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Abstract The irreducible spherical and Cartesian tensors built of the products of
two interaction tensors: the second order tensor resulting from the product of two
second order tensors Tα λ Tλβ contracted once with the index λ, third order tensor
Tα β λTλ γ appearing as a product of the third order interaction tensor Tα β λ and the
second order one Tλ γ contracted once with the index λ and the fourth order product
of two second order tensors Tα β Tγ δ , have been considered. This type of products is
encountered, e.g., within the London’s dispersive energy formula, inside the second-
order virial coefficients of many physical parameters such as the dielectric constant,
the Kerr constant, the induced polarizability and hyperpolarizability of a pair of mol-
ecules and in other induced quantities. Our results are applied explicitly to the excess
induced first and second pair hyperpolarizability.

Keywords Irreducible tensors · First hyperpolarizability ·
Second hyperpolarizability · Collision-induced phenomena

1 Introduction

In a gas of moderate density, the magnitude of the moment induced in a molecule
is dependent (in addition to the external perturbation) on the internal fields originat-
ing in its close neighborhood. The internal fields active in linear as well as nonlinear
optics [1,2] phenomena are directly connected to intermolecular interactions. Such
fields cause quantum transitions in infrared (IR), Raman and Rayleigh light scattering
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and in all nonlinear optics effects. In many cases, these transitions are forbidden in
the single molecule approximation and lead, e.g., to a collision-induced absorption
of radiation by the centrosymmetric microsystems [3], to the depolarized component
in the light scattered by systems of atoms and optically isotropic molecules. In the
induced transient Raman scattering, internal fields give rise to the anisotropic as well
as the isotropic component [4], which for optically isotropic molecules in either case
is forbidden in the single molecular scattering. In nonlinear optics, a large part of the
second harmonic light scattering measured is attributed to intermolecular interactions
[5,1]. The collision-induced hyper-Rayleigh light scattering [6,7] originates in internal
fields. Moreover, even if a process is permitted in the single molecule approximation,
the internal molecular fields cause the phenomenon to deviate considerably from the
single molecule approximation.

Within the theory of molecular interactions and induced properties of matter, the
interaction tensors Tn = ∇. . .∇

︸ ︷︷ ︸

n−times

( 1
R

)

, for microsystems separated by the distance

R, play an important role [8–15]. If the described interactions result from the sec-
ond order of the statistical perturbation theory, the relevant formulas typically contain
the product of two such tensors [16]. This type of products enter, e.g., the London’s
dispersive energy formula (see, for example, [17]) within the second-order virial coef-
ficients of several physical quantities such as the dielectric constant, the Kerr constant,
the induced polarizability and hyperpolarizability of a pair of microsystems and other
induced quantities. In this study, the irreducible (spherical and Cartesian) form of the
fully index-symmetric tensor product of two interaction tensors is considered. Sub-
sequently, we apply our results to interacting pairs of unlike atoms. In particular, our
results are applied explicitly to the excess induced first- and second- pair hyperpolar-
izability.

2 Second rank tensor Tα λ Tλβ

The first kind of the product of two interaction tensors often present in molecular
physics, e.g., in the second order collision-induced polarizability [16], is of the form
Tα λ Tλβ . We denote this tensor as (2)�A. In the irreducible spherical tensor language
this product, in the self-explanatory notation, reads

(2)�Akρ =
{

(μ1 ⊗ η1 )(k) ⊗ (μ1 � η1)
}

kρ
. (1)

where ⊗ denotes the tensor product and � stands for the scalar product and we connect
the μ1 vector with the first tensor of Tα λ Tλβ and η1 with the second tensor.

Using recouping procedures [18] we obtain

(2)�Akρ = (

Tα λ Tλβ

)

k ρ
= − 5 (−1)k

{

2 2 k
1 1 1

}
{

T(2) ⊗ T(2)
}

kρ
, (2)

where {. . .} is the 6-j Wigner symbol, and T(2) is the spherical second rank interaction
tensor. Note that for this tensor there is only one coupling scheme possible. For the
isotropic and the anisotropic component of �Akρ , we obtain

123



1572 J Math Chem (2012) 50:1570–1581

(2)�A0 0 = −2
√

3 R−6, (3)

or in the Cartesian notation for the mean value of the tensor (2)�A

(2)� A =
(2)� Aρρ

3
= 2 R−6 (4)

and

(2)�A2 0 = 3

√

2

3
R−6, (5)

or in the Cartesian notation for its anisotropy

(2)� A = (2)� Azz − (2)� Axx = 3 R−6. (6)

It is interesting and useful to calculate the Cartesian irreducible zz components of
(2)�A

(2)�A
(0)

z z = 2 R−6 (7)

(2)�A
(2)

z z = 2 R−6. (8)

Note that the Tαλ Tλβ tensor has already been discussed extensively in Ref. [16].
The above results give us immediately the well known formulas for the trace of the
polarizability of the diatom

α(R) = 4 α3

R6 (9)

and its anisotropy

γ (R) = 6 α3

R6 , (10)

with α—the intrinsic polarizability of an atom.

3 Third rank tensor Tα β λ Tλ γ

We consider the product Tα β λ Tλ γ of the second and third rank interaction tensors
contracted once with the index λ. Moreover, we are interested in this tensor symme-
trized over all its indexes α βγ . We denote this symmetrized tensor by (s)�Fα β γ

(s)�Fα β γ = 1

3! Sα β γ

(

Tα β λ Tλ γ

)

, (11)

where Sα β γ stands for the summation over all permutations of the set α β γ .
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3.1 Irreducible spherical considerations

Let us consider first the tensor Bαβγ = Tα β λ Tλ γ . In the spherical notation we rewrite
this tensor in the following way

Bkρ =
{

(μ1 ⊗ μ1 )(2) ⊗ (μ1 � η1) η1

}

kρ
. (12)

Using decoupling procedures [18] we find

Bkρ[(31)a1] = (−1)k+a
√

35

{

3 2 k
1 a 1

}
{

T(3) ⊗ T(2)
}

kρ
, (13)

or explicitly

B10[(31), 21] = 18

√

3

5
R−7, (14)

B30[(31), 21] = − 12

√

2

5
R−7. (15)

In Eq. (13) first we couple the components (((11)21)3) of the Tα β λ tensor and
subsequently the components of Tλγ . Let us remind that the interaction tensors are
irreducible and traceless. To obtain the index-symmetric third rank tensor (s)�Fα β γ

from Eq. (13), the genealogical coefficients are necessary. They are given in Table 1.
For the notation λ

3 j
τ of the genealogical coefficients see [19,20]. In Eq. (13), the set

of the last two indexes (a1) forms the seniority index τ for this tensor.
To relate the irreducible spherical tensor components to the Cartesian components,

the transformation coefficients are needed. Symmetry considerations show that for the
D∞ v point group and for the third order index-symmetric tensor D only two linearly
independent components Dxxz and Dzzz exist. In the irreducible spherical notation
they correspond to D10 and D30. The transformation coefficients between these two
sets are collected in Table 2. In our considerations we use the well known Condon and
Shorthey phase convention [20].

Table 1 The genealogical

coefficients λ
3, j
τ for an

index-symmetric third rank
tensor

j = 1 j = 3

λ
3 j
01

√
5

3 0

λ
3 j
21

2
3 1
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Table 2 The
Cartesian-spherical
transformation coefficients for
the third rank symmetric
tensor D

Dxxz Dzzz

D10 − 1√
15

−
√

3
5

D30 − 1√
10

√

2
5

3.2 Irreducible Cartesian tensors

Concurrently, we consider the irreducible parts of the (s)�Fα β γ tensor in the Carte-
sian form. In general, the totally index-symmetric third rank tensor D has only odd
order irreducible components of the form [20–22]:
(a) the first order component

D(1)
αβγ = 1

5

(

δαβ Dρργ + δαγ Dρρβ + δβγ Dρρα

)

(16)

(b) the third order component

D(3)
αβγ = Dαβγ − D(1)

αβγ . (17)

Applying the above formula to the (s)�Fα β γ tensor we obtain the following results:

(s)�Fα ρ ρ = − 12 R̂α R−7 (18)

and

(s)�F(1)
α β γ = − 12

5

(

R̂α δβγ + R̂β δαγ + R̂γ δαβ

)

R−7. (19)

The relation (19) yields

(s)�F(1)
zzz = − 36

5
R−7 (20)

and according to Eq. (17) we have

(s)�F(3)
zzz =

(

−12 + 36

5

)

R−7 = − 24

5
R−7. (21)

The results are given in Table 5. We note a good agreement between the irreducible
Cartesian and irreducible spherical tensors.
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4 Fourth rank tensor Tα β Tγ δ

Now we consider the index symmetric fourth rank product of two interaction tensors.
We denote this tensor as (s)�Eα β γ δ

(s)�Eα β γ δ = 1

4! Sα β γ δ

(

Tα β Tγ δ

)

. (22)

4.1 Irreducible spherical approach

First we consider the fourth rank tensor Cα β γ δ = Tα β Tγ δ . In the irreducible spher-
ical notation this tensor reads:

(s)Ckρ =
{

(μ1 ⊗ μ1 )(2) ⊗ (η1 × η1)
(2)

}

kρ
. (23)

Using recouping procedures we rewrite Eq. (23) as follows:

(s)Ckρ[(21)a1] =
{
(

T(2) ⊗ μ1

)(a) ⊗ μ1

}

kρ

= (−1)k
√

5 (2a + 1)

{

2 1 a
1 k 2

}
{

T(2) ⊗ T(2)
}

kρ
. (24)

The coupling scheme is visible in the first line of Eq. (24). This equation makes it pos-
sible to obtain the set of the subsequent non-zero components of the index-symmetric
part of the tensor (2)�E. They are of the form:

C00[(21)11] =
{

T(2) ⊗ T(2)
}

00
,

C20[(21)11] =
√

7
5

2

{

T(2) ⊗ T(2)
}

20
,

C20((21)31] = 1√
15

{

T(2) ⊗ T(2)
}

20
,

C40((21)31] =
{

T(2) ⊗ T(2)
}

40
. (25)

For these components the coupling steps are clearly visible. The seniority index of
the ordinary fourth rank tensor composed by four dipoles Dkρ[((11) j2 1) j31] is given
by the set τ = ( j2 j3). The interaction tensors are irreducible and traceless, then in
our tensor C, j2 = 2 We write our tensor C in the form Ckρ[(21) j3 1]. Then seniority
index of our tensor C reads, τ = (2 j3). Again, the genealogical coefficients are neces-
sary in order to obtain the index symmetric part of the tensor Cαβγ δ . The genealogical
coefficients for a fourth-rank totally index-symmetric tensor are collected in Table 3.
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Table 3 The genealogical
coefficients for a fourth-rank
totally index-symmetric tensor

j = 0 j = 2 j = 4

λ
4 j
01

√
5

3

√
14
3 0

λ
4 j
21

2
3

√
14/5
3 0

λ
4 j
23 0

√

3
10 1

Table 4 The
Cartesian-spherical
transformation coefficients
for index-symmetric fourth-rank
tensor D

Dxxxx Dxxzz Dzzzz

D00
1√
5

1
3

√
5

1√
5

D20
1√
7

− 1
6

√
7

− 2√
7

D40
3

2
√

70
− 2√

70
4√
70

The results of Eq. (25) and Table 3 allow us to calculate the components of the
(s)� E tensor

(s)�E00 = 2

3

6√
5

R−6 = 4√
5

R−6,

(s)�E20 =
⎛

⎝

√

14
5

3

√

7
5

2
+

√

3

10

1√
15

⎞

⎠

(

−
√

2

7

)

6 R−6 = − 4√
7

R−6,

(s)�E40 = 6

√

3

35
R−6. (26)

In Eq. (26), the first factor stands for the respective genealogical coefficient and
the second one results from Eq. (25). In order to relate the irreducible spherical com-
ponents �E j0 to the Cartesian ones, we use the transformation coefficients collected
in Table 4. Symmetry considerations show that for the C∞ v and D∞ v point groups
and for the fourth order fully index-symmetric tensor D there exist only three linearly
independent components Dxxxx , Dxxzz and Dzzzz . In the irreducible spherical notation
they correspond to D00, D20 and D40.

4.2 Irreducible Cartesian picture

Concurrently, the totally index-symmetric fourth rank tensor D has only even order
irreducible components of the form [20,22]:
(a) the zero order component

D(0)
αβγ δ = 1

15

(

δαβ δγ δ + δαγ δβδ + δαδ δβγ

)

Dρρσσ (27)
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(b) the second order component

D(2)
αβγ δ = 1

7

(

δαβ Dρργ δ + δβδ Dρραγ + δγ δ Dρραβ

+ δαγ Dρρβδ + δαδ Dρρβγ + δβγ Dρραδ

) − 10

7
D(0)

αβγ δ (28)

(c) the fourth order component

D(4)
αβγ δ = Dαβγ δ − D(0)

αβγ δ − D(2)
αβγ δ (29)

Let us apply the formulas (27–29) to the (s)�E tensor given by Eq. (22). The (s)�E
tensor contracted with two indexes gives

(s)�Eρργ δ = 2

3

(

T(2) · T(2)
)

γ δ
. (30)

Contracting further on we obtain

(s)�Eρρσσ = 4 R−6. (31)

Using Eqs. (27–29) and the above result we obtain

(s)�E(0)
zzzz = 4

5
R−6,

(s)�E(2)
zzzz = 8

7
R−6,

(s)�E(4)
zzzz = 72

35
R−6. (32)

5 Second order correction to the redundant first and second
hyperpolarizability tensor

With the aim of presenting applications of our method we calculate the excess second
order correction to the induced first- and second- order hyperpolarizability. It has been
shown by Buckingham [14], Hunt [23] and Li et al. [13], note also [15], that for a pair
of atoms A and B the second order correction to the induced first-hyperpolarizability
tensor �β is given by the following formula

(2)� βαβγ = − 1

2
Sαβγ

(

Tαγλ Tλβ

)

BA αA αB − 1

4
Sαβγ

(

Tαγλ Tλβ

)

BA α2
A.

(33)
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Table 5 Results for the excess first-hyperpolarizability �β

(s)� Fαβγ
(s)�F10

(s)�F30

12
√

3
5 R−7 −12

√

2
5 R−7

� F(1)
zzz � F(3)

zzz � Fzzz

− 36
5 R−7 − 24

5 R−7 −12 R−7

� β
(1)
zzz �β

(3)
zzz � βzzz

108
5 BA αA αB R−7 72

5 BA αA αB R−7 36 BA αA αB R−7

� β
(1)
zzz �β

(3)
zzz � βzzz

54
5 BA α2

B R−7 36
5 BA α2

B R−7 18 BA α2
B R−7

For the second order correction to the redundant induced second hyperpolarizability
�γ we have [14,13]:

(γA α2
B )

(2)� γαβγ δ = 1

12
Sαβγ δ

(

δαβ Tλγ Tλδ + Tαγ Tβδ + Tαδ Tβγ

)

γA α2
B, (34)

(γA αA αB )
(2)� γαβγ δ = 1

18
Sαβγ δ

(

δγ δ Tαλ Tλβ + δβδ Tαλ Tλγ + δβγ Tαλ Tλδ

)

×γA αA αB, (35)

where Bi , αi and γi denote the dipole2-quadrupole hyperpolarizability, polarizability
and second-hyperpolarizability of an atom i , respectively.

Using the hereinbefore mentioned methods, we calculate the irreducible spherical
components (s)�F10,

(s) �F30. The results are given in Table 5. In the latter Table
the Cartesian zzz components of �F calculated using the irreducible Cartesian tensor
approach are given as well. As an example, let us calculate the dipolar part (BAα2

B )� β
(1)
zzz

of the first hyperpolarizability. We have

(BAα2
B )�β(1)

zzz = 3

2

√

3

5
12

√

3

5
BAα2

B R−7 = 54

5
BAα2

B R−7. (36)

The first coefficient in Eq. (36) results from the formula (33) if all permutations
are considered, the second coefficient comes from Table 2 and the third one—from
Table 5.

Similar arguments apply to the (s)�E tensor and the second-hyperpolarizability
tensor. The (s)�Eα β γ δ tensor components (s)�E00,

(s) �E20 and (s)�E40 are given
in Table 6. In the latter Table the Cartesian zzzz components of (s)�E calculated using
the irreducible Cartesian tensor approach are given as well. Note again a good agree-
ment between these results. Let us present an example of using the data of Table 6.
Now, we calculate the (2)�γ

(0)
zzzz contribution from the components given in Table 6:

(γAαAαB )�γ (0)
zzzz = 4 · 2 γAαAαB R−6 = 8 γAαAαB R−6, (37)
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Table 6 Results for the excess second-hyperpolarizability �γ

(s)� Eαβγ δ
(s)�E00

(s)�E20
(s)�E40

4√
5

R−6 − 4√
7

R−6 3
√

2
35 R−6

(s)�E(0)
zzzz

(s)�E(2)
zzzz

(s)�E(4)
zzzz

(s)�Ezzzz

4
5 R−6 8

7 R−6 72
35 R−6 4 R−6

(2)�Aαβ
(2)�A00

(2)�A20
(2)�A40

−2
√

3 R−6 3
√

2
3 R−6 0

(2)�A(0)
zz

(2)�A(2)
zz

(2)�A(4)
zz

(2)�Azz

2 R−6 2 R−6 0 4 R−6

(2)�γ
(0)
zzzz

(2)�γ
(2)
zzzz

(2)�γ
(4)
zzzz

(2)�γzzzz

8 γAαAαB R−6 8 γAαAαB R−6 0 16 γAαAαB R−6

(2)�γαβγ δ
(2)�γ

(0)
zzzz

(2)�γ
(2)
zzzz

(2)�γ
(4)
zzzz

(s)�γzzzz

36
5 γAα2

B R−6 60
7 γAα2

B R−6 288
35 γAα2

B R−6 24 γAα2
B R−6

where the first factor in Eq. (37) originates from all possible permutations of Eq. (35).
Next, we use the results of Eq. (7).

Additionally, for (γAα2
B )�γ

(0)
zzzz we obtain

(γAα2
B )�γ (0)

zzzz = 2

(

2 + 8

5

)

γAα2
B R−6 = 36

5
γAα2

B R−6. (38)

The factor 2 in Eq. (38) results from all possible permutations in Eq. (35). On the
other hand, the first term in the parenthesis in Eq. (35) (according to Eq. (7)) yields
2 γAα2

B R−6. The last two terms result from the value (s)�E00 = 4√
5

R−6 in Table 6

and the respective genealogical coefficient ( 1√
5
) in Table 4 leads to the result 8

5 . In a
similar way, we obtain

(γAα2
B )�γ (2)

zzzz = 2

(

2 + 16

7

)

γAα2
B R−6 = 60

7
γAα2

B R−6. (39)

The last formula (40) needs only the respective Clebsch-Gordon coefficient, the
transformation coefficient and the permutation factor:

(γAα2
B )�γ (4)

zzzz = 4√
70

72

√

2

35
γAα2

B R−6 = 288

35
γAα2

B R−6. (40)
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6 Conclusion

The irreducible spherical and Cartesian tensors built of the products of two interaction
tensors: the second order tensor resulting from the product of two second order tensors
Tα λ Tλβ contracted once with the index λ, third order tensor Tα β λTλ γ appearing as a
product of the third order interaction tensor Tα β λ and the second order one Tλ γ con-
tracted once with the index λ as well as the fourth order product of two second order
tensors Tα β Tγ δ have been considered The results have been applied to the excess first
and second collision-induced hyperpolarizability tensor of a pair of dissimilar atoms.
Excellent agreement with the results found by Buckingham et al. [14] as well as the
results by Hunt [23] and Li et al. [12,13] has been found. It is interesting to note that
the irreducible Cartesian components can be obtained directly from Cartesian con-
siderations (see Sects. 3.2, 4.2) or through the irreducible spherical components and
the respective transformation coefficients (Tables 2, 4). A good agreement has been
found.
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