,

1
2

} V (x, y, z)

]

dt + max
{
σ1
2a ,

σ2
2 , 1

}
V (x, y, z)

min
{ 1

2a ,
1
2

} dW (t)

+
1
2 max

{( 1
a γ1 + γ2 + 1

)
,
( 1

a γ1 + γ2 + 1
a

)
, 1
}

min
{ 1

2a ,
1
2

} V (x, y, z)d Nt (3.2)

where

κ =
σ 2

1 − 2a + aσ 2
2 − 2ad +

√

(σ 2
1 − a(2 + σ 2

2 − 2d))2 + 4a2(c + 1)2

4a
.

From (3.2) and Doléans-Dade’s exponent formula, we can obtain

V (x, y, z) ≤ V (x0, y0, z0) exp {αt + βW (t)+ log(1 + γ )Nt } , (3.3)

where

α = max {κ,−b}
min

{ 1
2a ,

1
2

} β = max
{
σ1
2a ,

σ2
2 , 1

}

min
{ 1

2a ,
1
2

} ,

γ =
1
2 max

{( 1
a γ1 + γ2 + 1

)
,
( 1

a γ1 + γ2 + 1
a

)
, 1
}

min
{ 1

2a ,
1
2

} .
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Then we have the top Lyapunov exponent L

L = lim
t→∞

log(V (x, y, z))

t
≤ lim

t→∞
αt + βW (t)+ log(1 + γ )Nt

t
= α + λ log(1 + γ ) < 0, (3.4)

Thus, we can obtain

min

{
1

2a
,

1

2

}

E

(
x2 + y2 + z2

)
≤ EV (x, y, z) ≤ V (x0, y0, z0)

× exp {[α + λ log(1 + γ )](t − t0)}
≤ max

{
1

2a
,

1

2

}(
x2

0 + y2
0 + z2

0

)

× exp {[α + λ log(1 + γ )](t − t0)} .

Therefore,

E

(
x2 + y2 + z2

)
≤ max

{ 1
2a ,

1
2

}

min
{ 1

2a ,
1
2

}
(

x2
0 + y2

0 + z2
0

)
exp {[α + λ log(1 + γ )](t−t0)}

(3.5)

Then, the equilibrium point S0(0, 0, 0) of (1.2) is globally asymptotically exponential
stable. The proof of the theorem is complete. �

Theorem 2 The equilibrium point S0(0, 0, 0) of (1.2) is globally asymptotically expo-
nential stable for all a > σ 2/2, d = 1, 0 ≤ σ1 = σ2 = σ ≤ √

2, γi = 0, c ∈
(−∞,+∞) if only and if

c <

√

(2a − σ 2)(2 − σ 2)

a
− 1.

Proof Sufficiency. (i) Let 0 ≤ c <
√
(2a−σ 2)(2−σ 2)

a −1. Define the Lyapunov function

on �3

V (x, y, z) = 1

2

(
1

a
x2 + y2 + z2

)

. (3.6)

By Theorem 1, we have

E

(
x2 + y2 + z2

)
≤ max

{ 1
2a ,

1
2

}

min
{ 1

2a ,
1
2

}
(

x2
0 + y2

0 + z2
0

)
exp [α(t − t0)] , (3.7)
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where

α = max {κ,−b}
min

{ 1
2a ,

1
2

} ,

κ =
σ 2

1 − 2a + aσ 2
2 − 2ad +

√

(σ 2
1 − a(2 + σ 2

2 − 2d))2 + 4a2(c + 1)2

4a
< 0.

(ii) c < 0. Choose the Lyapunov function on �3

V (x, y, z) = 1

2

(
− c

a
x2 + y2 + z2

)
. (3.8)

Then

min

{

− c

2a
,

1

2

}(
x2 + y2 + z2

)
≤ V (x, y, z) ≤ max

{

− c

2a
,

1

2

}(
x2 + y2 + z2

)
.

Itô’s formula yields

dV (x, y, z) =
[(

c − cσ 2

2a

)

x2 − y2 − bz2+ σ
2

2
y2
]

dt +
(
−cσ

2a
x2 + σ

2
y2
)

dW (t)

≤ max

{

−b,
σ 2

2
− 1,

(

c− cσ 2

2a

)}(
x2 + y2 + z2

)
dt

+σ
(

− c

2a
x2 + 1

2
y2 + z2

)

dW (t)

≤
max

{
−b, σ

2

2 − 1,
(

c − cσ 2

2a

)}

min
{− c

2a ,
1
2

} V (x, y, z)dt + σV (x, y, z)dW (t).

(3.9)

Thus, we have

EV (x, y, z) ≤ V (x0, y0, z0) exp

⎧
⎨

⎩

max
{
−b, σ

2

2 − 1,
(

c − cσ 2

2a

)}

min
{− c

2a ,
1
2

} (t − t0)

⎫
⎬

⎭
,

then

E

(
x2 + y2 + z2

)
≤ max

{

− c

2a
,

1

2

}(
x2

0 + y2
0 + z2

0

)

× exp

⎧
⎨

⎩

max
{
−b, σ

2

2 − 1,
(

c − cσ 2

2a

)}

min
{− c

2a ,
1
2

} (t − t0)

⎫
⎬

⎭
.
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Therefore, for 0 ≤ c <
√
(2a−σ 2)(2−σ 2)

a − 1 or c < 0, then the equilibrium point
S0(0, 0, 0) of (1.2) is globally asymptotically exponential stable.

Necessity. The linearization of the Eq. (1.2) at S0(0, 0, 0) is

d X =
⎛

⎜
⎝

−a + σ 2

2 a 0

c −1 + σ 2

2 0
0 0 −b

⎞

⎟
⎠ X + σ

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ X ◦ dW (t). (3.10)

The deterministic eigenvalues are λ3 = −b and

λ1,2 = −a + 1

2
± 1

2

√
(a + 1)2 + 4a(c − 1).

The third equation in (3.10) is always stable and decoupled from the first two equations
which, after transformation of the drift matrix to diagonal form, reads

d X =
(
λ3 0
0 λ4

)

X + σ

(
1 0
0 1

)

X ◦ dW (t), (3.11)

where

λ3,4 = −1 − a + σ 2 ± √
1 − 2a + a2 + 4ac

2
.

For small intensity parameter σ Theorem 9.4.11 [22] yields for the top Lyapunov
exponent of (3.11) and of (3.10)

L(c, σ ) = −1 − a + σ 2 ± √
1 − 2a + a2 + 4ac

2
. (3.12)

Since the equilibrium point S0(0, 0, 0) of (1.2) is globally asymptotically exponential
stable, then the equilibrium point S0(0, 0, 0) of (1.2) is local exponential stable. That
is

L(c, σ ) = −1 − a + σ 2 + √
1 − 2a + a2 + 4ac

2
< 0. (3.13)

Then, we have c < 1 − σ 2/2 − σ 2(2 − σ 2) ⇒ c <
√
(2a−σ 2)(2−σ 2)

a − 1. The proof
of the theorem is complete. �

4 Random attractor

In this section we will prove the existence of random attractors for the family of the
stochastic Lorenz system with jumps.
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Theorem 3 Let a > 0, b > 2d, c > 0, d > 0, a − d >
σ 2

1 −σ 2
2

2 ,

Lμ = b2(μa + c)2

4α(b − d)
, α =

(

d − σ 2
2

2

)

− λmax{γ 2
1 + 2γ1, γ

2
2 + 2γ2} > 0,

then the following estimate holds on the system (1.2)

E[Vμ(X)− Lμ] ≤ (Vμ
(
X0)− Lμ

)
e−2d(t−t0).

In particular,

�μ={X |EVμ(X)≤ Lμ}=
{

X |E
[
μx2+y2+(z−μa−c)2

]
≤ b2(μa + c)2

4α(b−d)

}

, μ≥0.

is globally exponential attractive set of system (1.2), where

Vμ(X) = 1

2

(
μx2 + y2 + (z − μa − c)2

)
.

Proof Define the Lyapunov function on �3

Vμ(X) = 1

2

(
μx2 + y2 + (z − μa − c)2

)
. (4.1)

Applying Itô’s formula to (4.1), we have

dVμ(X) =
[

−μax2 − dy2 − dz2 + b(μa + c)z + μσ 2
1

2
x2 + σ 2

2

2
y2

]

dt

+
(μσ1

2
x2 + σ2

2
y2
)

dW (t)+
[
μ(γ 2

1 + 2γ1)x
2 + (γ 2

2 + 2γ2)y
2
]

d N (t)

=
[

−
(

μa−μσ
2
1

2

)

x2−
(

d− σ
2
2

2

)

y2−dz2+ 2d(μa + c)z−d(μa−c)2
]

dt

+[(d − b)z2 + d(μa + c)2 + (b − 2d)(μa + c)z]dt

+
(μσ1

2
x2 + σ2

2
y2
)

dW (t)+
[
μ(γ 2

1 + 2γ1)x
2 + (γ 2

2 + 2γ2)y
2
]

d N (t)

≤
[

−
(

μa − μσ 2
1

2

)

x2 −
(

d − σ 2
2

2

)

y2 − d(z − μa − c)2
]

dt

+[(d − b)z2 + d(μa + c)2 + (b − 2d)(μa + c)z]dt

+
(μσ1

2
x2 + σ2

2
y2
)

dW (t)+
[
μ(γ 2

1 + 2γ1)x
2 + (γ 2

2 + 2γ2)y
2
]

d N (t).

(4.2)
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Let

f (z) = (d − b)z2 + (b − 2d)(μa + c)z,

and

f ′(z) = 2(d − b)z + (b − 2d)(μa + c) = 0,

we have

z0 = (b − 2d)(μa + c)

2(b − d)
,

since b > 2d, then z0 > 0, thus

f ′′(z0) = 2(d − b) < 0,

therefore

sup
z∈�μ

f (z) = f (z0) = (b − 2d)2(μa + c)2

4(b − d)
. (4.3)

From (4.2) and (4.3), we can obtain

dVμ(X) ≤
[

−
(

μa − μσ 2
1

2

)

x2 −
(

d − σ 2
2

2

)

y2 − d(z − μa − c)2

+ d(μa + c)2 + (b − 2d)2(μa + c)2

4(b − d)

]

dt

+
(μσ1

2
x2 + σ2

2
y2
)

dW (t)+
[
μ(γ 2

1 + 2γ1)x
2 + (γ 2

2 + 2γ2)y
2
]

d N (t)

=
[

−
(

μa−μσ
2
1

2

)

x2−
(

d− σ
2
2

2

)

y2−d(z−μa−c)2 + b2(μa + c)2

4(b − d)

]

dt

+
(μσ1

2
x2 + σ2

2
y2
)

dW (t)+
[
μ(γ 2

1 + 2γ1)x
2 + (γ 2

2 + 2γ2)y
2
]

d N (t)

≤
[

−
(

d − σ 2
2

2

)
{
μx2 + y2 + (z − μa − c)2

}
+ b2(μa + c)2

4(b − d)

]

dt

+
(μσ1

2
x2 + σ2

2
y2
)

dW (t)+
[
μ(γ 2

1 + 2γ1)x
2 + (γ 2

2 + 2γ2)y
2
]

d N (t)

≤
[

−
(

d − σ 2
2

2

)

Vμ(X)+ b2(μa+c)2

4(b − d)

]

dt+max
{σ1

2
,
σ2

2

}
Vμ(X)dW (t)

+ max{γ 2
1 + 2γ1, γ

2
2 + 2γ2}Vμ(X)d N (t). (4.4)
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From (4.4) and the calculating the expectation we get

EVμ(X) ≤ Vμ(X0)+
t∫

t0

[

−
(

d − σ 2
2

2

)

EVμ(X)+ b2(μa + c)2

4(b − d)

]

ds

+
t∫

t0

λmax{γ 2
1 + 2γ1, γ

2
2 + 2γ2}EVμ(X)ds. (4.5)

From (4.5), we can obtain

EVμ(X) ≤ Vμ(X0)e
−α(t−t0) + K

t∫

t0

e−α(t−s)ds

= Vμ(X0)e
−α(t−t0) + K

α

(
1 − e−α(t−t0)

)
(4.6)

where

α = −λmax{γ 2
1 + 2γ1, γ

2
2 + 2γ2} +

(

d − σ 2
2

2

)

, K = b2(μa + c)2

4(b − d)
, Lμ = K

α
.

thus, when EVμ(X)− Lμ > 0, EVμ(X0)− Lμ > 0, the following estimate holds on
a globally exponential attractive set of system (1.2)

E
[
Vμ(X)− Lμ

] ≤ [Vμ(X0)− Lμ
]

e−α(t−t0). (4.7)

By (4.7), we have

lim
t→∞ EVμ(X) ≤ Lμ, (4.8)

that is

�μ = {X |EVμ(X) ≤ Lμ} =
{

X |E
[
μx2 + y2 + (z − μa − c)2

]
≤ b2(μa + c)2

4α(b − d)

}

.

The proof of the theorem is complete. �
Remark 4.1 If σ1 = σ2 = γ1 = γ2 = 0 and X0 deterministic then (1.2) implies that

�μ = {X |Vμ(X) ≤ Lμ} =
{

X |
[
μx2 + y2 + (z − μa − c)2

]
≤ b2(μa + c)2

4(b − d)

}

.

We have prove for the deterministic case that there exists an attractor in to which every
solution enters in finite time (If σ1 �= σ2 �= γ1 �= γ2 �= 0 then the limes superior of

E
[
μx2 + y2 + (z − μa − c)2

]
is bounded by b2(μa+c)2

4α(b−d) ).
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Theorem 4 The stochastic Lorenz equation (1.2) generates a smooth random dynam-
ical system ϕ with jumps which is global to forward, that is Dt = �3 for all t > 0.
Moreover, ϕ(t, θ−tω, x) is F0

t -measurable

Proof Choose a function

V (X) = 1

2
[y2 + (z − c)2].

From the proof of theorem 3, let μ = 0 and Itô’s formula yields

V (X) ≤ V (X0)+
t∫

0

[

−
(

d − σ 2
2

2

)

V (X)+ b2c2

4(b − d)

]

ds

+
t∫

0

max{σ1, σ2}V (X)dW (s)+
t∫

0

max{γ 2
1 + 2γ1, γ

2
2 + 2γ2}V (X)d N (s).

(4.9)

Suppose that Z satisfies the following equation with jumps

Z ≤ V (X0)+
t∫

0

[

−
(

d − σ 2
2

2

)

Zs + b2c2

4(b − d)

]

ds +
t∫

0

max
{σ1

2
,
σ2

2

}
ZsdW (s)

+
t∫

0

max{γ 2
1 + 2γ1, γ

2
2 + 2γ2}Zsd N (s). (4.10)

Then Z is finite on any finite interval [0, T ] for any T > 0. Hence, (4.9) and (4.10)
yield that the process V (X) is finite on [0, T ] for any ∞ > T > 0, That is the random
dynamical system ϕ(t, ω, x) is global to the forward. The proof of the theorem is
complete. �

Theorem 5 Let a > 0, b > 2d, c > 0, d > 0, a − d >
σ 2

1 −σ 2
2

2 ,

(

d − σ 2
2

2

)

− λ log
(

1 + max{γ 2
1 + 2γ1, γ

2
2 + 2γ2}

)
> 0,

then the random dynamical system generate by (1.2) possesses the unique parameter
dependent tempered random attractor A with domain of attraction D(A) containing
the universe of sets Cl(U), generated by

U =
{
(D(ω))ω∈� : D(ω) ⊂ �3 is a tempered random set

}
.
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Proof Define the Lyapunov function on �3

Vμ(X) = 1

2

(
x2 + y2 + (z − a − c)2

)
. (4.11)

From the proof of theorem 3, let μ = 1 and Itô’s formula yields

V (X) ≤ V (X0)+
t∫

0

[

−
(

d − σ 2
2

2

)

V (X)+ b2(μa + c)2

4(b − d)

]

ds

+
t∫

0

max
{σ1

2
,
σ2

2

}
V (X)dW (s)+

t∫

0

max{γ 2
1 +2γ1, γ

2
2 +2γ2}V (X)d N (s).

(4.12)

Denote ϕ(t, ω, (x, y, z)) and ψ(t, ω, V (X)) the random dynamical system which are
generated by (1.2) and

Zt = V (X0)+
t∫

0

[

−
(

d − σ 2
2

2

)

Zs)+ b2(μa + c)2

4(b − d)

]

ds

+
t∫

0

max
{σ1

2
,
σ2

2

}
ZsdW (s)+

t∫

0

max{γ 2
1 + 2γ1, γ

2
2 + 2γ2}Zsd N (s).

(4.13)

respectively. The random dynamical system generated by by (4.13) is

ψ(t, ω)x = e
−
(

d− σ2
2
2

)

t+max
{ σ1

2 ,
σ2
2

}
W (t)+Nt lg

(
1+max{γ 2

1 +2γ1,γ
2
2 +2γ2}

)

×
⎡

⎣V (X0)+ b2(μa+c)2

4(b − d)

t∫

0

e

(

d− σ2
2
2

)

s−max
{ σ1

2 ,
σ2
2

}
W (s)−Ns lg

(
1+max{γ 2

1 +2γ1,γ
2
2 +2γ2}

)

ds

⎤

⎦.

(4.14)

From (4.12) yields

V (ϕ(t, ω, (x, y, z))) ≤ ψ(t, ω)V (X). (4.15)

Thus ψ(t, ω) has the unique invariant measure which is a Dirac measure supported
by

ξ(ω) = b2(μa + c)2

4(b − d)

t∫

0

e

(

d− σ2
2
2

)

s−max
{ σ1

2 ,
σ2
2

}
Ws−Ns lg

(
1+max{γ 2

1 +2γ1,γ
2
2 +2γ2}

)

ds > 0.
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It is easy to prove that ψ(t, θ−tθ)x(θ−tω) → ξ(ω) as t → ∞ for initial value

x(ω) ∈ �+ such that e
−
(

d− σ2
2
2

)

t
x(θ−tω) → 0 for some

(

d − σ 2
2
2

)

> 0. Hence, we

may definite the universe of sets

U = {I (ω) ⊂ �+ is a tempered random set} ,

that is, the random variable η(ω) = supx∈I (ω) x satisfies limt→∞ log+ |η(θtω)/t | = 0

for any I ∈ U . Then limt→∞ e−εtη(θ−tω) = 0 for any ε > 0.
It is obvious that U is closed under inclusion and �× {x} ∈ U for all x ∈ �+.
Next. we will prove that the random set [0, (1 + ε)ξ ] is forward invariant and

absorbing for ψ(t, ω) with respect to the universe U for any ε > 0.
In fact, the absorbing property follows from the definition of U . We only prove

that ψ(t, ω)[0, (1 + ε)r(ω)] ⊂ [0, (1 + ε)r(θtω)] for all t ≥ 0. Since ψ(t, ω) is
nonnegative function on � and ψ(t, ω)x < ψ(t, ω)y for x < y, it suffices to show
ψ(t, ω)(1 + ε)r(ω) ≤ (1 + ε)r(θtω), it is equivalent that prove

ψ(t, θ−tω)(1 + ε)r(θ−tω) ≤ (1 + ε)r(ω). (4.16)

By (4.14), one has

ψ(t, θ−tω)(1 + ε)r(θ−tω) = r(ω)+ εK

t∫

−∞
exp

(
as − 2α1 B H1

s − 2α2 B H2
s

)
ds

≤ (1 + ε)r(ω). (4.17)

it implies that (4.17) is true.
Since

r(θ−tω) = K exp
(

at − 2α1 B H1−t − 2α2 B H2−t

)
−t∫

−∞
exp

(
as − 2α1 B H1

s − 2α2 B H2
s

)
ds

≤ (r(ω), (4.18)

one has

e−εt r(θ−tω) → 0, t → ∞,

for any ε > 0.. It means that [0, (1 + ε)r(ω)] ∈ U for any ε > 0.
for any ε > 0, define the subset B(ω) of �2 by

B(ω) = V −1([0, (1 + ε)]r(ω)).

This is a non-empty compact set by the surjectivity and continuity of V (x, y), and the
fact that pre-images of bounded sets are bounded under V (x, y).
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Using the surjectivity and non-negativity of V and (4.15), one has

ψ(t, θ−tω)[0, (1 + ε)r(θ−tω)] ⊂ [0, (1 + ε)r(ω)]
⇔ ψ(t, θ−tω)V (B(θ−tω)) ⊂ V (B(ω))

⇒ V (ψ(t, θ−tω)B(θ−tω)) ⊂ V (B(ω)) (4.19)

for all t ≥ 0. It implies that

ψ(t, θ−tω)B(θ−tω) ⊂ V −1(V (ψ(t, θ−tω)B(θ−tω))) ⊂ V −1(V (B(ω)) = B(ω),
(4.20)

that is, B is forward invariant.
As the proof of (4.19) we have that there is a t (ω, D) > 0 such that, for all

t > t (ω, D),

V (ϕ(t, θ−tω)D(θ−tω)) ⊂ ψ(t, θ−tω)V (D(θ−tω)) ⊂ [0, (1 + ε)r(ω)] = V (B(ω))

by (4.17) and the set [0, (1 + ε)r(ω)] absorbing any set in U . It shows the absorption
of any set in U .

Finally, we prove the existence of a neighborhood of B in U . In fact, for any B ∈ U ,
Proposition 3.2(iii) of Schenk-Hoppé [11] implies that there exist a random variable
ρ(ω) > 0 such that B(ω) ⊂ S(ρ(ω)) = {x ∈ �2, ‖x‖ ≤ ρ(ω)}. It is clear that
S(bρ(ω)) ∈ U and that S(ρ(ω)) is a neighborhood of B for all b > 1. The proof of
the theorem is complete. �

5 Stochastic bifurcation

In this section, we will analyze the bifurcation behavior of the randomly perturbed
Hopf bifurcation of the stochastic Lorenz family of chaotic systems with jump, using
the theory of random attractors.

Proposition 1 Suppose a >
σ 2

1
2 , d >

σ 2
2
2 , we have that the top Lyapunov exponents l

of the linear stochastic equation

⎧
⎨

⎩

ẋ(t) = a(y − x)+ σ1xdW (t)+ γ1 yd N (t),
ẏ(t) = cx − dy + σ2 ydW (t)+ γ2xd N (t),
ż(t) = −bz

(5.1)

is bounded by

l ≤− min

{(

a− σ
2
1

2

)

,

(

d− σ
2
2

2

)

, b

}

+λ log
[
1+max

{
(2γ1+γ 2

1 ), (2γ2+γ 2
2 )
}]
.

Proof Define the Lyapunov function on �3

V (X) = 1

2

(
cx2 + ay2 + z2

)
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yields V (X) ≥ 0 and V (X) = 0 if and only x = y = z = 0. Itô’s formula implies

dV (X) =
[

cax(y − x)+ ay(cx − dy)− bz2 + cσ 2
1

2
x2 + aσ 2

2

2
y2

]

dt

+
[
cσ1x2 + aσ2 y2

]
dW (t)+

[
c(2γ1 + γ 2

1 )x
2 + a(2γ2 + γ 2

2 )y
2
]

d N (t)

=
[

−c

(

a − σ 2
1

2

)

x2 − a

(

d − σ 2
2

2

)

y2 − bz2

]

dt

+
[cσ1

2
x2 + aσ2

2
y2
]

dW (t)+
[
c(2γ1 + γ 2

1 )x
2 + a(2γ2 + γ 2

2 )y
2
]

d N (t)

≤ min

{(

a − σ 2
1

2

)

,

(

d − σ 2
2

2

)

, b

}

V (X)dt

+ max
{σ1

2
,
σ2

2

}
V (X)dW (t)+max

{
(2γ1+γ 2

1 ), (2γ2 + γ 2
2 )
}

V (X)d N (t).

(5.2)

From (5.2) and Doléans-Dade’s exponent formula, we can obtain

V (X)≤exp
{
−ρt + max

{σ1

2
,
σ2

2

}
+Nt log(1+max

{
(2γ1+γ 2

1 ), (2γ2 + γ 2
2 )
}
)
}
,

(5.3)

where

ρ = min

{(

a − σ 2
1

2

)

,

(

d − σ 2
2

2

)

, b

}

.

We then have

l = lim
t→∞

log V (X)

t

≤ lim
t→∞

−ρt + max
{
σ1
2 ,

σ2
2

}
W (t)+ Nt log

[
1 + max

{
(2γ1 + γ 2

1 ), (2γ2 + γ 2
2 )
}]

t

= −ρ + λ log
[
1 + max

{
(2γ1 + γ 2

1 ), (2γ2 + γ 2
2 )
}]
.

The proof of the theorem is complete. �
Theorem 6 suppose a > 2σ 2

1 , μd > 2σ 2
2 and μ > 0 such that

−min

{(

a− σ
2
1

2

)

,

(

μd− σ
2
2

2

)

, μb

}

+λ log
[
1+max

{
(2γ1+γ 2

1 ), (2γ2+γ 2
2 )
}]
<0

(5.4)
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Then, the random dynamical system generate by the stochastic Duffing van der Pol
equation with fBm (3.1) possesses the unique tempered random attractors A(ω) = {0}
with domain of attraction D(A) containing the universe of Cl(U) given by

U = {(D(ω)ω∈�) : D(ω) ⊂ �3 is a tempered random set},

where Cl(U) is the completion universe of U under inclusion.

In particular, for any x ∈ �2, the solutions ϕ(t, θ−tω)x and ϕ(t, ω)x tend to zero
exponentially fast as t → ∞.

Proof Proposition 4.2 and the assumption (5.4) yield that the random dynamical sys-
tem generated (1.2) is stability. Define the Lyapunov function on �3

V (X) = 1

2

(

x2 + μy2 + μ

(

z − a + μc

μ

)2
)

yields V (X) ≥ 0 and V (X) = 0 if and only x = y = z = 0. Itô’s formula implies

dV (X) =
[

−
(

a − σ 2
1

2

)

x2 −
(

μd − σ 2
2

2

)

y2 − μbz2 + b(a + μc)

μ
z

]

dt

−
(σ1

2
x2 + μσ2

2
y2
)

dW (t)+
[
(2γ1 + γ 2

1 )x
2 + μ(2γ2 + γ 2

2 )y
2
]

d N (t)

≤
[

−
(

a− σ
2
1

2

)

x2−
(

μd− σ
2
2

2

)

y2−μb

(

z− a+μc

μ

)2

+ b(a + μc)2

2μ

]

dt

+ max
{σ1

2
,
σ2

2

}
V (X)dW (t)+max{(2γ1+γ 2

1 ), (2γ2 + γ 2
2 )}V (X)d N (t)

≤
[

−�V (X)+ b(a + μc)2

2μ

]

dt + max
{σ1

2
,
σ2

2

}
V (X)dW (t)

+ max{(2γ1 + γ 2
1 ), (2γ2 + γ 2

2 )}V (X)d N (t), (5.5)

where

� = min

{(

a − σ 2
1

2

)

,

(

μd − σ 2
2

2

)

, μb

}

.

Corollary 5.63. of Arnold [22] yields that the random dynamical system generated
by the stochastic differential equation with jump

d Zt =
[

−�ZT + b(a + μc)2

2μ

]

dt + max
{σ1

2
,
σ2

2

}
ZT dW (t)

+ max{(2γ1 + γ 2
1 ), (2γ2 + γ 2

2 )}Zt d N (t), (5.6)

123



J Math Chem (2014) 52:754–774 771

has the unique invariant measure δ0 which is the Dirac measure at 0. As the proof
in Theorem 5, one has that A(ω) = {0} = V −1({0}) is the unique random attractor
attracting any set form U .

Hence, it means that that, for any X ∈ �3, ϕ(t, θ−tω)x and ϕ(t, ω)x tend to zero
as t → ∞ with an exponential fast. The proof of the theorem is complete. �

6 Numerical simulation results

According to our analytical results the stochastic Lorenz family of chaotic systems are
both exponentially stable and tend to zero under conditions specified in Theorems 1
and 2. We now try and support our analytical results by simulations (Figs. 1, 2, 3).

For the Lorenz family of chaotic systems, Formula (8) given in Theorem 3 can
provide estimations for the boundaries of the attractive sets. The numerical results
indicate that except for the case σi , all other cases exhibit either generalized Lorenz
attractor or generalized Chen attractor. To illustrate the stochastic effects clearly we
performed simulations first for the deterministic case (Fig. 4) and then for a corre-
sponding stochastic simulation (Figs. 5, 6, 7). The parameter values used have all
been taken from published [5,7]. The typical values for a, b, c and d are chosen as
a = 10, b = 8/3, c = 28 and d = 1, and the values of σi are varied from 0 to 3.

0 5 10 15 20 25 30
−40

−30

−20

−10

0

10

20

30

Fig. 1 Simulated phase portraits of the stochastic Lorenz family of chaotic systems (1.2) with the initial
conditions a = 10, b = 8/3, c = 28 and d = 1, σ1 = σ2 = 0.5, γ1 = γ2 = 0.01, λ = 0.1. Blue represent
the simulation of the x of determine Lorenz family of chaotic systems. Red represent the simulation of the
xof stochastic Lorenz family of chaotic systems (Color figure online)
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Fig. 2 Simulated phase portraits of the stochastic Lorenz family of chaotic systems (1.2) with the initial
conditions a = 10, b = 8/3, c = 28 and d = 1, σ1 = σ2 = 0.5, γ1 = γ2 = 0.01, λ = 0.1. Blue represent
the simulation of the y of determine Lorenz family of chaotic systems. Red represent the simulation of the
y of stochastic Lorenz family of chaotic systems (Color figure online)
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Fig. 3 Simulated phase portraits of the stochastic Lorenz family of chaotic systems (1.2) with the initial
conditions a = 10, b = 8/3, c = 28 and d = 1, σ1 = σ2 = 0.5, γ1 = γ2 = 0.01, λ = 0.1. Blue represent
the simulation of the z of determine Lorenz family of chaotic systems. Red represent the simulation of the
z of stochastic Lorenz family of chaotic systems (Color figure online)
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Fig. 4 The determine Lorenz family of chaotic systems (1.2) with the initial conditions a = 10, b =
8/3, c = 28 and d = 1, σ1 = σ2 = γ1 = γ2 = λ = 0
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Fig. 5 Simulated phase portraits of the stochastic Lorenz family of chaotic systems (1.2) with the initial
conditions a = 10, b = 8/3, c = 28 and d = 1, σ1 = σ2 = 0.5, γ1 = γ2 = 0.01, λ = 0.1
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Fig. 6 Simulated phase portraits of the stochastic Lorenz family of chaotic systems (1.2) with the initial
conditions a = 10, b = 8/3, c = 28 and d = 1, σ1 = σ2 = 2, γ1 = γ2 = 0.01, λ = 0.1
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Fig. 7 Simulated phase portraits of the stochastic Lorenz family of chaotic systems (1.2) with the initial
conditions a = 10, b = 8/3, c = 28 and d = 1, σ1 = 1, σ2 = 3, γ1 = γ2 = 0.01, λ = 0.1
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